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Abstract In recent years there has been a growing

interest in problems, where either the observed data

or hidden state variables are confined to a known Rie-

mannian manifold. In sequential data analysis this in-

terest has also been growing, but rather crude algo-

rithms have been applied: either Monte Carlo filters

or brute-force discretisations. These approaches scale

poorly and clearly show a missing gap: no generic ana-

logues to Kalman filters are currently available in non-

Euclidean domains. In this paper, we remedy this issue

by first generalising the unscented transform and then

the unscented Kalman filter to Riemannian manifolds.

As the Kalman filter can be viewed as an optimisation

algorithm akin to the Gauss-Newton method, our al-

gorithm also provides a general-purpose optimisation

framework on manifolds. We illustrate the suggested

method on synthetic data to study robustness and con-

vergence, on a region tracking problem using covariance

features, an articulated tracking problem, a mean value

optimisation and a pose optimisation problem.
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1 Modelling with Manifolds

In many statistical problems it is becoming increasingly

common to model non-linearities by confining parts of

the model to a Riemannian manifold. This often pro-

vides better and more natural metrics, which has direct

impact on the statistical models. The benefits of having

good metrics have led manifolds to be used in a wide

variety of models. Sometimes the observed data itself

lives on a manifold, e.g. in Diffusion Tensor Imaging

[9, 31] and shape analysis [10, 20]. Other times the hid-

den state variables of a generative model are confined

to a non-Euclidean domain, e.g. in image segmentation

[6] and human motion modelling [12, 15].

One notable downside to working with manifolds is

the lack of many basic tools known from the Euclidean

domain. While generalisations of mean values and co-

variances [30], as well as principal component analy-

sis [10, 40] are available, most remaining tools are still

missing. In this paper we tackle one of the most funda-

mental models for sequential data analysis: the Kalman

filter. Our approach is based on the unscented Kalman

filter (UKF) [17], which is a widely applied generalisa-

tion of the linear Kalman filter. This turns out to be a

perfect fit for Riemannian manifolds as the unscented

transform is readily generalisable. Furthermore, our ap-

proach is fairly easy to implement, unlike many other

algorithms working on manifolds.

This paper is structured as follows. In the next sec-

tion we discuss related work on filtering on manifolds

and thereafter we provide a brief introduction to Rie-

mannian manifolds including basic statistics (sec. 2).

We present the theoretical contribution of the paper by

presenting a generalisation of the unscented transform

and the unscented Kalman filter for Riemannian mani-

folds (sec. 3). To illustrate the applicability of the new
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filter, we develop a series of demonstrations in sec. 4.

The paper is concluded in sec. 5 with a discussion of

further developments. Appendix A and B contain back-

ground material on Riemannian geometry and numer-

ical algorithms for computing exponential maps and

parallel transports. Finally, appendix C contains the

proof of proposition 1.

1.1 Filtering on Manifolds

Filtering is the task of estimating the moments of the

hidden state variable of a non-linear dynamical system

[4],

xt = f(xt−1) ≡ f̂(xt−1,vt−1) , (1)

yt = h(xt) ≡ ĥ(xt,nt) , (2)

where xt is the hidden state and yt is the observation.

The process noise vt and observation noise nt deter-

mine the stochastic nature of the system. To ease nota-

tion, we shall omit the noise terms in the rest of the

paper. The (often non-linear) functions f and h re-

spectively determine the system dynamics and relate

the state to the observation. In the Euclidean case,

this problem can be solved in closed-form when xt is

discrete using hidden Markov models [34], and by the

Kalman filter [18] when the noise is additive and Gaus-

sian with f and h linear. For other models, approxima-

tion schemes, such as particle filters [4] or extended [25]

and unscented Kalman filters [17], are required.

When xt is confined to a Riemannian manifold M
the scenario is more difficult due to the inherent non-

linearities of the state space. Srivastava and Klassen

[41] note that “the classical Kalman-filtering frame-

work does not apply” on Riemannian manifolds, so they

apply a particle filter for estimating time-varying sub-

spaces on the Grassmann manifold. Others have arrived

at similar conclusions on other manifolds [15, 24, 26, 48]

as this filter generalises easily. On the downside, the fil-

ter is stochastic, which makes it hard to analyse. An-

other option, advocated by Tidefelt and Schön [43], is

to discretise M and use an ordinary hidden Markov

model on the discrete domain. Both approaches are af-

fected with the curse of dimensionality and the com-

plexity scales exponentially with the dimension of the

state space; the former approach requires more particles

and the latter more discretisation bins as the dimen-

sion increases. For many problems the computational

burden of these approaches becomes too much and al-

ternatives are needed.

One such approach is the mean shift, which has been

generalised to Riemannian spaces [42]. This does not

solve the filtering problem as defined above, yet it does

provide an efficient solution to many tracking problems.

In Euclidean domains, the Kalman filter provides

an efficient and robust solution to the filtering problem

that scales well, when the observation has a unimodal

distribution. In general, this filter is, however, not ap-

plicable to Riemannian manifolds, though some work

has been done on selected Lie groups [22, 23, 45]. Tyagi

and Davis [45] have shown how this filter can be applied

for a specific dynamical model on the Lie group of pos-

itive definite symmetric matrices. Similarly, Kraft [22]

and Kwon et al. [23] show how to apply the unscented

Kalman filter on the Lie groups of unit Quaternions and

SO(3) and SE(3), respectively. Sipos [38] extends the

work of Kraft by showing how to implement the com-

putationally more efficient “square root filter” on the

Lie groups of unit Quaternions. While these approaches

have some similarity to our work, they are based on

specific knowledge of the Lie groups and cannot easily

be generalised to other domains. Examples of such do-

mains include the bicycle chain shape model [39] and

the kinematic manifold for human poses [15, 16].

In this paper we provide a filter more general than

the ones suggested for Lie groups, as it works for at least

any geodesically complete Riemannian manifolds. First,

we pause to review some basic tools from Riemannian

geometry as these are needed to fully grasp the details

of the filter. It should, however, be noted that practical

implementation of the filter only requires knowledge of

a few basic operations on the manifold.

2 Basic Tools on Riemannian Manifolds

In this section we recall some of the elementary aspects

of Riemannian geometry. More details can be found in

appendix A. We closely follow [5] and [30]. Rieman-

nian geometry studies smooth manifolds endowed with

a Riemannian metric. A metric on a manifold M is a

smoothly varying inner product given in the tangent

space TxM at each point x on the manifold. The tan-

gent space at a point x of M is a Euclidean space,

which locally approximates the manifold. For this rea-

son, the inner product provides an infinitesimal metric,

denoted 〈−,−〉x, and associated norm ‖−‖x which can

be integrated along the manifold. Thus, the length L of

a curve α : [0, 1] →M connecting two points x and y

on M (α(0) = x, α(1) = y) is defined by integrating

the size of the curve derivative with respect to the local

metric,

L(α) =

∫ 1

0

‖α′(τ)‖dτ =

∫ 1

0

〈α′(τ), α′(τ)〉
1
2

α(τ)dτ , (3)
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where α′ ∈ TαM denotes the curve derivative. The dis-

tance d(x,y) between x and y is the infimum

d(x,y) = inf
α
L(α), α(0) = x, α(1) = y. (4)

Next, geodesics are critical points of the curve energy

E(α) =
1

2

∫ 1

0

‖α′(τ)‖2dτ (5)

and they also optimise the length functional eq. 3.

