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Principal Curves on Riemannian Manifolds

Sgren Hauberg

Abstract—Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with
geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they
rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis
(PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimize
a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the
methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of
generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the
classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical
distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed
model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the
effectiveness of the Riemannian principal curves on several manifolds and datasets.

Index Terms—Principal component analysis, Principal curves, Differential geometry, Riemannian manifolds
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through the mean that represent the data as well as possible,
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Fig. 1. Left: An initial example: observations (blue
dots) are given in the Poincaré half-plane. The intrinsic
mean (red diamond) and the principal geodesic (yellow
dashed line) both do a poor job of summarizing the
main trend of the data due to the restrictive structure

where proj;z denotes projection onto the line spanned by
the data mean p and principal component v. Expanding
the squared norm shows that minimizing the reconstruction
error (1) is equivalent to maximizing the projected variance

N ' ) of geodesic curves. The principal curve (purple line),
Vier = argmax » || projz(xn) — pil|*. () in contrast, captures the main mode of variation well.
v IVI=L = Right: Example geodesics in the Poincaré half-plane

While PCA is an essential tool for data analysis in R, illustrate the geometry of this space; geodesics are
not all data is Euclidean. Attention is growing towards data  €ither vertical lines or half-circles.

residing on Riemannian manifolds, e.g. shape data [1]-
[6], DTI images [T]-[9], image features [10]-[12], motion
models [13], [14], human poses [15]-[18], and more. A

Statistical models on Riemannian manifolds often gener- proje(x) = c(t(x)) where

alize Euclidean counterparts by replacing straight lines with f(x) = arg min (dist(c(t), x)) 4)
geodesic curves in the problem formulations. The resulting t

models are generally referred to as Principal Geodesic ~Similarly, Eq. 2 becomes

Analysis (PGA). In this line of thinking, Eq. 1 becomes

distance; and proj. denotes projection onto the curve c:

N
.2 .

N Vpga, = algnax Z dist (prOJ'y“(v) (Xn)a N) . )

o . ) . veT,M —

Vioa, = argmin z dist pI‘OJ,Y“(v)(Xn), Xnl), B =
VETLM 21 It is worth noting that while Eq. 1 and 2 are equivalent
in the Euclidean domain, the corresponding Riemannian
energies (3, 5) may differ in solutions [19]. We shall return
to these models in Sec. 2; for now it suffice to think of these
o S. Hauberg is with the Section for Cognitive Systems at the Technical Rleman.nlan gene.rahzatl(.)ns to PCA ?S rep la?lng straight
University of Denmark. lines with geodesics to give methods in non-linear spaces.
E-mail: sohau@dtu. dk Figure 1 provides an initial example with data in the
Poincaré half-plane. PGA is unable to fit the main trend of

where 7,,(v): t — Exp,,(t - v) denotes the geodesic with
starting point y and initial velocity v; dist is the geodesic
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the data for two reasons: 1) The solution curve is required
to pass through the data mean, which is outside the support
of the data; and 2) the solution is required to be a geodesic,
but no suitable geodesic exists in the Poincaré half-plane.
We argue for an alternative: Rather than extending linear
Euclidean models, we find it simpler and more flexible
to extend non-linear Euclidean techniques to Riemannian
domains. In particular, this allows us to drop the two above
assumptions. Figure 1 shows that this improves upon PGA.
This paper is organized as follows: The next section
briefly introduce Riemannian geometry and related statistical
operations. Here notation is also established. Section 3
describe principal curves and the proposed Riemannian
extension. Experimental results are provided in Sec. 4, and
the paper is concluded with a discussion in Sec. 5. The
online supplements contain both proofs and animations.

2 BACKGROUND AND RELATED WORK

In this section, we establish elementary prerequisites. More
details can be found in standard references, e.g. [20]-[22].

