Publications

Below is a list of publications I have co-authored. For bibliometrics, see Google Scholar.

2024

Visualizing Riemannian data with Rie-SNE
Andri Bergsson and Søren Hauberg.
Machine Learning Methods in Visualisation (MLVis), 2024.
PDF arXiv Code

Variational Point Encoding Deformation for Dental Modeling
Johan Ziruo Ye, Thomas Ørkild, Peter Lempel Søndergaard and Søren Hauberg.
Transactions on Machine Learning Research (TMLR) 2024
PDF SPIGM abstract Code

Reparameterization invariance in approximate Bayesian inference
Hrittik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig, Marvin Pförtner, Lukas Tatzel and Søren Hauberg.
arXiv preprint, 2024.
PDF arXiv Code

Neural Contractive Dynamical Systems
Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Nadia Figueroa, Gerhard Neumann and Leonel Rozo.
In International Conference on Representation Learning (ICLR), 2024.
PDF arXiv

A Continuous Relaxation for Discrete Bayesian Optimization
Richard Michael, Simon Bartels, Miguel González-Duque, Yevgen Zainchkovskyy, Jes Frellsen, Søren Hauberg and Wouter Boomsma.
arXiv preprint, 2024.
PDF arXiv

Laplacian Segmentation Networks: Improved Epistemic Uncertainty from Spatial Aleatoric Uncertainty
Kilian Zepf, Selma Wanna, Marco Miani, Juston Moore, Jes Frellsen, Søren Hauberg, Frederik Warburg, Aasa Feragen.
In MICCAI, 2024.
PDF arXiv

Decoder ensembling for learned latent geometries
Stas Syrota, Pablo Moreno-Muñoz and Søren Hauberg.
In ICML Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024.
PDF

Gradients of Functions of Large Matrices
Nicholas Krämer, Pablo Moreno-Muñoz, Hrittik Roy and Søren Hauberg.
arXiv preprint, 2024.
PDF arXiv Code

Improving Adversarial Energy-Based Model via Diffusion Process
Cong Geng, Tian Han, Peng-Tao Jiang, Hao Zhang, Jinwei Chen, Søren Hauberg and Bo Li.
In International Conference on Machine Learning (ICML), 2024.
PDF arXiv

Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Andreas L. Plesner, Hans Henrik Brandenborg Sørensen, and Søren Hauberg.
In International Conference on Supercomputing (ICS), 2024.
PDF Publisher's site Code

2023

On Masked Pre-training and the Marginal Likelihood
Pablo Moreno-Muñoz, Pol G. Recasens and Søren Hauberg.
In Neural Information Processing Systems (NeurIPS) 2023
PDF arXiv Code

Identifying latent distances with Finslerian geometry
Alison Pouplin, David Eklund, Carl Henrik Ek, and Søren Hauberg.
Transactions on Machine Learning Research (TMLR), 2023.
PDF ArXiv

Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval
Frederik Warburg, Marco Miani, Silas Brack and Søren Hauberg.
In Neural Information Processing Systems (NeurIPS) 2023
PDF arXiv

Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group
Jeppe Thagaard et al. (142 authors)
The Journal of pathology, August 2023.
PDF Publishers site

Learning to Taste: A Multimodal Wine Dataset
Thoranna Bender, Simon Møe Sørensen, Alireza Kashani, K. Eldjarn Hjorleifsson, Grethe Hyldig, Søren Hauberg, Serge Belongie and Frederik Warburg.
In Neural Information Processing Systems (NeurIPS) 2023
PDF Dataset ArXiv

Reactive Motion Generation on Learned Riemannian Manifolds
Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann and Leonel Rozo.
International Journal of Robotics Research, 2023.
PDF arXiv Publisher's site Video

Riemannian Laplace approximations for Bayesian neural networks
Federico Bergamin, Pablo Moreno-Muñoz, Søren Hauberg, and Georgios Arvantidis.
In Neural Information Processing Systems (NeurIPS) 2023
PDF arXiv

2022

Mario Plays on a Manifold: Generating Functional Content in Latent Space through Differential Geometry
Miguel González-Duque, Rasmus Berg Palm, Søren Hauberg and Sebastian Risi.
Conference on Games, 2022.
PDF arXiv

Is an encoder within reach?
Helene Hauschultz, Rasmus Berg Palm. Pablo Moreno-Muños, Nicki Skafte Detlefsen, Andrew Allan du Plessis, Søren Hauberg.
arXiv preprint, 2022.
PDF arXiv

Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin, Pierre-Alexandre Mattei, Jakob D. Havtorn, Hugo Senetaire, Hugo Schmutz, Lars Maaløe, Søren Hauberg and Jes Frellsen.
Artificial Intelligence and Statistics (AISTATS), 2022.
PDF arXiv

Pulling back information geometry
Georgios Arvantidis, Miguel González-Duque, Alison Pouplin, Dimitris Kalatzis and Søren Hauberg.
Artificial Intelligence and Statistics (AISTATS), 2022.
PDF arXiv

Revisiting Active Sets for Gaussian Process Decoders
Pablo Moreno-Muñoz, Cilie W. Feldager and Søren Hauberg.
Advances in Neural Information Processing Systems (NeurIPS), 2022.
PDF arXiv

Laplacian Autoencoders for Learning Stochastic Representations
Marco Miani, Frederik Warburg, Pablo Moreno-Muñoz, Nicke Skafte Detlefsen and Søren Hauberg.
Advances in Neural Information Processing Systems (NeurIPS), 2022.
PDF arXiv

Learning meaningful representations of protein sequences
Nicki Skafte Detlefsen, Søren Hauberg and Wouter Boomsma.
Nature Communications 13.1 (2022).
PDF arXiv Publisher's site

Danish Airs and Grounds: A Dataset for Aerial-to-Street-Level Place Recognition and Localization
Andrea Vallone, Frederik Warburg, Hans Hansen, Søren Hauberg and Javier Civera.
IEEE Robotics and Automation Letters.
PDF Dataset Publisher's site arXiv

Adaptive Cholesky Gaussian Processes
Simon Bartels, Kristoffer Stensbo-Smidt, Pablo Moreno-Munoz, Wouter Boomsma, Jes Frellsen and Søren Hauberg.
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, 2023.
PDF arXiv

Optimal latent transport
Hrittik Roy and Søren Hauberg.
NeurIPS Workshop on Symmetry and Geometry in Neural Representations.
PDF OpenReview

Robust uncertainty estimates with out-of-distribution pseudo-inputs training
Pierre Segonne, Yevgen Zainchkovskyy and Søren Hauberg.
arXiv, 2022.
PDF arXiv

Benchmarking Generative Latent Variable Models for Speech
Jakob Drachmann Havtorn, Lasse Borgholt, Søren Hauberg, Jes Frellsen and Lars Maaløe.
Deep Generative Models for Highly Structured Data (ICLR 2022 Workshop).
PDF OpenReview

Probabilistic Spatial Transformer Networks
Pola Schwöbel, Frederik Warburg, Martin Jørgensen, Kristoffer H. Madsen and Søren Hauberg.
In The Conference on Uncertainty in Artificial Intelligence (UAI), 2022.
PDF arXiv

2021

Spontaneous Symmetry Breaking in Data Visualization
Cilie W. Feldager, Søren Hauberg, and Lars Kai Hansen.
In International Conference on Artificial Neural Networks (ICANN), 2021.
PDF

Learning Riemannian Manifolds for Geodesic Motion Skills
Hadi Beik-Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann and Leonel Rozo.
Robotics: Science and Systems (RSS), 2021.
PDF arXiv Best student paper award Code

Bounds all around: training energy-based models with bidirectional bounds
Cong Geng, Jia Wang, Zhiyong Gao, Jes Frellsen, and Søren Hauberg.
In Advances in Neural Information Processing Systems (NeurIPS) 34, 2021.
PDF arXiv

Multi-chart flows
Dimitris Kalatzis, Johan Ziruo Ye, Jesper Wohlert and Søren Hauberg.
arXiv preprint, 2021.
PDF arXiv

Hierarchical VAEs Know What They Don’t Know
Jakob D. Havtorn, Jes Frellsen, Søren Hauberg and Lars Maaløe.
International Conference on Machine Learning (ICML), 2021.
PDF arXiv

Isometric Gaussian Process Latent Variable Model for Dissimilarity Data
Martin Jørgensen and Søren Hauberg.
International Conference on Machine Learning (ICML), 2021.
PDF arXiv

