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Abstract. We present an articulated tracking system working with data
from a single narrow baseline stereo camera. The use of stereo data allows
for some depth disambiguation, a common issue in articulated tracking,
which in turn yields likelihoods that are practically unimodal. While cur-
rent state-of-the-art trackers utilize particle filters, our unimodal likeli-
hood model allows us to use an unscented Kalman filter. This robust
and efficient filter allows us to improve the quality of the tracker while
using substantially fewer likelihood evaluations. The system is compared
to one based on a particle filter with superior results. Tracking quality
is measured by comparing with ground truth data from a marker-based
motion capture system.

1 Introduction

Articulated human motion tracking is the process of estimating the human body
configuration over time from a series of sensor inputs [1]. Motion tracking has a
wide variety of uses ranging from computer gaming and film making to medical
applications. Currently, the most accurate methods are based on physical mark-
ers attached to the human body that can be tracked in three dimensions using
multiple calibrated cameras. These methods have serious drawbacks since they
are cumbersome to set up and too intrusive to be used easily outside labora-
tory settings, e.g. in private homes. Therefore, an accurate markerless tracking
method based solely on input from a camera is needed for a vast array of non-
laboratory applications.

To alleviate this need, much research has gone into markerless articulated
tracking. The most common solution is to use a nonlinear filter with a likelihood
model based on monocular images. Due to the lack of depth information from
such data, these likelihood models are inherently multimodal, which has forced
researchers to perform the inference using very general techniques such as par-
ticle filters [2–6]. However, recent boosts in computational power has made con-
sumer stereo cameras possible, see e.g. the Bumblebee1 or the Microsoft Kinect2

1 http://www.ptgrey.com/products/bumblebee2/
2 http://www.xbox.com/kinect
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camera. Using such cameras allows us to construct approximately unimodal like-
lihood models. This, in turn, allows us to perform the inference using the more
constrained Unscented Kalman Filter (UKF) [7, 8]. These constraints allow for
a more robust estimation using fewer computational resources compared to a
particle filter. Both these features are sorely needed in practical applications.

The objective of articulated tracking is to estimate joint angles of a skeleton
model in each frame of an image sequence. The most common approach is to
infer these joint angle from monocular images using a particle filter, see e.g.
[2–6].

Due to the flexibility of the human body, the skeleton model needs to ex-
hibit many degrees of freedom. Robust estimation of joint angles then requires
many samples in the particle filter, rendering the approach computationally very
demanding. A commonly used approach to deal with this problem is to reduce
the degrees of freedom in the model by confining the set of legal joint angles
to some (often nonlinear) subspace of the angle space. It seems that most re-
searchers taking this route focus on simple low-dimensional motions, such as
walking [9–12], golf swings [11, 12], tennis playing [13] etc. This approach can be
both robust and computationally efficient, but suffers from the main drawback
that the resulting trackers only work with very specific motions.

The need for particle filters stems from the fact that the used likelihood mod-
els often are multimodal, making the posterior distribution of the joint angles
multimodal as well. The multimodality of the likelihood comes from the use of
monocular images that makes depth ambiguities an inherent part of the prob-
lem. Examples of such likelihoods include a combination of edge strength and
horizontal flow [14], silhouettes extracted using background subtraction [5] and
texture models for each limb [2]. One way of making the largest mode of the
likelihood easier to locate is to use multiple calibrated cameras, as was done by
Deutscher et al. [3]. The need for several calibrated cameras, however, makes the
approach hard to use outside the laboratory. One compromise is to use a single
pre-calibrated stereo camera as suggested by Hauberg et al. [6]. This is also the
approach we will be taking as it will allow us to infer the joint angles using an
unscented Kalman filter.