Many operations are defined in the Euclidean tan-

gent space TxM and there are mappings back and forth

between the manifold and the tangent space. The Rie-

mannian exponential map at a point x ∈Mmaps a tan-

gent vector v ∈ TxM to the point y = Expx(v) ∈ M
such that the curve t 7→ Expx(tv) is a geodesic go-

ing from x to y with length ‖v‖. It is in general only

defined in a neighbourhood of the origin of TxM. The

inverse mapping, which maps y to v, is the Riemannian

logarithm map, denoted Logx(y). It is in general only

defined in a neighbourhood of x. Expx is the straightest

local parametrisation of M in a neighbourhood of x in

the sense that it is the one that locally least deforms dis-

tances around x. The logarithm and exponential maps

are illustrated in fig. 1a.

M is called geodesically complete if the domain of

definition of a geodesic can be extended to R, i.e, if

Expx is defined on all of TxM, for each x ∈ M. Then

the Hopf-Rinow theorem asserts that such a manifold is

complete for the above defined distance, eq. 4, and for

each pair (x,y) of points ofM there exists at least one

geodesic α joining x and y such that L(α) = d(x,y).

For that reason we will assume that our manifoldM is

geodesically complete.

Generalising basic statistics to Riemannian mani-

folds is straightforward [30]. The empirical mean of a set

of data points x = {x1 . . . , xK} is defined as the point

on the manifold that minimises the sum of squared dis-

tances:

E[x] = arg min
µ

K∑
k=1

d2(xk, µ) . (6)

Unlike the Euclidean case, such a mean is not necessar-

ily unique; local optima of eq. 6 are known as Karcher

means, while a global optimum is called the Fréchet

mean [19]. When µ = E[x] exists, the empirical covari-

ance is generalised as

Pµ =
1

K

K∑
k=1

Logµ(xk) Logµ(xk)T . (7)

The transposition operation is taken with respect

to an orthonormal basis of TµM. Pµ is a bilinear sym-

metric (and positive semi-definite) operator on TµM

(a) (b)

Fig. 1 Graphical illustration of basic manifold operations.
(a) The exponential and logarithm maps. (b) The parallel
transport for moving vectors along a curve.

defined as follows: Given v, w ∈ TµM,

Pµ(v, w) = vT
1

K

K∑
k=1

Logµ(xk) Logµ(xk)T w (8)

=
1

K

K∑
k=1

vT Logµ(xk) Logµ(xk)T w

=
1

K

K∑
k=1

〈v,Logµ xk〉µ〈w,Logµ xk〉µ.

Given a curve α : [0, 1] → M there exist isome-

tries (thus preserving inner products) Pt : Tα(0)M →
Tα(t)M called the parallel transport along α. Parallel

transport extends naturally to more general objects

than vectors, called tensors. The parallel transport is

the straightest, or least deforming way to move geo-

metric objects along curves. Coupled with the expo-

nential map, it provides the straightest way to move

a geometric object from one point of the manifold to

a neighbouring point via the geodesic curve that joins

them. This is usually defined via the Levi-Civita con-

nection and associated covariant derivatives uniquely

associated to the metric. They are defined in appendix

A and the parallel transport is illustrated in fig. 1b.

A fundamental point for the construction of our fil-

ters is that parallel transport extends to multilinear

operators, and in particular to bilinear symmetric ones

and this allows us to transport covariances along curves.

The following proposition provides a construction for

this special case. The proof is given in appendix C.

Proposition 1 Let Mx be a bilinear mapping on TxM
and α : [0, 1] → M a differentiable curve on M with

α(0) = x. Since Mx is symmetric, it can be written as

Mx =

M∑
m=1

λmvmv
T
m , (9)

where (v1, . . . , vM ) is an orthonormal basis of TxM
and the λms are the eigenvalues of Mx associated to

the eigenvectors vm. Let vm(t) = Pt(vm) be the parallel
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transport of vm along α (m = 1, . . . ,M). With this,

Mt =

M∑
m=1

λmvm(t)vm(t)T (10)

is the parallel transport of Mx along α.

3 The Manifold UKF

We now have the preliminaries settled and are ready

to design the unscented Kalman filter on Riemannian

manifolds. We shall first generalise the unscented trans-

form and then we provide the new filter.

3.1 The Unscented Transform

The unscented transform [17] is a method for estimating

the mean and covariance of a distribution undergoing a

non-linear transformation. Given a stochastic variable

x, the idea is to pick a set of sigma points that fully

describe the mean and covariance of x and then let each

sigma point undergo a non-linear transformation f . The

mean and covariance of f(x) can then be estimated

by computing the sample mean and covariance of the

transformed sigma points.

In more detail, let x̄ and P denote the mean and

covariance of the M dimensional variable x. The sigma

points are then calculated as

σ(0) = x̄ (11)

σ(m) = x̄±
(√

(M + λ)P
)
m
, m = 1, . . . , 2M , (12)

where
(√
·
)
m

denotes the mth column of the Cholesky

decomposition and λ is a parameter for controlling the

distance between the sigma points and the mean value.

The sigma points are illustrated in fig. 2a. The mean

and covariance of f(x) can then be estimated as

E[f(x)] ≈ µ =

2M∑
m=0

wmf(σ(m)) , (13)

cov[f(x)] ≈
2M∑
m=0

wm(f(σ(m))− µ)(f(σ(m))− µ)T , (14)

where the weights are defined as

w0 =
λ

λ+M
, (15)

wm =
1

2(λ+M)
, m = 1, . . . , 2M . (16)

These equations are enough to approximate the correct

mean to third order and covariance to the second order

[17].

(a) (b)

Fig. 2 An illustration of the sigma points. The ellipse rep-
resents a covariance. (a) Sigma points in the Euclidean case.
(b) Sigma points in the tangent space and on the manifold.

3.1.1 Generalisations

We now consider two different approaches to generalis-

ing the unscented transform for Riemannian manifolds;

both approaches are based on the same basic observa-

tion. Consider a stochastic variable x ∈ M with mean

value x̄ and covariance P expressed in the basis of the

tangent space at x̄. Let σ(0:2M) = {σ(0), . . . , σ(2M)} de-

note the sigma points of the covariance P calculated

in the (Euclidean) tangent space. Inspection of eq. 7

reveals that

σ
(m)
M = Expx̄(σ(m)) , m = 0, . . . , 2M (17)

captures both the mean and covariance. We, thus, have

two sets of sigma points that capture the statistics; one

set on the manifold and one in the tangent space. These

are illustrated in fig. 2b. This gives rise to two different,

but equally useful, unscented transforms that we shall

both discuss.