Automated Quantification of sTIL Density with H&E-Based Digital Image Analysis Has Prognostic Potential in Triple-Negative Breast Cancers
Jeppe Thagaard, Elisabeth S. Stovgaard, Line G. Vognsen, Søren Hauberg, Anders Dahl, Thomas Ebstrup, Johan Doré, Rikke E. Vincentz, Rikke K. Jepsen, Anne Roslind, Iben Kümler, Dorte Nielsen and Eva Balslev.
Cancers, 13(12), June 2021.
PDF Publishers site

Geometrically Enriched Latent Spaces
Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf.
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.
PDF arXiv

Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval
Frederik Warburg, Martin Jørgensen, Javier Civera and Søren Hauberg.
International Conference on Computer Vision (ICCV), 2021.
PDF arXiv

2020

Intrinsic Grassmann Averages for Online Linear Robust and Nonlinear Subspace Learning
Rudrasis Chakraborty, Liu Yang, Søren Hauberg and Baba C. Vemuri.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
PDF

Reparametrization Invariance in non-parametric Causal Discovery
Martin Jørgensen and Søren Hauberg.
arXiv preprint, 2020.
PDF arXiv

Parallel QR factorization of block-tridiagonal matrices
Alfredo Buttari, Søren Hauberg and Costy Kodsi.
SIAM Journal on Scientific Computing, 2020.
PDF Publishers site HAL

Mapillary Street-Level Sequences: A Dataset for Lifelong Place Recognition
Frederik Warburg, Søren Hauberg, Manuel López-Antequera, Pau Gargallo, Yubin Kuang, and Javier Civera.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020
PDF Mapillary blog Dataset

Can you trust predictive uncertainty under real dataset shifts in digital pathology?
Jeppe Thagaard, Søren Hauberg, Bert van der Vegt, Thomas Ebstrup, Johan D. Hansen, and Anders B. Dahl.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2020, Lima, Peru, October 2020.
PDF

Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis, David Eklund, Georgios Arvanitidis and Søren Hauberg.
In International Conference on Machine Learning (ICML), 2020.
PDF arXiv

2019

Reliable training and estimation of variance networks
Nicki Skafte Detlefsen, Martin Jørgensen, and Søren Hauberg.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
PDF arXiv

Explicit Disentanglement of Appearance and Perspective in Generative Models
Nicki Skafte Detlefsen, and Søren Hauberg.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
PDF arXiv

Expected path length on random manifolds
David Eklund and Søren Hauberg.
arXiv preprint, 2019.
PDF arXiv

Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models
Anton Mallasto, Søren Hauberg, and Aasa Feragen.
In Proceddings of 22nd international Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
PDF ArXiv

Fast and Robust Shortest Paths on Manifolds Learned from Data
Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, and Michael Schober.
In Proceedings of the 22nd international Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
PDF Supplements Code

2018

Deep Diffeomorphic Transformer Networks
Nicki Skafte Detlefsen, Oren Freifeld and Søren Hauberg.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA. July 2018.
PDF Code

Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)
Søren Hauberg.
Unpublished manuscript, 2018.
PDF arXiv

On the Geometry of Latent Variable Models
Søren Hauberg.
Oberwolfach abstract from Statistics for Data with Geometric Structure, 2018 (3).
PDF Workshop and complete report

Geodesic Clustering in Deep Generative Models
Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg.
arXiv preprint, 2018.
PDF arXiv

Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis, Lars Kai Hansen and Søren Hauberg.
In International Conference on Learning Representations (ICLR), 2018.
PDF

The non-central Nakagami distribution
Søren Hauberg.
Unpublished technical note, 2018.
PDF

Directional Statistics with the Spherical Normal Distribution
Søren Hauberg.
In Proceedings of FUSION 2018.
PDF Supplements

2017

Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning
Rudrasis Chakraborty, Søren Hauberg, and Baba C. Vemuri.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA. July 2017.
PDF arXiv

Maximum likelihood estimation of Riemannian metrics from Euclidean data
Georgios Arvanitidis, Lars Kai Hansen and Søren Hauberg.
In Geometric Science of Information (GSI), 2017.
PDF

Transformations Based on Continuous Piecewise-Affine Velocity Fields
Oren Freifeld, Søren Hauberg, Kayhan Batmanghelich and John W. Fisher III.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
PDF Supplements Derivative of gradient Code

2016

Dreaming More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Augmentation
Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John W. Fisher III, and Lars Kai Hansen.
In Proceedings of the 19th international Conference on Artificial Intelligence and Statistics (AISTATS), volume 51, 2016.
PDF Publisher's site arXiv Animation Supplements