Unscented Kalman filters have seen little use in articulated tracking as the
likelihood models have usually been multimodal which does not fit with the
Gaussian assumptions of this filter. One notable exception is the work of Ziegler
et al. [15] whose approach shares many similarities with ours. Using four stereo
cameras placed at a 90◦ angle from each other, they are able to track a human
upper body reliably using the UKF. This is also to be expected as data from the
four stereo cameras should be sufficient to avoid any observational ambiguities.
Another example of articulated tracking with the UKF is found in [16], where a
hand is tracked. Here, the likelihood is based on edges in a monocular image, so
there is little reason to believe that the likelihood actually is unimodal. Further-
more, it seems that they only conduct experiments on image sequences of hands
where the articulation of the fingers remains unchanged for the entire sequence.

In this work we make the following contributions.
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– We show that unimodality of the human pose distribution can be assumed
when working with data from a single, narrow-baseline stereo camera.

– We apply the unscented Kalman filter for articulated tracking and achieve
superior results in terms of accuracy and realism of body movements. Fur-
thermore, UKF gives us the benefit of requiring significantly fewer likelihood
evaluations resulting in a lower computational complexity.

This paper is organized as follows. In the next section we describe the general
nonlinear filtering framework and two possible implementations: the UKF and
the particle filter. This is then specialized to articulated tracking in Sec. 3.
Results are presented in Sec. 4 and the paper is concluded in Sec. 5.

2 Nonlinear Filtering

The articulated tracking of human motion can be formulated as a nonlinear
estimation problem modelled by the two difference equations

xt = f(xt−1,vt−1) (1)

yt = h(xt,nt) (2)

where xt ∈ Rnx denotes the state of the system at time t and yt ∈ Rny the
observation. With our motion tracking, the system state corresponds to the
pose of a human body while the observation is a stereo image of the human. The
function f models the transition between system states over time while h relates
the hidden state space to the observation space. Both f and h are deterministic.
vt and nt are random variables representing process noise and measurement
noise respectively.

2.1 The Unscented Kalman Filter

Below follows a very brief introduction to the UKF, we refer to [7, 8] for a
thorough presentation.

The UKF provides a sequential estimation of the posterior density p(xt|y1:t)
where y1:t = {y1,y2, . . . ,yt}. This is achieved by updating the posterior den-
sity recursively. In each time step, UKF selects a set of 2nx + 1 sample points
X i , i = 0, 1, . . . , 2nx that completely captures the mean and covariance of the
state distribution p(x). These sample points (called sigma points) are then up-
dated according to the state prediction function f and propagated through the
observational model h into observation space. In observation space, their devi-
ation from the observation is measured by the likelihood model p(y|X i). From
the likelihood of all sigma points, the Kalman gain K is updated. K is then
used to update the state estimate x as well as the state distribution p(x).
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2.2 The Particle Filter

The particle filter works by generating a set of n weighted random sample points
X i , i = 1, 2, . . . , n from the prior distribution p(xt|xt−1). Like with the sigma
points of UKF, each of these sample points are projected into observation space
where their likelihood p(y|X i) is quantified and weights assigned accordingly.
The new pose estimate xt becomes the mean of p(xt|y1:t). A more comprehensive
description of the particle filter is presented in [17].

3 Filtering for Articulated Tracking

3.1 The State Model

The articulated human body model is built from a kinematic skeleton consisting
of rigid bones connected by joints with up to three degrees of freedom depending
on the joint type (e.g. an elbow joint has one degree of freedom and a shoulder
joint has three). This approach is common within articulated tracking [1, 3]. The
set of joint angles of the kinematic skeleton constitutes our state model vector
x. In this work we limit our tracker to consider only a human body from the
hip and up as depicted in Fig. 1. Furthermore, we assume that the human is
standing still and only moving the upper body parts. Notice however, that it is
trivial to extend the model to include full body motion.

Fig. 1. The kinematic skeleton of the upper human body that we wish to track.

As joints of the human skeleton cannot move freely due to physical con-
straints, we enforce similar angular constraints on our model. More specifically,
we limit each angle to some interval [l, u] where l and u denote the lower and
upper bound. These box constraints are applied to both the sigma points and
the samples in the particle filter to ensure that the prediction does not consider
illegal joint angles. However, we do not handle self-intersections between body
parts.