First, we consider the case where the non-linear

mapping, f :M1 →M2, moves the sigma points from
the manifold to a possibly different (possibly Euclidean)

manifold. The mean value can then be estimated by

computing the average of the transformed sigma points

as discussed in sec. 2, i.e.

E[f(x)] ≈ µM2

= arg min
q∈M2

2M∑
m=0

wmd
2(f(σ

(m)
M1

),q) ,
(18)

where d(·, ·) denotes geodesic distance on M2. The co-

variance can be estimated in the tangent space of µM2

using eq. 7,

cov[f(x)] (19)

≈
2M∑
m=0

wm LogµM2
(f(σ

(m)
M1

)) LogµM2
(f(σ

(m)
M1

))T .

A second generalisation considers the case where

the non-linear mapping, f : Tx̄M → Tx̄M, moves the
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sigma points in the tangent space. After this trans-

formation a new mean and covariance can be calcu-

lated using ordinary Euclidean techniques in the tan-

gent space, i.e.

E[f(x)] ≈ µTx̄M =

2M∑
m=0

wmf(σ(m)) , (20)

cov[f(x)] ≈
2M∑
m=0

wm(f(σ(m))− µTx̄M)(f(σ(m))− µTx̄M)T . (21)

The mean value µTx̄M can readily be transferred back

to the manifold as µ = Expx̄(µTx̄M); the covariance is

transported using parallel transport defined in eq. 10,

along the geodesic path t 7→ Expx̄(tµTx̄M), c.f. propo-

sition 1.

3.2 The Unscented Kalman Filter

Before stating the Riemannian generalisations of the

Kalman filter, we review the Euclidean techniques for

optimal minimum mean-squared error (MMSE) filter-

ing as it provides the basis for the generalisations.

Consider the dynamical system in eq. 1 and 2 with

known initial mean and covariance

x̄0 = E[x0] , (22)

P0 = cov[x0] . (23)

The Euclidean optimal minimum mean-squared error

estimate of xt can then be written as a linear interpo-

lation between the prediction x̂t of xt and the predicted

observation ŷt [25],

x̄t = x̂t + K(yt − ŷt) , (24)

where K is the so-called Kalman gain. Here the terms

are calculated as

x̂t = E[f(xt−1)] , (25)

K = PxyP−1
yy , (26)

ŷt = E[h(x̂t)] , (27)

where Pyy denotes the covariance of ŷt and Pxy the

cross-covariance of x̂t and ŷt. The covariance of the

state estimate can also be propagated as

Pt = P̂t −KPyyKT , (28)

where P̂t = cov[f(xt−1)]. The above equations can,

however, only be solved in closed-form when f and h

are linear functions. One common approximation for

the non-linear scenario is the unscented Kalman filter

(UKF) [17].

3.2.1 UKF: The Euclidean Case

Let x̄t−1 and Pt−1 denote the mean and covariance

of the state estimate at time t − 1. A set of sigma

points, σ(0:2M), can be calculated from these using the

unscented transform, which allows us to estimate x̂t

x̂t ≈
2M∑
m=0

wmf(σ(m)) , (29)

P̂t ≈
2M∑
m=0

wm(f(σ(m))− x̂t)(f(σ(m))− x̂t)
T . (30)

Likewise, the unscented transform can be applied to

estimate the effects of h:

ŷt ≈
2M∑
m=0

wmh(σ(m)) . (31)

The covariance and cross-covariance needed to compute

the Kalman gain can also be readily approximated

Pyy ≈
2M∑
m=0

wm(h(σ(m))− ŷt)(h(σ(m))− ŷt)
T , (32)

Pxy ≈
2M∑
m=0

wm(f(σ(m))− x̂t)(h(σ(m))− ŷt)
T . (33)

These estimates are second-order accurate [17].

3.2.2 UKF: The Riemannian Case

We now use the same approach to generalise the Kalman

filter to Riemannian state spaces. Here we shall assume

that h : M → Mobs, where Mobs denotes the obser-

vation space. The filter can then be expressed as the

following steps, which will be elaborated later:

1. Use the Riemannian generalisation of the unscented

transform to estimate the predicted state mean, x̂t =

E[f(xt−1)], and covariance P̂t = cov[f(xt−1)].

2. Compute the Riemannian generalisation of the un-

scented transform of P̂t to estimate ŷt, Pyy and

Pxy. Here, ŷt ∈ Mobs, Pyy describes covariance

in Tŷt
Mobs and Pxy describes the cross-covariance

between the sigma points in Tx̂t
M and Tŷt

Mobs.

3. Compute state updates x̄t and Pt according to eq. 24

and 28. These will be expressed in Tx̂t
M.

4. Move x̄t to the manifold as Expx̂t
(x̄t) and paral-

lel transport Pt to the tangent space at this point

according to proposition 1.

The above steps are essentially straight-forward gener-

alisations of the Euclidean case. However, as two dif-

ferent generalisations of the unscented transform are
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available (one in the tangent space and one on the man-

ifold), some details need further attention. In the next

three sections, we discuss the first three steps in the

above filter in greater detail.

3.2.3 Step 1: Dynamical Models

When the system is predicted according to the dynam-

ical model, two general types of models are worth con-

sidering.

The first is when the dynamical model f moves the

sigma points directly on the manifold, i.e. f : M →
M. In this case, each sigma point σ

(n)
M is propagated

through f and a mean and covariance can be estimated

according to eq. 18 and 19. This requires knowledge

of the logarithm map on M, but not of the parallel

transport.

The second class of dynamical models worth consid-

ering is when the sigma points are moved in the tan-

gent space, i.e. f : Tx̄t
M → Tx̄t

M. In general, the

dynamical model happens directly on the manifold and

should not be expressed in the tangent space. However,

if dynamics are simple (i.e. the identity function) or

time-steps are small a first-order approximation in the

tangent space can be convenient. When the dynamics

are expressed in tangent space, the predicted mean and

covariance can be estimated using ordinary Euclidean

techniques. The mean value can be moved back to the

manifold using the exponential map and then the co-

variance can be parallel transported to this mean value.

This does not require knowledge of the logarithm map,

but does require the parallel transport and exponential

map.

3.2.4 Step 2: Observation Models

The unscented Kalman filter is a generative model: the

h function must generate an observation for each input

sigma point. It is, thus, reasonable to require that this

function is given a valid state as input, i.e. the input

should be confined to the state manifold M. Hence,

we will not consider the case where the input is in the

tangent space of M, giving h :M→Mobs.
1

Let σ
(0:2M)
M denote the sigma points corresponding

to P̂t. The mean ŷt of h(σ
(0:2M)
M ) is computed using

eq. 18. The transformed sigma points are then lifted to

the tangent space at ŷt, and Pyy and Pxy are estimated

1 In the rare cases when h : TM→Mobs, we can consider
ĥ(·) ≡ h(Exp(·)) instead.

as

Pyy ≈
2M∑
m=0

wm Logŷt
(h(σ

(m)
M )) Logŷt

(h(σ
(m)
M ))T , (34)

Pxy ≈
2M∑
m=0

wm Logx̂t
(σ

(m)
M ) Logŷt

(h(σ
(m)
M ))T

=

2M∑
m=0

wmσ
(m) Logŷt

(h(σ
(m)
M ))T .