Open Problem: Kernel methods on manifolds and metric spaces. What is the probability of a positive definite geodesic exponential kernel?
Aasa Feragen and Søren Hauberg.
In Conference on Learning Theory (COLT), 2016.
PDF Publisher's site

A Locally Adaptive Normal Distribution
Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg.
Neural Information Processing Systems (NeurIPS), 2016.
PDF Errata arXiv YouTube

Data-driven forward model inference for EEG brain imaging
Sofie Therese Hansen, Søren Hauberg, and Lars Kai Hansen.
In NeuroImage, 2016.
Publisher's site Preprint

2015

Principal Curves on Riemannian Manifolds
Søren Hauberg.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
PDF Publishers site Supplements Animation

A Random Riemannian Metric for Probabilistic Shortest-Path Tractography
Søren Hauberg, Michael Schober, Matthew Liptrot, Philipp Hennig, and Aasa Feragen.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2015, Munich, Germany, September 2015.
PDF Youtube

Highly-Expressive Spaces of Well-Behaved Transformations: Keeping It Simple
Oren Freifeld, Søren Hauberg, Kayhan Batmanghelich and John W. Fisher III.
In International Conference on Computer Vision (ICCV), Santiago, Chile. December 2015.
PDF Code

Scalable Robust Principal Component Analysis using Grassmann Averages
Søren Hauberg, Aasa Feragen, Raffi Enficiaud and Michael J. Black.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
PDF Publishers site Supplements Paper site w. code

Geodesic Exponential Kernels: When Curvature and Linearity Conflict
Aasa Feragen,Françous Lauze, and Søren Hauberg.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, USA. June 2015.
PDF Extended abstract (PDF) SIMBAD extended abstract (PDF) arXiv

2014

Model Transport: Towards Scalable Transfer Learning on Manifolds
Oren Freifeld, Søren Hauberg, and Michael J. Black.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA. June 2014.
PDF Supplementary material

Metrics for Probabilistic Geometries
Alessandra Tosi, Søren Hauberg, Alfredo Vellido, and Neil D. Lawrence.
In The Conference on Uncertainty in Artificial Intelligence (UAI), Quebec, Canada. July 2014.
PDF arXiv

Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Philipp Hennig and Søren Hauberg.
In Proceedings of the 17th international Conference on Artificial Intelligence and Statistics (AISTATS), volume 33, 2014.
PDF Paper site w. code Youtube Supplements

Grassmann Averages for Scalable Robust PCA
Søren Hauberg, Aasa Feragen, and Michael J. Black.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA. June 2014.
PDF Paper site w. code Tutorial video Results video Supplementary materials CVPR talk (video)

Probabilistic shortest path tractography in DTI using Gaussian Process ODE solvers
Michael Schober, Niklas Kasenburg, Aasa Feragen, Philipp Hennig, and Søren Hauberg.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2014, Boston, USA, September 2014.
PDF Supplementary material Paper site w. code Youtube 1 Youtube 2

2013

Unscented Kalman Filtering on Riemannian Manifolds
Søren Hauberg, Françous Lauze, and Kim S. Pedersen.
Journal of Mathematical Imaging and Vision, 46(1):103-120, May 2013.
PDF Publishers site Errata

2012

Natural Metrics and Least-Committed Priors for Articulated Tracking
Søren Hauberg, Stefan Sommer, and Kim S. Pedersen.
Image and Vision Computing, 30(6-7):453-461, 2012.
PDF Code Publishers site

A Geometric Take on Metric Learning
Søren Hauberg, Oren Freifeld, and Michael J. Black.
In Advances in Neural Information Processing Systems (NeurIPS) 25, MIT Press, pages 2033-2041, 2012.
PDF Supplementary material Code Poster

HUMIM Software for Articulated Tracking
Søren Hauberg and Kim S. Pedersen.
Technical Report 01/2012, Department of Computer Science, University of Copenhagen, January 2012.
PDF

A geometric framework for statistics on trees
Aasa Feragen, Mads Nielsen, Søren Hauberg, Pechin Lo, Marleen de Bruijne, and Françous Lauze.
Technical Report 11/02, Department of Computer Science, University of Copenhagen, January 2012.
PDF