2.1 Elements of Riemannian Geometry

Riemannian geometry studies smooth manifolds endowed
with a smoothly changing metric. A metric on a manifold
M is an inner product in the tangent space Tx M at each
point x € M. If the inner product varies smoothly it is
called a Riemannian metric. The tangent space Tx M is
a Euclidean space that locally approximates the manifold,
and the tangential norm can be integrated to provide curve
lengths. Any curve that locally minimizes its length is known
as a geodesic. We assume that all points can be joined by
a geodesic, i.e. we only consider complete Riemannian
manifolds. Distances between points are then defined as the
length of the shortest connecting geodesic.

Many operations are defined in the Euclidean tangent
space Tx M, and there are mappings between this approxima-
tion of the manifold and the manifold itself. The exponential
map at a point x takes a tangent vector v € T, M to

y = Exp,(v) e M (6)

such that the curve ¢ — Exp, (t-v) is a geodesic originating
at x with initial direction v. In general, the exponential map
is only defined in a neighborhood of x. The inverse mapping,
which takes y to v € Tx M, is known as the logarithm map
and is denoted Log, (y).

2.2 Intrinsic Means

Expectations are defined in the Euclidean domain through
integration. This, however, generalize poorly to Riemannian
domains as the expectation of a manifold-valued random
variable may easily violate the constraints of the manifold
[8]. It is therefore common to instead consider intrinsic
means which are defined as the point with minimal sum-of-
squared distances to the data,
N

[ = arg min Z Wy, dist2(xm X),

X

(7

n=1

where w,, denotes optional weights for each observation. In
Euclidean domains, this problem is uniquely solved by the
empirical average. On Riemannian manifolds the solution
may, however, no longer be unique; e.g., consider uniformly
distributed data on a unit sphere (the entire sphere solves
Eq. 7). Whether p is unique or not depends on both the
spread of data and the curvature of the manifold [23], [24].
Here, we recall the uniqueness result from Kendall [24].

Definition 1 (Regular geodesic ball). The ball B(x,r) =
{x € M | dist(x, X) < r} is “geodesic” if there exist
a minimizing geodesic from the center X to any point
in B(x,r). This is regular if 2r\/k < 7, where K is the
maximum of the Riemannian curvature in the ball.

Theorem 1 (Existence and uniqueness of means [24]). Let
the data be drawn from a distribution with support inside
the regular geodesic ball B(x,r), then there exist one and
only one intrinsic mean inside B(X,r).

In practice, any concern about uniqueness is ignored and
Eq. 7 is solved using gradient descent; see Algorithm 1 [22].
Empirical experience indicates that multiple modes of Eq. 7
often exist for real data, so it is potentially problematic to
rely on the uniqueness of a mean.

Algorithm 1 Intrinsic mean.
Initialize p, e.g. as a random data point.
repeat
V=N w, Log,, (%n).
p = Exp,(a-V).
until convergence

2.3 Principal Geodesics

As discussed in Sec. 1, standard generalizations of PCA to
Riemannian manifolds seeks a geodesic curve through the
mean that maximizes the projected variance (5) or minimizes
the reconstruction error (3). This assumes a unique mean.

Fletcher et al. [25] suggest an approximate solution to
(3) that computes the principal geodesic as the leading
eigenvector of the covariance matrix

1

N
N-—-1

N
Z Log,, (x,) Log,, (xn)T. (8)

n=1

In essence, Fletcher et al. perform Euclidean PCA in the
tangent space at the mean. Sommer et al. [26] provide a
numerical optimization scheme for solving Eq. 3 directly
with no approximations. In practice, this is rarely used as it
requires numerical integration of Jacobi fields and second
order derivatives of geodesic families. Fletcher et al. [27]
also consider Eq. 5, and again propose an approximation
scheme that performs Euclidean PCA in the tangent space
at the mean. The present author is unaware of any exact
numerical solution to Eq. 5.