(35)

When the observation manifold is RN , the logarithm

map is no longer necessary and the above equations

reduce to

Pyy ≈
2M∑
m=0

wm(h(σ
(m)
M )− ŷt)(h(σ

(m)
M )− ŷt)

T , (36)

Pxy ≈
2M∑
m=0

wmσ
(m)(h(σ

(m)
M )− ŷt)

T . (37)

When, moreover, the dynamics can be modelled in the

tangent space of the current estimate Tx̄tM, no loga-

rithm map is involved. This has great practical impor-

tance, as apart from relatively simple manifolds, com-

puting the logarithm map generally requires solving an

optimal control problem [5].

3.2.5 Step 3: State Update

Once covariances and cross-covariances have been com-

puted in the two tangent spaces Tx̂t
M and Tŷt

Mobs,

the Kalman gain can readily be computed using eq. 26.

This provides a linear transformation between the two

tangent spaces, so we need to express the state update

equation (eq. 24) in the local coordinate systems of the

tangent spaces. This is readily written as,

x̄t = x̂t + K Logŷt
(yt) . (38)

The covariance of the state update can be computed

using eq. 28.

4 Experimental Results

In this section, we provide a series of experiments to

show that the filter is applicable in a wide range of

scenarios and that it can be superior to the particle fil-

ter. First, we provide an experiment on synthetic data,

where we vary the parameters of the data in order to

study the sensitivity of the Riemannian UKF. Secondly,

we build a region tracker based on region covariance fea-

tures, which naturally lives on a Riemannian manifold

[44]. Thirdly, we create an articulated tracker for esti-

mating human poses. Due to constant bone lengths in
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Fig. 3 Example of synthetic
data. The hidden state is
sampled according to a ran-
dom walk on the sphere,
while observations are sam-
pled by adding Gaussian
noise to the state. In this
example, the state noise is
γstate = 0.5/

√
3 and the ob-

servation noise is γobs = 0.1.

the human body, our pose representation is naturally a

Riemannian manifold [16]. Finally, we experiment with

using the filter as an optimisation scheme, both on a

synthetic mean value problem, and on a real-world pose

fitting problem.

The source code for the first experiments are avail-

able as part of the supplementary material of the paper,

while the articulated tracking code is available as part

of the publicly available HUMIM tracker [14].

4.1 Synthetic Data

The first experiment we perform seeks to quantify how

the suggested filter performs compared to a particle fil-

ter, when various parameters change. To keep the ex-

periment under control, we use synthetic data, which

we generate as follows. We let the state spaceM be an

M dimensional sphere embedded in RM+1. We sample

states following a first order Markov chain on the sphere

by sampling an isotropic Gaussian in the tangent space,

i.e.

xt = f(xt−1) = Expxt−1

(
N (0, γ2

stateI)
)
. (39)

The observations are then sampled from a Gaussian

distribution in the embedding space with mean value

corresponding to the state, i.e.

yt ∼ N
(
xt, γ

2
obsI

)
. (40)

An example of the synthetic data can be seen in fig. 3.

4.1.1 State Space Dimensionality

First, we fix the noise parameters for the dynamical

and observational models and vary the dimensionality

of the state space between 3 and 200. For each choice of

dimensionality M , we run the Riemannian UKF and a

particle filter with 2M+1 particles and then with 10M

particles. We choose 2M + 1 particles as this gives the

same number of likelihood evaluations as in the UKF.

We measure the error of the estimated states as

E =
1

T

T∑
t=1

‖xt − x̄t‖ , (41)

where xt and x̄t respectively denote the true and the

estimated state at time t.

Fig. 4a shows the results of the experiment. As can

be seen, the Riemannian UKF outperforms the parti-

cle filter, except for very low dimensional state spaces.

This is not surprising as the particle filter is known to

perform poorly in high dimensional state spaces.

4.1.2 Running Time

In the previous experiment we also recorded the run-

ning time of the different filters. These are reported

in fig. 4b; as can be seen the Riemannian UKF scales

much better than the particle filter, which again is not

surprising.

4.1.3 Noise Sensitivity

Finally, we fix the state space dimensionality to M = 30

and vary the noise parameter in the dynamical model

from γstate = 0.001√
M

to γstate = 0.9√
M

. Again, we report in

fig. 4c the error measure from eq. 41. As can be seen, the

particle filter works best for small noise values, but is

outperformed by the Riemannian UKF for larger noise

values.

4.2 Tracking with Covariance Features

The region covariance descriptor [44] is a popular im-

age patch descriptor, which computes a set of feature re-

sponses, e.g. edges and colours, for each pixel inside the

region and then uses the covariance matrix of the fea-

tures as a patch descriptor. As covariance matrices are

positive definite they naturally have a manifold struc-

ture [44]; we denote this manifold Sym+. This structure

is simple enough to have closed-form exponential map

given by

Expx(v) = x Expm(x−1v) , (42)

where Expm(·) is the matrix exponential

Expm(v) =

∞∑
k=0

1

k!
vk . (43)

Likewise, the logarithm map is given by

Logx(y) = x Logm(x−1y) , (44)
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Fig. 4 Results on synthetic data. (a) The errors of the different filters as a function of the dimensionality of the state space
(γstate = 0.2 and γobs = 0.1). (b) The runtime of the different filters as a function of the dimensionality of the state space. (c)
The errors of the different filters as a function of the state noise.

where Logm(·) is the matrix logarithm which is defined

as the inverse of Expm. Both Expm and Logm have

efficient numerical implementations, which are readily

available with most numerical programming environ-

ments [47].

Inspired by Porikli et al. [33], we build a tracker

using covariance features as observations. We use pixel

positions, RGB colours and the norm of the intensity

gradient as our basic features. We let the state xt =

(xt, yt, rt)
T ∈ R3 consist of the position and radius of

the object being tracked, and let C1 denote the covari-

ance feature of the tracked region in the first frame.

Essentially, Porikli et al. [33] then compute covariance

features in the neighbourhood of the current state and

update the state to the position and radius of the best

matching C1 (according to the Riemannian metric).

This greedy approach works reasonably well, but lacks a

principled way of introducing a smoothing prior. Porikli

et al. [33] suggest an ad hoc smoothing by introducing

a temporal average over a fixed time window.

We introduce smoothing by using the Riemannian

UKF for tracking. As the dynamical model we use the

identify, f(x) = x, and for the observation we search

locally for the best matching region, just as Porikli et

al. [33]. This makes the state space Euclidean and the

observation spaceMobs = Sym+. This tracker uses the

same model as Tyagi and Davis [45], but where they

use update rules specific to Sym+, we apply the more

generally applicable unscented transform.