We initialize the first state x0 manually so that it matches the actual state
as close as possible. We also provide a probability density estimate p(x0) of the
initial state. The state is propagated in time by adding zero mean Gaussian noise
to each joint angle independently, i.e.

p(xt|xt−1) = N (xt|xt−1,Σ) (3)
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where Σ is a diagonal matrix. In our experience, it is not worthwhile to perform
prediction of the state transition between frames as the changes are too small.
Therefore, we perform no actual state transition between frames by letting func-
tion f from Eq. 1 be the identity function. The above model has, among others,
been applied by Sidenbladh et al. [10], Balan et al. [18] and Bandouch et al. [19].

3.2 The Observation Model

The stereo camera provides us with a set of three-dimensional points in each
frame. We perform a simple but efficient segmentation of the input image by
removing points that are further away than a certain background threshold. If
the remaining points contain any outliers (points far away from the body), we
translate these points to bring them within a given Euclidean distance of their
nearest limb. This final set of points constitutes the input observation vector y.
An example of an observation along with a human pose estimate is shown in
Fig. 2.

(a) (b)

Fig. 2. (a) A segmented stereo image of a human body. (b) A human skeleton estimate
projected on the image data.

We use the observational model presented in [6]: For each time step t we
generate a set of sample points X of which each sample X i is to be compared
with the observation in order to compute the likelihood p(y|X i). For this, we
use the nonlinear mapping h (Eq. 2) constructed as follows. Given a state vector
X i and an input observation y, we want to represent the state X i in observation
space. The state is composed of all joint angles in a kinematic skeleton. To each
bone in this skeleton we assign a cylinder with a radius corresponding to the
thickness of the limb; these will serve as our skin model. We then project all
points from y onto the nearest cylinder of the stick figure. As we are working
with cylinders, these projections can be performed trivially. By projecting the
points of y onto skeleton X i we obtain a new observation vector Yi that is
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comparable to y since they both have the same dimensionality and the points in
the vectors correspond to each other. Thus, the likehood model can be expressed
as

p(y|X i) = N (y|Yi, λ
2I) , (4)

where λ2 is a variance parameter.

3.3 Computational complexity

The computational complexity of the tracker depends on the filtering method
used. For the particle filter, the computational complexity is O(n(ny + log(n)))
with n being the number of particles sampled and ny the dimensionality of the
observation space. For the UKF, the computational complexity is O(n2xn

2
y) due

to a singular value decomposition of a Rny×nx matrix. In our experience, the
performance of UKF is very competitive with that of the particle filter since
n >> nx.

4 Results and Evaluation

To measure the performance of the particle filter vs. the UKF we apply both
filters on two image sequences of 300 frames each. Examples of the results are
shown in Fig. 3. The videos are available from http://humim.org/scia2011.
We see that the UKF provides smoother and visually more accurate results
compared to the particle filter. Only when the particle filter sampling is dense
(1500 particles), the quality is somewhat close visually to that of the UKF. In
the first image sequence, both filters are able to track the motion reasonably.
The second sequence is harder to track as body parts move close to each other
and self-occlusions occur. The particle filter fails on several occasions during
sequence 2. UKF proves more robust than the particle filter as it misestimates
the human pose on only one occasion where an arm passes by the head closely. We
believe that most of these problems are caused by our simple skin model and our
observational model that for each point in the observation makes a projection
onto the nearest cylindrical limb. This is very likely to cause problems when
limbs are positioned close to each other.

Overall, the unimodal assumption seems to hold since the observational
model is strong enough to favorize the single, correct pose by a large margin.
It is possible, however, to imagine special cases in which unimodality cannot be
assumed, e.g. if an entire arm is hidden behind a person’s back. In this case,
when updating the Kalman gain K, the variance of the kinematic joints related
to the arm will automatically be adjusted to reflect this uncertainty. Thus, when
the variance goes up for certain joints, the tracker should try to estimate these
joints differently, e.g. by relying on a predictive model.