It is worth noting that both Eq. 3 and 5 rely upon
projections of points onto a geodesic curve (4). This
projection need not be unique; e.g. consider projecting the
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north pole on a sphere onto the equator (all points on the
equator are solutions). Practical implementations ignore this
potential issue and perform the projection through a one-
dimensional optimization of Eq. 4 along the curve.

Huckemann et al. [19] consider Riemannian manifolds
modulo isometric Lie group actions, and study an extension
of Eq. 3 where the principal geodesic need not pass through
the intrinsic mean. The current numerical implementation of
the resulting geodesic PCA, however, relies on brute-force
techniques that are not expected to scale gracefully.

Panaretos et al. [28] drop the geodesic requirement and
consider smooth curves where any point on the curve has a
tangent velocity vector that fits the leading eigenvector of
a tangent space PCA. This increases flexibility, though the
curve is required to pass through the intrinsic mean.

Jung et al. [29] consider data on the unit sphere and
recursively discard the least interesting dimension of the
data, thereby getting principal nested spheres. This elegantly
removes the dependency on the intrinsic mean as the
components are estimated before the mean. The approach
is, however, dependent on the embedding of the sphere and
it is unclear if the approach can generalize to other spaces.

The above methods are all derived from a least-squares
perspective. Recent interest is growing toward more general
probabilistic models, such as the Probabilistic PGA from
Zhang & Fletcher [30]. Here a maximum likelihood estimate
of a tangential normal distribution is estimated using a
Monte Carlo EM algorithm. Attractively, this provides a
noise model of the data, but the reliance on Monte Carlo
makes the approach computationally challenging.

3 PRINCIPAL CURVES

In this section we first review the classical Euclidean
principal curves for non-linear PCA. This is then extended to
Riemannian manifolds in Sec. 3.2, and some links between
the proposed model and PGA are established in Sec. 3.3.

3.1

Informally, a principal curve in RP is a smooth curve
passing through the “middle” of a distribution [31]. Let
c: R — RP be a one-dimensional curve, and let £(x) € R
be the index of the projection of x € R” onto the curve
c (see Eq. 4). A principal curve is then defined as a curve
that satisfies the self-consistency property (see Fig. 2)

c(t) =E(x | t(x) = t). )

In words: If we consider all points that project onto c(t)
then their expectation must equal c(t).

Hastie & Stuetzle [31] suggest a simple iterative algorithm
for computing a principal curve from finite data. The
algorithm represents the principal curve as a discrete set of
points, and proceeds in two steps: first the data is projected
onto the current curve estimate, and then each discrete point
on the curve is updated to the average of the data which
projects onto the point. To ensure that the resulting curve is
smooth, a smoothing kernel is used to estimate the average.

Principal Curves for Euclidean Data

Fig. 2. Self-consistency (9) implies that the expectation
of all points that project to the same point on a curve
equals the point of projection.

Algorithm 2 Riemannian principal curve.

Initialize the principal curve as ¢1.7 = {c(1),...,c(T)}.
repeat
t, = argmin, (dist(c(t), x,),

Wi = k (dist(c(t), c(fn)> 7

o

vn.
n,t.

c(t) = arg min, 25:1 Wy, dist® (x,, %), Vi
until convergence

3.2 Principal Curves for Riemannian Data

Self-consistency (9) is extended to the Riemannian domain
by replacing the expectation with an intrinsic mean (7)
c(t) = argmmz Opi dlst (Xn, X), (10)
where J,_; is the Kronecker delta function, i.e. 6,_; =
1 for t = ¢, and 0 otherwise. Note that this definition
is not enough to ensure a continuous principal curve as
intrinsic means need not change continuously when the data
changes continuously. In practice, the issue is resolved by
representing the curve as a discrete set of points.

From the intrinsic self-consistency (10), Hastie & Stuet-
zle’s simple algorithm generalizes directly to data residing
on Riemannian manifolds. Next we describe the needed
modifications, which are summarized in Algorithm 2.