4.2.1 Results

We run the tracker on three sequences: one of Richard

Feynman giving a lecture, one of people in a raft going

down a river and one of a show at a parade. We compare

our results to those attained with the approach from

Porikli et al. [33]. As we do not have ground truth posi-

tions of the tracked objects, we choose motion smooth-

Riemannian UKF Porikli et al. [33]

Feynman 1.03± 0.88 1.53± 1.40
Rafting 2.71± 1.79 6.73± 13.80
Parade 1.73± 1.28 3.41± 3.23

Table 1 Smoothness of estimated motion paths, eq. 45. Num-
bers are reported as the mean smoothness S ± one standard
deviation of the smoothness S.

ness as a measure of quality. Specifically, we measure

S =
1

T

T∑
t=2

‖xt − xt−1‖ . (45)

In fig. 5–7 we show frames from the tracked se-

quences; movies are available as part of the supplemen-

tary material. In general we note that both approaches

are able to follow the motion, but the Riemannian UKF

produces much more smooth motion estimates. This is

not really a surprising result as the main purpose of
a Kalman filter is to introduce smoothing. In table 1

we show the measured motion smoothness according

to eq. 45 along with the corresponding standard devia-

tions. As can be seen, the Riemannian UKF produces

substantially more smooth results than the approach

by Porikli et al. [33].

4.3 Articulated Tracking

As a further example, we now build an articulated track-

ing system using the Riemannian UKF. The objective

of such a system is to estimate the pose of a moving

person in each frame of an image sequence [32]. As is

common [32], we represent human poses using the kine-

matic skeleton (see fig. 8a), which is a collection of rigid

bones connected in a tree structure. As the bones have

a constant length the joint angles between connected

bones are the only degrees of freedom (assuming a fixed

root). From joint angles θ, it is trivial to compute bone
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Frame 45 / 530 Frame 342 / 530 Frame 477 / 530

Fig. 5 Selected frames from the Feynman sequence; the entire sequence is available in the supplementary material. Results from
the approach Porikli et al. [33] is coloured in red, while the Riemannian UKF is in green.

Frame 3 / 216 Frame 160 / 216 Frame 209 / 216

Fig. 6 Selected frames from the Rafting sequence; the entire sequence is available in the supplementary material. Results from
the approach Porikli et al. [33] is coloured in red, while the Riemannian UKF is in green.

Frame 9 / 354 Frame 163 / 354 Frame 345 / 354

Fig. 7 Selected frames from the Parade sequence; the entire sequence is available in the supplementary material. Results from
the approach Porikli et al. [33] is coloured in red, while the Riemannian UKF is in green.

end-points using forward kinematics [8]. This process

starts at the root node of the kinematic tree and recur-

sively rotate and translate bone end-points. This gives

a vector x = F (θ) ∈ R3L containing the three dimen-

sional position of all L bone end-points in the skeleton;

here F (·) denotes the forward kinematics function. As

bone lengths are constant in this model, x is confined

to parts of R3L, which we denote

M≡ {F (θ) | θ ∈ Θ} , (46)

where Θ is the space of joint angles. Since the angle

space is compact and F is an injective function with a

full-rank Jacobian,M is a compact differentiable man-

ifold embedded in R3L [15].

The inner product onM is inherited from R3L such

that the distance measure onM becomes the length of

the physical curves that joints move along [16].

The most common dynamical models for articulated

tracking are given by normal distributions in the joint

angle space [1, 2, 21, 35]. The metric in this space mea-

sures the distance between two poses by looking at the

difference between individual joint angles. As a conse-

quence, the movement of an entire arm by a change in

the shoulder joint appears as large as the movement

of a finger by a change in a finger joint. This rather

unnatural metric makes the dynamical model unstable

as some limb positions becomes inherently more vari-

ant than others. This problem is largely alleviated by

designing dynamical models on M rather than in joint

angle space [15, 16].

AsM is a rather complicated manifold, closed-form

expressions for the exponential map and parallel trans-

port are not available, so we resort to numerical tech-

niques. We use a forward Euler scheme based on the

standard projection method for exponential maps and
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Schild’s Ladder for parallel transports. Detailed descrip-

tions of these standard tools can be found in the lit-

erature (e.g. [11, 29]), but a short explanation is also

available in appendix B.

4.3.1 Observation Model

To define the filter, we need to be able to generate ob-

servations h(σ
(n)
M ) corresponding to each sigma point.

We use data from a consumer stereo camera2, which ex-

tracts tree dimensional data from images of size 320×
240. This gives around 5000 three dimensional points on

the body of the person in each frame; we denote these

points Zt. The camera records at roughly 12 frames per

second, which makes the dynamical model important.

As the data is a set of three dimensional points,

h(σ
(n)
M ) should generate a set of comparable three di-

mensional points. As the camera observes the surface

(or skin) of the person we let h(σ
(n)
M ) generate a set of

three dimensional points on the skin of the pose pa-

rameterised by σ
(n)
M . We will generate these points by

projecting the actual observed points onto the skin of

the pose. This requires a skin model. To simplify the

projection, we define the skin of a pose by associating

a capsule with each bone (see fig. 8b). The projection

of a point onto the skin can then be defined as finding

the closest point on the nearest capsule, i.e.

proj
skin(σ

(n)
M )

(z) = arg min
p

(n)
l

‖p(n)
l − z‖ (47)

where p
(n)
l is the point on the capsule associated with

the lth bone which is nearest to z (in the Euclidean

sense). This minimisation can trivially be performed

by iterating over all bones in the skeleton; see [13] for

details.

In summary, we define the generative observation

model as

h(σ
(n)
M ) = proj

skin(σ
(n)
M )

(Zt) . (48)

This is the same likelihood system as presented in [13].

4.3.2 Dynamical Model

For the dynamical model, we shall use the simplest of

all to predict the motion, i.e.

f(xt−1) = xt−1 , (49)

as experience indicates that such models work better

than e.g. second order models [1]. This model can eas-

ily be expressed in the tangent space such that no loga-

rithm maps are required, which simplifies the numerical

implementation substantially.

2 http://www.ptgrey.com/products/bumblebee2/

(a) (b)

Fig. 8 (a) The kinematic skeleton used for representing
poses. (b) The skin model.

4.3.3 Results

We apply the Riemannian UKF and a particle filter

with the corresponding motion model — Brownian mo-

tion on M [16] — on two sequences consisting of 300

frames each. Movies are available as part of the supple-

mentary material and a few frames attained using both

filters are shown in fig. 11 and 12. In both sequences the

person is standing in place and only moving his upper

body. We, thus, only model the upper body parts.

In both sequences, the person moves his arms both

parallel and orthogonal to the image plane, causing self-

occlusions, which pose a challenge for the tracker. The

Riemannian UKF is able to successfully track this mo-

tion, though some jitter is observed due to the numer-

ical exponential maps and parallel transports. In a few

frames the filter looses track, but it quickly recovers.