Spatial Measures between Human Poses for Classification and Understanding
Søren Hauberg and Kim S. Pedersen.
In In Articulated Motion and Deformable Objects, Springer Berlin Heidelberg, volume 7378, LNCS, pages 26-36, 2012.
Publishers site

2011

A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model
Søren Hauberg and Kim S. Pedersen.
In 1st IEEE Workshop on Kernels and Distances for Computer Vision (ICCV workshop), 2011.
Workshop site

Unscented Kalman Filtering for Articulated Human Tracking
Anders B.L. Larsen, Søren Hauberg, and Kim S. Pedersen.
In Image Analysis, Springer Berlin Heidelberg, volume 6688, Lecture Notes in Computer Science, pages 228-237, 2011.
PDF Publishers site

Data-Driven Importance Distributions for Articulated Tracking
Søren Hauberg and Kim S. Pedersen.
In Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer Berlin Heidelberg, volume 6819, Lecture Notes in Computer Science, pages 287-299, 2011.
PDF Errata Code

Means in spaces of tree-like shapes
Aasa Feragen, Søren Hauberg, Mads Nielsen, and Françous Lauze.
In IEEE International Conference on Computer Vision (ICCV), pages 736 -746, 2011.
PDF Supplementary material

An Empirical Study on the Performance of Spectral Manifold Learning Techniques
Peter Mysling, Søren Hauberg and Kim S. Pedersen.
In Artificial Neural Networks and Machine Learning - ICANN 2011, Springer Berlin Heidelberg, volume 6791, Lecture Notes in Computer Science, pages 347-354, 2011.
PDF

Predicting Articulated Human Motion from Spatial Processes
Søren Hauberg and Kim S. Pedersen.
International Journal of Computer Vision (IJCV), 2011.
PDF Paper site Code Publishers site

Spatial Models of Human Motion
Søren Hauberg.
PhD thesis. University of Copenhagen, 2011.

2010

Dense Marker-less Three Dimensional Motion Capture
Søren Hauberg, Bente R. Jensen, Morten Engell-Nørregård, Kenny Erleben, and Kim S. Pedersen.
In Virtual Vistas; Eleventh International Symposium on the 3D Analysis of Human Movement, 2010.

Gaussian-like Spatial Priors for Articulated Tracking
Søren Hauberg, Stefan Sommer, and Kim S. Pedersen.
In Computer Vision - ECCV 2010, Springer Berlin Heidelberg, volume 6311, Lecture Notes in Computer Science, pages 425-437, 2010.
PDF Errata Paper site Code Publishers site

Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations
Stefan Sommer, Françous Lauze, Søren Hauberg, and Mads Nielsen.
In Computer Vision - ECCV 2010, Springer Berlin Heidelberg, volume 6316, pages 43-56, 2010.
PDF Publishers site

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking
Rune M. Friborg, Søren Hauberg, and Kenny Erleben.
In The CVGPU workshop at European Conference on Computer Vision (ECCV) 2010.
PDF

Stick It! Articulated Tracking using Spatial Rigid Object Priors
Søren Hauberg and Kim S. Pedersen.
In Computer Vision - ACCV 2010, Springer Berlin Heidelberg, volume 6494, Lecture Notes in Computer Science, pages 758-769, 2010
PDF Errata Paper site Code Publishers site

2009

Interactive Inverse Kinematics for Monocular Motion Estimation
Morten Engell-Nørregård, Søren Hauberg, Jerome Lapuyade,Kenny Erleben, and Kim S. Pedersen.
In The 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), 2009.
Conference site Paper site

Three Dimensional Monocular Human Motion Analysis in End-Effector Space
Søren Hauberg, Jerome Lapuyade, Morten Engell-Nørregård, Kenny Erleben, and Kim S. Pedersen.
In Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer Berlin Heidelberg, volume 5681, Lecture Notes in Computer Science, pages 235-248, 2009.
PDF Paper site Publishers site

2008

Brownian Warps for Non-Rigid Registration
Mads Nielsen, Peter Johansen, Andrew Jackson, Benny Lautrup, and Søren Hauberg.
Journal of Mathematical Imaging and Vision, 2008.
PDF Publishers site

An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application
Søren Hauberg and Jakob Sloth.
Journal of Mathematical Imaging and Vision, 2008.
PDF Paper site Publishers site

GNU Octave Manual Version 3
John W. Eaton, David Bateman, and Søren Hauberg.
Network Theory Ltd., 2008.
Publishers site GNU Octave