3.2.1 Curve Representation

Like Hastie & Stuetzle [31], we represent a curve as a
set of points, c1.7 = {c(1),...,c(T)}, joined by geodesic
segments. This does, in principle, not give a smooth curve',
but a fine discretization alleviates this in practice.

A point x,, can be projected onto such a discrete curve
by computing the geodesic distance to all discrete points in

c1.7, and picking the closest point as the projection, i.e.

proj.(x,) = c(t,) where

t, = arg min(dist(c(t), x,,).
t=1,...,T

1)

3.2.2 Kernel Smoothing

The basic algorithm for computing principal curves first
projects the data x;.n onto the discrete curve ci.7, c.f.
Eq. 11. Each point c(¢) on the curve is then updated as the
average of the points that project onto the point, c.f. Eq. 10.

1. This is also the case for geodesics on manifolds where geodesics
must be estimated numerically; e.g. Euler’s method provides a polygonal
curve which must be smoothed post hoc to ensure a smooth geodesic.
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This intrinsic mean can be computed numerically using
Algorithm 1. Unsurprisingly, this provides a poor estimation
of the principal curve as not enough data projects onto
individual points c(t) to provide a stable average. We, thus,
replace § in Eq. 10 with a smooth kernel k,

N
c(t) « argmin Z wy , dist? (x,,, %),
*oon=t (12)
won = k (dlst(c(t), c(tn)> .
o

We use a quartic kernel [32] k(A) = (1 — A?)? - §ja/<1,
which is smooth and has finite support, but other choices
are equally possible.

3.2.3 Closed Principal Curves

Algorithm 2 is an iterative procedure that preserve the
connectivity of the points used to represent the principal
curve. A closed principal curve can, thus, be estimated
by initializing the algorithm with a closed curve. This is
in contrast to PGA, which only provides a closed curve,
when geodesics happen to be closed. As we shall see, this
is a helpful feature for modeling periodic data, which is
unavailable in alternative Riemannian models.

3.2.4 |Initialization

Algorithm 2 relies on an initial estimate of the principal
curve. We employ two different strategies, though alterna-
tives are possible. When we seek an open-ended principal
curve, we initialize with the principal geodesic, computed
using the approximations from Fletcher et al. [27]. When
we seek a closed principal curve, we express the data in its
two leading (Euclidean) principal components in the tangent
space at the intrinsic mean. We fit a circle to this data, and
initialize our algorithm with its image under Exp,, ().

3.3 Relationship Between Principal Geodesics
and Principal Curves

For Euclidean data, principal components are only known
to be principal curves when the data follows an elliptical
distribution [31]. We provide a similar result in the classic
model spaces of constant curvature.

Theorem 2. Let x € T, M, where M is either the Eu-
clidean plane, the D-sphere or the hyperbolic plane, follow
a zero-mean elliptical distribution with finite covariance
>, and let v1,...,vp be the eigenvectors of X in order
of decreasing eigenvalues. Then, the principal geodesic
c(t) = Exp,,(t - v1) is a principal curve.

Proof: See Appendix A in the supplements. O

3.4 Concerns and Benefits

While self-consistency is intuitively appealing, the principal
curve does not necessarily go through the “middle” of
a dataset. Hastie & Stuetzle [31] note that c need not
be a principal curve for data x, = c(t,) + €,, when
the noise €, is zero-mean. Tibshirani [33] proposes a