The particle filter, on the other hand, provides visually

poorer results.

In the second sequence the person is wearing motion

capture markers, which allows us to estimate the track-

ing error. We use the standard measure correspond-

ing to the average distance between the motion capture

markers and the surface of the estimated pose [36],

E(x1:T ) =
1

TL

T∑
t=1

L∑
l=1

‖mtl − proj
skin(σ

(n)
M )

(mtl)‖, (50)

where mtl is the position of the lth marker at time t.

The Riemannian UKF achieves an error of 2.7 cm. The

error of the particle filter depends on the number of

particles, which are plotted in fig. 9. As can be seen,

the particle filter requires more than 750 particles to

achieve an error comparable to the Riemannian UKF.

This, however, requires substantially more likelihood

evaluations than the Riemannian UKF, which makes

the particle filter use more computation time. In fig. 10

we plot the running time of the two filters3. Here it

3 These results are attained using a single-thread C++ im-
plementation on a 1.6 GHz Intel Xeon.
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Fig. 9 Tracking error for the Riemannian UKF and the par-
ticle filter with varying number of particles.
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Fig. 10 Running time for the Riemannian UKF and the par-
ticle filter with varying number of particles.

shows that the particle filter with 75 particles has ap-

proximately the same running time as the Riemannian

UKF, whereas the particle filter with 750 particles re-

quires 10 times as long.

4.4 Optimisation on Manifolds

A common problem is that of optimising a function de-

fined over a manifold, e.g. when computing mean val-

ues [30] and exact principal components [40]. When the

gradient of the cost function is available, standard algo-

rithms, such as gradient descent and simulated anneal-

ing are readily available [27]. In many practical sce-

narios it can, however, be difficult or computationally

prohibitive to acquire such gradients, and stochastic ap-

proaches akin to the particle filter have to be used [26].

In the Euclidean setting, it is well-known that the

extended Kalman filter can be viewed as a single step in

a Gauss Newton optimisation scheme [3]. Both the ex-

tended and the unscented Kalman filter have been used

to solve optimisation problems, such as weight learning

in neural networks [37, 46]. This has the advantage that

the gradient of the cost function is not needed.

In this section we empirically investigate if the ap-

proach carries through to the Riemannian setting on

two examples.

4.4.1 Estimating the Karcher Mean

First, we consider the optimisation problem of esti-

mating the Karcher mean (eq. 6) of a set of points

on a sphere. This allows us to compare the estimated

mean with the ground truth as this can be computed

in closed-form,

µ(x1:N ) =

∑N
n=1 xn

‖
∑N
n=1 xn‖

. (51)

To evaluate the potential of using the Riemannian

UKF as an optimisation algorithm, we use it for com-

puting the mean value of a set of synthetically gener-

ated data points. We generate these by sampling Gaus-

sian data in the tangent space of a sphere and move

these to the sphere using the exponential map. This

gives us data like those shown in fig. 13. We then com-

pute the minima of eq. 6 using the Riemannian UKF de-

scribed below. We should stress that better algorithms

exist for computing mean values on manifolds (see e.g.

[30]) and that we only use this problem as an example

of gradient-free optimisation on manifolds.

We define the motion model as the identity, i.e.

f(x) = x, using a fixed diagonal covariance4. We define

the observation model to generate the vector containing

the differences between the data and the sigma point

measured in the tangent space in the mean estimate

µt−1 from the previous iteration, i.e.

h(σM) = Logµt−1
(σM)− Logµt−1

(x1:N ) . (52)

With these definitions, we can use the Riemannian UKF

as an optimisation algorithm. We initialise the optimi-

sation by randomly sampling one data point. In fig. 14

we show the distance between the ground truth mean

value (eq. 51) and the current estimate of the mean

as a function of the number of iterations. We repeat

this experiment for several random initialisations, and

consistently observe that the algorithm converges near

the true mean (distance to true mean is below 10−4).

We, however, never observe that the algorithm finds

the exact mean even after thousands of iterations. We

speculate that this is because the algorithm does not

incorporate any line search strategy.

4 We also experimented with slowly decreasing the size of
this covariance, akin to weight decay, but did not observe any
noticeable difference for this problem.
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Fig. 11 Four frames from the first sequence; the entire film is available in the supplementary material. The particle filter used
200 particles, which makes it around 3 times as expensive as the Riemannian UKF.
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Fig. 12 Four frames from the second sequence; again, the entire film is available in the supplementary material. The particle
filter used 200 particles, which makes it around 3 times as expensive as the Riemannian UKF.

4.4.2 Pose Fitting

As a more realistic optimisation problem, we consider

a pose fitting problem related to the previously studied

articulated tracking problem. We position a skeleton

far away from the true pose (see fig. 15a) and optimise

the likelihood used in the tracking example by repeated

iterations of the unscented Kalman filter. After approx-

imately 60 iterations this converges to the correct pose

(see fig. 15b). A video showing the iterations are avail-

able in the supplementary material and the optimised

error measure is shown in fig. 15c. As in the previous ex-

ample, we observe that the algorithm “jumps around”

the located mode. As in the articulated tracking exam-

ple, part of this problem is due to numerical inaccu-

racies in the exponential maps and parallel transports,

but we believe that the problem could be mitigated by

incorporating a line search strategy into the algorithm.
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(a) (b) (c)

Fig. 15 Using the UKF as an optimisation scheme on manifolds. (a) The initialisation of the optimisation scheme. (b) The
located optimum. (c) The error measure of the optimisation as a function of the number of iterations.

Fig. 13 Synthetic data used
for studying convergence.
The data is generated by
sampling from a Gaussian in
the tangent of the sphere;
the data is moved to the
manifold using the exponen-
tial map. The Gaussian in
the tangent space has a stan-
dard deviation of 0.75.
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Fig. 14 Convergence of the mean value optimisation. Each
plot shows the distance to the true mean as a function of the
number of iterations. Each optimisation is initialised by pick-
ing a random data point; we have never observed a diverging
optimisation.

5 Conclusion

In this paper, we have introduced an extension of the

unscented transform and the unscented Kalman filter

to Riemannian manifolds. The idea of working with

sigma points seems to be a perfect fit for the Rieman-

nian extension as the approach is both practical and

gives descriptive results. The suggested filter has the

advantage that only limited knowledge of the manifold

is needed for an implementation: in the most general

case, only the exponential map, the logarithm map and

the parallel transport are required. These are available

in closed-form for simple manifolds and numerical tech-

niques exists for more complex scenarios. This makes

the filter readily applicable for a wide range of prob-

lems. We have successfully illustrated the filter on sev-

eral different problems using different manifold struc-

tures, which highlights the generality of the approach.

An interesting direction for future research is to use

the Riemannian UKF as a proposal distribution in a

particle filter. In Euclidean spaces, this strategy has

proven itself highly useful under the name the unscented

particle filter [28]. It would be interesting to see if this

strategy generalises to the Riemannian domain.