4.1 Accuracy

To obtain a more precise basis for comparison, the tracked person is wearing
physical markers that are tracked in 3D using a high precision motion capture
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Particle filter, n = 250 Particle filter, n = 1500 UKF

Fig. 3. The human skeleton estimated by the different filters is superimposed over
selected frames from two videoes. The images in the upper two rows comes from video
1 while the two bottom rows are taken from video 2. The full videoes are available
at http://humim.org/scia2011. Both particle filters have visible difficulties tracking
the motion in the sequence as they seem less prone against self-occlusions and closely
positioned body parts (which happens more often in sequence 2 than in sequence 1).



8 A. B. L. Larsen, S. Hauberg, K. S. Pedersen

(a) (b)

Fig. 4. (a) Average error of the tracking filters. The particle filter is represented by the
solid lines and the UKF by the dashed lines. The vertical error bars represent two times
the standard deviation caused by the Monte Carlo sampling. The deviation is measured
over several trials of the particle filter. (b) Smoothness of the filters measured by the
average deviation of absolute joint positions between time steps. Low values indicate
smooth trajectories. The solid lines represent the particle filter and the dashed lines
represent the UKF.

system. These will serve as our ground truth data. In total, there are eight mark-
ers placed on the human; three markers on each arm and two on the shoulders.
To quantify the tracking quality we measure how well the markers fit with the
estimated poses. For each marker, we make a projection onto the nearest limb;
just as we did in the observational model. The Euclidean distance between the
projection o and the marker point m can then be used as error measure. To
determine the error from all eight markers of a state x over all time steps T , we
calculate the average error:

E(x1:T ) =
1

8T

T∑
t=1

8∑
j=1

||mt,j − ot,j || . (5)

The resulting average error for the different filters are shown in Fig. 4a. It is
clear that the UKF performs just as good or better than particle filters with a
dense sampling. Furthermore, it is noteworthy that the monte carlo sampling
of the particle filter results in significant deviations in accuracy when repeating
the tracking. In this regard, the deterministic algorithm of the UKF offers more
reliable results.

4.2 Motion Smoothness

When looking at the image sequences, it becomes clear that the UKF tracking
produces smoother and more realistic motions whereas the skeleton generated by
the particle filter tends to shake between time steps. To quantify this smoothness,
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we introduce the following measure. For each time step t we take the absolute
position at,j of each joint j in the human skeleton and measure the movement
from the previous time step. The smoothness measure is then calculated as the
average deviation of all joints J over T time steps.

S(x1:T ) =
1

TJ

T∑
t=1

J∑
j=1

||at,j − at−1,j || (6)

The results of our filters are shown in Figure 4b. UKF is clearly superior with
a low deviation between time steps. One could image that another flavor of the
particle filter such as the annealed particle filter will give more smooth results.
However, filters that rely on Monte Carlo methods will always exhibit some
jittering. This reveals another advantage of using the deterministic UKF.

5 Conclusion

In this paper we have shown that not only is the unscented Kalman filter ap-
plicable for articulated tracking, it also provides superior results in terms of ac-
curacy and smoothness compared to the particle filter using substantially fewer
likelihood evaluations. For this to be possible it is, however, essential that the
likelihood model is mostly unimodal. For general monocular situations this is
not the case, but it seems to be a reasonable assumption when working with
stereo data. This observation makes practical articulated tracking systems much
more plausible.

In this paper we used a simple likelihood model based on a simple skin model.
For particle filters, this simplicity is essential as we need to be able to evaluate
the likelihood fast due to the vast number of particles required. When using
UKF, more involved likelihood models are possible as we only need to evaluate
it a few times due to the low number of sigma points. Thus, in the future, we
will consider more realistic skin models in the observational model. Other future
work includes an automatic initialization of the tracker as well as an extension of
the implementation to work with full body models as this will extend the use of
the tracking system. Finally, we need a more elaborate evaluation of the tracker
on more sequences of varied complexity.
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