probabilistic definition of principal curves that solves this
issue by modeling the data distribution as a mixture-of-
Gaussians. However, standard generalizations of Gaussian
distributions to Riemannian manifolds [22] does not have
known normalization constants so mixture models are
challenging. We, thus, stay with the original definition (9).
The original principal curves [31] are critical paths of the
energy measuring sum-of-square-deviations from the data.
Duchamp & Stuetzle [34], however, showed that they are
only saddle points and not minimizers. Gerber & Whitaker
[35] provide an excellent discussion of this phenomena and
show that principal curves as defined by Hastie & Stuetzle
are only well-defined due to implicit regularization, such as
limiting the number of points used to represent the curve as
well as the kernel smoother used for computing averages.
These concerns carry over to the Riemannian domain,
where such issues are common; e.g. the principal geodesic
is generally not an optimizer of either energies (3, 5) due to
tangent space approximations. In practice, the main concern
with PGA is the dependency on a global intrinsic mean,
which generally does not exist, and even if it does exist
may easily fall outside the support of the data distribution.
Principal curves avoid these issues as the finite support of
the kernel smoother implies that the average in Eq. 12 only
operates on a subset of the data close to c(t), i.e. a local
average. If the entire dataset x;.y is in a regular geodesic
ball B(%,r), then the data included in the local average
(12) is in another regular geodesic ball B(%x,7) C B(x,r)
of smaller radius (# < r). The local averages needed for
computing a principal curve are then more likely to be
unique than the global intrinsic average, c.f. Theorem 1.

4 EXPERIMENTS

In this section, we evaluate the empirical performance of
the principal curve on several Riemannian manifolds and
datasets. We compare with the standard principal geodesic
computed via the leading eigenvector of the covariance
matrix in the tangent space of the intrinsic mean [27]. In
all experiments, the smoothing parameter is cross-validated.

4.1

As a first illustration, we consider synthetic data distributed
on the two-dimensional Poincaré half-plane H?2 [21]. This
Riemannian manifold has constant negative curvature, and
a Riemannian metric given by y~'I at (x,y) € H2, y > 0.
Geodesics in H? are either vertical lines or circular arcs
perpendicular to the z-axis. The Poincaré metric appears in
information geometry as the Fisher information metric in
the space of univariate normal distributions [36].
Figure 1 shows 100 samples from

Poincaré Half-Plane

s Uigas el + N (10,007),  (13)

where U; denotes the uniform distribution on the interval
1. As geodesics are generally circular arcs which are
perpendicular to the z-axis, it is not possible to make any
geodesic follow the trend of the generating distribution (13).
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As a consequence, the principal geodesic provides a poor fit
to the data as is evident from Fig. 1. It is worth noting that
the intrinsic mean is not within the support of the distribution
(13), and no smooth curve through this point will be able
to capture the trend. In contrast, the principal curve follows
the underlying trend of the generating distribution.

We repeat the experiment for different distributions:

v~ Uazs e~ N (10.04)°) (14)
T Uisas g~ N (5,007) —sin@) (15
T ~U_sg; y~3/a-a®+N(10,1). (16)

Figure 3 shows the data along with the principal geodesic
and the principal curve: it is evident that the first fail at
capturing the main trend, while the latter succeeds.

These synthetic experiments illustrate a practical issue
with the principal geodesic construction. Just as straight
lines often provide a poor fit to data in Euclidean domains,
geodesics cannot, in general, capture the main trend of a
generating distribution. Even when a geodesic exists that
captures the trend, it may not pass through the intrinsic
mean, which is a practical requirement in PGA. For any but
the simplest generating distributions, the principal geodesic
can, thus, not be expected to capture the main trend.

4.2 The Unit Sphere

Next we consider motion capture data of a person walking
in a circular pattern [37], [38]. First, we consider the global
orientation of the left femur (i.e. thigh bone) represented
as a unit vector, i.e. x, € S2. The data is periodic and
represented in a space with periodic geodesics, so the
principal geodesic is expected to capture the main trend.
Figure 4 shows that the data approximately follow a small
circle, giving an intrinsic mean at the corresponding pole.
Any smooth curve passing through this pole will fail to
model the trend of the data, and the principal geodesic
drastically misfits the data. This illustrates a general issue
with PGA. Consider data distributed uniformly over a “band”
around the equator of a sphere. The intrinsic mean is given
by either pole, and the principal geodesic will provide a fit
which is orthogonal to the underlying trend of the data. In
terms of least-squares reconstruction error, the (geodesic)
equator provide a better fit to the data than the principal
geodesic. The strong reliance on the intrinsic mean in PGA,
thus, prevents the principal geodesic from fitting the data.
As the data captures a periodic phenomena, we fit a
closed principal geodesic. The Fig. 4(left) shows that the
principal curve benefits from not being forced through the
global intrinsic mean. We choose the smoothing parameter
o of the principal curve with cross-validation measuring the
sum-of-squared distances to the estimated curve on held-out
data (with a small additive bias towards large values of
o). Figure 4(center) shows that the error measure has a
well-defined optimum. While cross-validation is known to
be unreliable for principal curves [34], we have found it to
work well enough in our experiments. Alternatively model
selection could rely on e.g. minimum entropy [39].