Besides tracking applications, we have also empir-

ically shown how the filter can be used as a general-

purpose gradient-free optimisation scheme on manifolds.

At this stage we do not have proofs of convergence for

this strategy, but the empirical results are encouraging.

As the filter is fairly easy to implement, it can be ap-

plied in many interesting scenarios. This is, however,

left for future work.
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A Definitions from Differential geometry

We give definitions of some concepts from differential geom-
etry that we use in the paper (mainly from [5]) for the con-
venience of the reader.

1. Differentiable Manifolds:
A differentiable manifold of dimension M is a set M and
a family of injective mappings T = {xi : Ui ⊂ RM →M}
of open sets Ui of RM into M such that

–
⋃
i xi(Ui) =M, i.e. the open sets cover M.

– For any pair i, j with xi(Ui)
⋂
xj(Uj) = W 6= φ, the

mapping x−1
j ◦ xi is differentiable.

– The family T is maximal, which means that if (y, V ),
y : V ⊂ RM →M is such that: for each element of T ,
(xi, Ui) with xi(Ui)∩ y(V ) 6= 0 implies that y−1 ◦xi is
a diffeomorphism, then in fact (y, V ) ∈ T .

2. Directional derivative of a function along a vector
field:

A vector field X on M is a map that associates to each
p ∈M an element X(p) ∈ TpM, where TpM is the tangent
space of M at p. The space of smooth vector fields on
M is denoted X(M). Let f : M → R be a differentiable
function ofM and X a vector field onM. The directional
derivative X.f is the function M→ R,

(X.f)(p) = dfp(X(p)) (53)

the differential of f at p evaluated at vector X(p).

3. Covariant tensors:
A p-covariant tensor h is a C∞ p-linear map

TM× · · · × TM︸ ︷︷ ︸
p times

→ C∞(M) (54)

i.e., for all x ∈M, x 7→ hx :

v1, . . . , vp ∈ TxM 7→ hx(v1, . . . , vp) ∈ R (55)

is p-linear and for vector fields X1, . . . , Xp ∈ X, the map
x 7→ hx(X1(x), . . . , Xp(x)) is smooth.

4. Riemannian Metric:
A Riemannian metric on a manifold M is a covariant 2-
tensor g which associates to each point p ∈ M an inner
product gp = 〈−,−〉p on the tangent space TpM, i.e., not
only is it bilinear, but symmetric and positive definite and
thus define a Euclidean distance on each tangent space.
In terms of local coordinates, the metric at each point
x is given by a matrix, gij = 〈Xi, Xj〉x, where Xi, Xj
are tangent vectors to M at x, and it varies smoothly
with x. A Geodesic curve is a local minimiser of arc-length
computed with a Riemannian metric.



16 Søren Hauberg et al.

5. Affine connection:
An affine connection ∇ on a differentiable manifold M is
a mapping

∇ : X(M)× X(M)→ X(M) (56)

which is denoted by ∇(X,Y )→ ∇XY and which satisfies
the following properties:
– ∇fX+gY Z = f∇XZ + g∇Y Z.
– ∇X(Y + Z) = ∇XY +∇XZ.
– ∇X(fY ) = f∇XY +X(f)Y .

in which X,Y, Z ∈ X(M) and f, g are C∞(M). This gives
a notion of directional derivative of a vector field defined
on the manifold. An affine connection extends naturally
to more than vector fields, and especially of interest here,
covariant tensors: if h is a covariant p-tensor and X ∈
X(M), ∇Xh is defined as follows. Given p vector fields
Y1, . . . , Yp ∈ X(M),

(∇Xh) (Y1, . . . , Yp) = X. (h(Y1, . . . , Yp))

−
p∑
i=1

h(Y1, . . . ,∇XYi, . . . , Xp) (57)

6. Covariant derivatives:
LetM be a differentiable manifold with affine connection
∇. There exists a unique correspondence which associates
to a vector field V along the differentiable curve c : I →
M another vector field DV

dt
along c, called the covariant

derivative of V along c, such that
– D

dt
(V + W ) = DV

dt
+ DW

dt
, where W is a vector field

along c.
– D

dt
(fV ) = df

dt
V +f DV

dt
, where f is a differentiable func-

tion on I.
– If V is induced by a vector field Y , a member of the

tangent bundle of M, i.e. V (t) = Y (c(t)), then DV
dt

=
∇ dc

dt
Y .

The covariant derivative extends to covariant tensors via
the extension of the connection to them: Given a covari-
ant p-tensor h defined along c and vector fields U1, . . . , Up
along c,

Dh

dt
(U1(t), . . . , Up(t)) =

d

dt
(ht(U1(t), . . . , Up(t)) (58)

−
p∑
i=1

ht

(
U1(t), . . .

DUp

dt
, . . . , Up(t)

)
7. Parallel transport:

Given a vector P ∈ Tc(0)M, the differential equation{
DP (t)
dt

= 0

P (0) = P
(59)

admits a unique solution, called the parallel transport of
P along c. The induced map P 7→ P (t) from Tc(0)M to
Tc(t)M is a linear isomorphism.
The parallel transport extends to covariant tensors in the
same way: Given a p-linear mapping h : Tc(0)M× · · · ×
Tc(0)M→ R, the differential equation{
Dh(t)
dt

= 0

h(0) = h
(60)

admits a unique solution, called the parallel transport
of h along c. As for vectors, the mapping h 7→ h(t) is
a linear isomorphism between p− linear maps on Tc(0)M
and p− linear maps on Tc(t)M.

8. Levi-Civita connection:
Given a Riemannian metric g on the manifold M, there
exists a unique affine connection ∇ such that
– compatibility with the metric:

X.g(Y, Z) = g(∇XY, Z) + g(X,∇XZ) (61)

– symmetry:

∇XY −∇YX = [X,Y ] (62)

([X,Y ] is the Lie bracket of X and Y ).
∇ is the Levi-Civita connection associated to g. Note that
from the previous items, one has ∇Xg = 0 for any X ∈
X(M) and that the parallel transport in that case is a
linear isometry.
The compatibility of ∇ and the metric g can be expressed
in term of covariant derivatives: if X(t) = X(c(t) and
Y (t) = Y (c(t)) are two vector fields along the curve c,
and D/dt is the covariant derivative along c,

d

dt
g(X(t), Y (t)) = g

(
DX(t)

dt
, Y (t)

)
+ g

(
X(t),

DY (t)

dt

)
.