4.3 Orthogonal Matrices

In the previous section, we only considered a single bone
from human motion capture data. We consider the same
sequence as before, but now represent the entire skeleton as
a collection of 32 rotation matrices describing the rotation
of a bone relative to its parent in the kinematic tree [15].
Each data point is, thus, a member of SO(3)32. We remove
the global position and orientation from the data prior to
analysis. As the underlying walking motion is periodic we
estimate a closed principal curve.

Figure 5 shows example data points along with projections
onto both the principal geodesic and the principal curve.
The supplements contain the corresponding animation. It
is evident that the principal geodesic fails to represent the
walking motion. The principal curve captures the posture
and the leg-movement, though the arm-movement is a bit
too simplified. Figure 4 shows the data in the two leading
principal components in the tangent space at the intrinsic
mean. The figure further shows the principal geodesic and
the principal curve projected into this space as well. It is
evident that the ability to fit a closed (non-geodesic) curve
to the data is ideal for periodic data.

4.4 Smooth Metric Learning

In the previous experiments, there was little a priori reason
to expect a geodesic curve to be able to fit the data, which
gives PGA a disadvantage. To give the principal geodesic
ideal conditions, we study data on a Riemannian manifold
where geodesics by definition follow local trends of the
data [40]. Let x,, € RP denote Euclidean observations. We
now equip R” with a Riemannian metric by learning metric
tensors at select locations and smoothly interpolating these
to form a Riemannian metric; see [40] for details. Here
we learn local metrics as local inverse covariance matrices.
This implies that geodesics locally follow the data.

We consider observations of hand-written one-digits from
the MNIST [41] dataset (Fig. 6). For visualization, we
project these into the two leading Euclidean principal
components, and learn a smoothly changing metric. The
left panel of Fig. 7 shows the data along with geodesics
to the intrinsic mean. It is clear that geodesics follow the
trend of the data. These are the ideal conditions for PGA.
The center panel of Fig. 7 shows outgoing geodesics from
the intrinsic mean, and the right panel shows the estimated
principal geodesic. This initially follows the trend of the
data, but eventually falls outside the support of the data.
The principal curve, again, provides a better summary of
the main trend of the data.

As we have previously seen, one problem for the principal
geodesic is that it is sensitive to the location of the intrinsic
mean. Here, the mean is slightly outside the support of the
data, which appears to prevent the principal geodesic from
fitting the data. The sensitivity of PGA to the location of the
mean is concerning, when considering that intrinsic means
are often not unique. The principal curve avoids this issue
to some extent as it only rely on local means.
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Fig. 3. Synthetic data on the Poincaré half-plane along with the principal geodesic and the principal curve. The
principal curve consistently better at capturing the trend of the data.
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Fig. 4. Left: Motion capture data is represented on the power manifold SO(3)32; here the data is shown in the first
two (Euclidean) principal components in the tangent space at the intrinsic mean. The horizontal (yellow) line is
then the principal geodesic. The (purple) closed curve is the principal curve mapped to the tangent space and
projected into the first two principal components. The principal curve provide the best description of the data.
Center: The cross-validation error of the smoothing parameter in the experiment corresponding to the left panel.
Right: The relative orientation of the left femur of a person walking is represented as a point on the unit sphere.
Here, the periodicity of walking implies that the data roughly lies on a small circle; this imply an intrinsic mean at
the pole of the small circle. The principal geodesic, thus, fail to capture the trend of the data. The (closed) principal
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Fig. 5. Motion capture data along with the corresponding projection onto both the principal geodesic and the
principal curve. The principal curve captures the structure of data much better than the principal geodesic.
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Fig. 7. MNIST images of the digit 1 is projected onto its first two (Euclidean) principal components, and a smoothly
changing local diagonal metric is estimated as a local inverse covariance matrix. Left panel show geodesics
between data and the intrinsic mean; geodesics generally stay with the support of the data. Center panel show
geodesics originating at the intrinsic mean, shooting in different directions. Right panel show the principal geodesic
and the principal curve. Even when geodesics follow the trend of the data, the principal curve captures the overall

trend better than the principal geodesic.

AL

Fig. 6. Example images from the MNIST dataset. The
orientation constitute the main source of variation.

5 SUMMARY AND DISCUSSION

Principal geodesic analysis (PGA) is one of the most widely
used tools for statistical analysis of data on Riemannian
manifolds. This approach seeks a geodesic through the
intrinsic mean, which captures the main trend of the data.
This construction is a straight-forward generalization of
Euclidean PCA, which makes PGA both easy to understand
and implement. The requirement that the estimated curve is
geodesic and passes through the mean is at the same time
the main strength and the main weakness of PGA. These
strong constraints on the solution provide much needed reg-
ularization when only small quantities of data are available.
However, the same constraints quickly prevent PGA from
capturing the trend; in particular the requirement that the
estimated curve passes through the mean is detrimental.
Even when a suitable geodesic exists, it may not be found
as the mean may fall outside the support of the data.

We have proposed to extend the classic principal curves
from Hastie & Stuetzle [31] to Riemannian manifolds. The
resulting model is easy to implement as it only relies
on the computation of locally weighted means. As the
local means are more likely to be unique than the global
counterpart (Theorem 1), the model is less sensitive to
curvature than PGA. The principal curve also forgoes the
need for a geodesic solution as the resulting curve is flexibly
represented as a piece-wise geodesic curve. This is both a
strength and a limitation of the proposed approach. From
small quantities of data it may be unrealistic to avoid
overfitting, but when more data is available, the increased
flexibility generally yields substantial improvements over
the inflexible geodesic solution. This is a standard dilemma.

An added benefit of the principal curve is that it can
trivially fit a closed curve to the data, even in spaces that do
not have closed geodesics. We have seen how this gracefully
allows for modeling periodic phenomena.

The main limitation of the principal curve framework is
the curve representation. By representing the curve as a
discrete set of points it is difficult to scale the approach to
estimate higher dimensional surfaces. In principle, it is trivial
to extend the method to estimate a D-dimensional surface
[31], but since the number of needed discretization points
grows exponentially with D, this quickly get impractical.

The running time of the method exceeds that of PGA as
we use this for initialization. The repeated calculation of
local intrinsic means may seem daunting from a computa-
tional perspective, but in practice this does not appear to
be an issue. As the means are only local, they tend to not
include many data points, but more importantly, they tend
to be less sensitive to curvature. This implies that only few
iterations of the gradient descent scheme (Algorithm 1) are
needed to reach convergence. When numerical solvers are
used to compute geodesics it is often more time-consuming
to compute geodesics between far-away points than nearby
ones. This also influence the computation of a local mean
as it only relies on nearby points.

Finally, we argue that it is beneficial to generalize non-
linear Euclidean statistics to Riemannian manifolds, rather
than linear statistics. These non-linear models often only
rely on local computations, which make them ideal for non-
linear representation spaces. We further expect the principal
curves to be extendable to more general metric spaces [42],
[43] as they do not depend on tangent space constructions.
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