(63)

9. Christoffel symbols:

In a parametrised manifold, where the curve c(t) is rep-
resented as (x1(t), . . . , xM (t)), the covariant derivative of
a vector field v becomes

Dv

dt
=
∑
m

dvm

dt
+
∑
i,j

Γmij v
j dx

i

dt

 ∂

∂xm
(64)

where the Γmij are the coefficients of the connection also
known as the Christoffel symbols Γ . In particular, the par-
allel transport equation above becomes the first-order lin-
ear system

dvm

dt
+
∑
i,j

Γmij v
j dx

i

dt
= 0, m = 1 . . .M. (65)

For the Levi-Civita connection associated with the metric
g, the corresponding Christoffel symbols are given by

Γmij =
1

2

∑
l

{
∂

∂xi
gjm +

∂

∂xj
gmi −

∂

∂xm
gij

}
gml (66)

gij is the ijth element of the metric, and gij is the ijth

element of its inverse. A curve is geodesic if the covariant
derivative of its tangent vector field is zero everywhere on
it, which means that a geodesic curve has zero tangen-
tial acceleration. Such a curve c satisfies the second order
system of ODEs, which, with the above parametrisation
becomes

d2xm

dt2
+
∑
ij

Γmij
dxi

dt

dxj

dt
= 0, m = 1 . . .M. (67)

10. Exponential map:
The exponential map is a map Exp : TM → M, that
maps v ∈ TqM for q ∈ M, to a point Expq v in M ob-
tained by going out the length equal to |v|, starting from
q, along a geodesic which passes through q with velocity
equal to v

|v| . Given q ∈M and v ∈ TqM, and a parametri-

sation (x1, . . . , xn) around q, Expq(v) can be defined as
the solution at time 1 of the above system of ODEs (67)
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with initial conditions (xm(0)) = q and ( dx
m

dt
(0)) = v,

m = 1, . . . ,M . The geodesic starting at q with initial ve-
locity t can thus be parametrised as

t 7→ Expq(tv). (68)

11. Logarithm map:
For q̃ in a sufficiently small neighbourhood of q, the length
minimising curve joining q and q̃ is unique as well. Given
q and q̃, the direction in which to travel geodesically from
q in order to reach q̃ is given by the result of the loga-
rithm map Logq(q̃). We get the corresponding geodesics
as the curve t 7→ Expq(tLogq q̃). In other words, Log is
the inverse of Exp in the neighbourhood.

B Numerical Implementation of Exponential

Maps and Parallel Transports

In this appendix, we briefly review some techniques for nu-
merical implementation of exponential Maps and parallel trans-
ports. We have applied them in the articulated tracking ex-
ample in sec. 4.3. As logarithm maps are not used, they will
not be described here. It is worth noticing that the numerical
techniques presented in the following are easily adapted to
other manifolds, though care should be taken in, e.g., step
size selection when the manifold is highly curved.

B.1 Computing Exponential Maps

AssumeM is an M-dimensional sub-manifold of RN and that
the metric is inherited from the standard inner product in RN .
We can then discretise the geodesics in a straight-forward
manner. We remind the reader that, given a vector v in the
tangent space of the point x0, the exponential map seeks a
point Expx0

(v) on the geodesic curve starting at x0 with the
same length and direction as v.

We then discretise the geodesics in a straightforward way
by applying a standard forward Euler scheme based on the
standard projection method [11]. The method repeatedly takes
a discrete step in the tangent space in the direction encoded
by v followed by a projection back onto the manifold. The
latter is necessary as the discrete step will “fall of the man-
ifold” unless M is flat. This scheme is illustrated in fig. 16.
The missing piece is a scheme for projecting a point in the em-
bedding space back onto M. Defining projection of x̂ ∈ RN
as finding the nearest point on M reduces projection to a
non-linear least-squares problem [15],

projM(x̂) = arg min
x∈M

(
‖x− x̂‖2

)
, (69)

which can easily be solved using gradient descent [15]. Specif-
ically, we apply a projected steepest descent with line-search,
as empirical results have shown it to be both fast and sta-
ble [7]. This scheme usually finds a local optimum within a
few iterations as it is warm-started with the results from the
previous iteration.

In the practical implementation, we use 10 discrete steps
in the Euler scheme, where the step length is controlled by the
length of the tangent vector and the length of the geodesic
segment computed so far. More sophisticated schemes that
take local curvature into account might prove beneficial, but
we have not experimented with this. We have tried with more
discrete steps, but did not notice much improvement; we spec-
ulate that this is because we only need to compute short

Fig. 16 An illustration of a 4-step standard projection method

for approximating the exponential map.

Fig. 17 An illustration of Schild’s Ladder for approximating
the parallel transport.

geodesic segments due to the sequential nature of the track-
ing problem.

B.2 Computing the Parallel Transport

Given two points x0 and xI in M and the geodesic segment
α that joins them, we describe a classical approximation of
the parallel transport of a vector v0 ∈ Tx0M to a vector vi ∈
TxIM along α, known as Schild’s Ladder [29]. This scheme
places points along the geodesic and approximately parallel
transports v0 to these by forming approximate parallelograms
on M.

Let {x1, . . . ,xI−1} denote points along the geodesic seg-
ment joining x0 and xI . Then start by computing a0 =
Expx0

(v0) and the midpoint b1 of the geodesic segment join-
ing x1 and a0 (see the left side of fig. 17). Follow the geodesic
from x0 through b1 for twice its length to the point a1. This
scheme is repeated for all sampled points along the geodesic
from x0 to xI (see the right side of fig. 17). The final par-
allel transport of v0 can then be evaluated as the logarithm
map LogxI

(aI). When sampled points are available along the
geodesic segment from xI to aI , this logarithm map can eas-
ily be approximated using the finite difference of the velocity
at xI .

As we use the standard projection method for computing
the geodesic which we transport along, we form approximate
parallelograms between the discrete points on the geodesic.
As with the exponential maps we do not seem to experi-
ence numerical problems caused by curvature of the mani-
fold, most likely due to the short geodesics that occur as part
of tracking. For more difficult parallel transportation prob-
lems, we believe that more sophisticated numerical schemes
are needed.

C Proof of Proposition 1

We need to show that DMt
dt

= 0. It will be sufficient to show
that (

DMt

dt

)
(vm(t), vm′(t)) = 0, m,m′ = 1, . . . ,M
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for the vectors vm(t),m = 1, . . . ,M defined in the proposition.
Indeed, for each t, they form an orthonormal basis of Tα(t)M:

d

dt
g (vm(t), v′m(t)) =

g

(
Dvm

dt
, v′m(t)

)
+ g

(
vm(t),

Dvm′

dt

)
= 0 (70)

because the vm(t)s are parallel along α, and therefore their
covariant derivative vanish. By definition of the covariant
derivative for a tensor,(
DMt

dt

)
(vm(t), vm′(t)) =

d

dt
(Mt (vm(t), vm′(t)) (71)

−Mt

(
Dvm

dt
, vm′(t)

)
−Mt

(
vm(t),

Dvm′

dt

)
. (72)

The last two terms vanish, again because the vm(t)s are par-
allel. On the other hand, a simple calculation gives

Mt (vm(t), vm′(t)) = λmδmm′ (73)

(δmm′ is the usual Kronecker symbol) and this quantity is
thus independent of t. This concludes the proof.


