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Abstract

Latent variable models (LVMs) learn proba-
bilistic models of data manifolds lying in an
ambient Euclidean space. In a number of ap-
plications, a priori known spatial constraints
can shrink the ambient space into a consider-
ably smaller manifold. Additionally, in these
applications the Euclidean geometry might in-
duce a suboptimal similarity measure, which
could be improved by choosing a different
metric. Euclidean models ignore such infor-
mation and assign probability mass to data
points that can never appear as data, and
vastly different likelihoods to points that are
similar under the desired metric. We propose
the wrapped Gaussian process latent variable
model (WGPLVM), that extends Gaussian
process latent variable models to take values
strictly on a given ambient Riemannian man-
ifold, making the model blind to impossible
data points. This allows non-linear, proba-
bilistic inference of low-dimensional Rieman-
nian submanifolds from data. Our evaluation
on diverse datasets show that we improve per-
formance on several tasks, including encoding,
visualization and uncertainty quantification.

1 INTRODUCTION

Unsupervised learning aims at modelling structure in
unlabeled data, such as its geometry. Sometimes, in-
formation on this geometry is available through spatial
constraints or a non-Euclidean metric, e.g. the data
lives on a Riemannian manifold. Incorporating the
known Riemannian manifold in a probabilistic model
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Figure 1: The ambient manifold SPD(2) is the open
subset on the inside of the visualized grey cone in the
ambient Euclidean space R3. Top row: A Euclidean
Gaussian distribution fitted to a set of SPD(2) matri-
ces (black dots) escapes outside of SPD(2). Bottom
row: The Riemannian Log-Euclidean metric yields
a wrapped Gaussian distribution that remains inside
SPD(2), providing a better fit to the data. The colored
trust regions are confidence regions of the (W)GDs.

should improve model fit, and save us from learning
what we already know. In this work, we study a prob-
abilistic latent variable model that takes the geometry
into account.

Where do manifolds come from? Data points on a
sphere are forced to have norm one, covariance matrices
are symmetric and positive definite, and shapes do not
depend on scale, rotation or placement. Enforcing such
constraints or invariances, one replaces the ambient
Euclidean space by an ambient manifold. The ambient
space refers to the set of all those points, which the
model views as possible data points. The constraints
alter the shortest paths between data objects, giving
rise to a Riemannian metric. Riemannian metrics can
also be imposed by modelling choices; closeness under
the Euclidean metric does not always express desired
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similarity of data objects. These metrics can be learned
from data (Hauberg et al., 2012) or imposed based on
domain knowledge (Arsigny et al., 2006).

Euclidean probabilistic models on manifold
data assign probability mass to impossible data points
under spatial constraints. Furthermore, points that
are similar under the chosen non-Euclidean metric can
be assigned very different likelihoods, which can cause
a poor fit to the data. Both issues affect especially
the uncertainty estimates. These issues can be avoided
by exploiting the Riemannian geometry in the model.
Fig. 1 shows points in SPD(2), the space of 2× 2 sym-
metric positive-definite matrices, with fitted Euclidean
and Riemannian models. The points outside the cone
are not SPD(2) matrices. Under the Log-Euclidean
metric, which generalizes the log transform to matri-
ces, elements on the boundary (in gray) lie infinitely
far from interior points. The metrics, and hence the
induced models, are vastly different. This results in
the Riemannian model with an improved model fit.

Contributions. Motivated by these observations, we
introduce the wrapped Gaussian process latent variable
model (WGPLVM). This extends the Gaussian process
latent variable model (GPLVM) to data on Riemannian
manifolds by employing wrapped Gaussian processes
(WGPs). Like the GPLVM, the WGPLVM defines a
probabilistic model between elements in a lower dimen-
sional latent space and the data, providing uncertainty
estimates. As WGPs take values strictly on a given
Riemannian manifold, the WGPLVM enforces known
constraints and invariances, and accounts for modelling
choices concerning the metric.

We demonstrate the WGPLVM on several different
manifolds and tasks. We show that our method pro-
vides more efficient encoding of the original data com-
pared to the Euclidean GPLVM, provides superior un-
certainty estimates and better captures trends in the
data, resulting in improved visualization results.

Related Literature. First, we discuss methods in
manifold learning, which view data points as elements
of a Euclidean space. Then, we discuss related work
in submanifold learning, that works strictly on Rie-
mannian manifolds. Note that some manifold learning
methods can impose known geometry on the latent
space. Models relying on kernels (e.g. the GPLVM and
WGPLVM) can encode such structure on the latent
space (Lin et al., 2017). This is different from imposing
geometric constraints on the data space.

Manifold learning infers a low-dimensional manifold
that captures the trend of given data. Classical al-
gorithms (Belkin and Niyogi, 2003; Roweis and Saul,
2000; Tenenbaum et al., 2000) learn a low distortion
projection from a data submanifold of the original,

Figure 2: Illustration of submanifold learning.

Euclidean ambient space, onto a low-dimensional Eu-
clidean space. Latent variable models (LVMs) (Goodfel-
low et al., 2014; Kingma and Welling, 2014; Lawrence,
2005) learn the reverse latent embedding from the latent
space into the ambient space, associating each point
in the latent space with an ambient space point. In
the well-known Gaussian process latent variable model
(GPLVM) (Lawrence, 2005), the latent embedding is
a Gaussian process (GP) over the latent space, and
hence learns not only a manifold embedding into Rn,
but also a model of its uncertainty. GPLVMs have
inspired other LVMs (Lawrence and Moore, 2007; Tit-
sias and Lawrence, 2010; Urtasun and Darrell, 2007),
that all rely on Euclidean geometry. Urtasun et al.
(2008) consider topologically constrained LVMs and
Varol et al. (2012) consider GPLVMs with spatial con-
straints, where the constraints are enforced through
slack variables and local linearization. Our method
works intrinsically on the specific Riemannian mani-
fold, taking the topology, spatial constraints and the
Riemannian metric into account. Thus the WGPLVM
falls into the category of submanifold learning.

Submanifold learning algorithms, illustrated in Fig. 2,
aim to infer a model ϕ from a latent space L to a
submanifold M (dashed red) of a known ambient man-
ifold M of points that satisfy the constraints. The
map ϕ associates the data pi ∈ M (dark grey) with
latent variables xi ∈ L (blue). Principal geodesic anal-
ysis (PGA) (Fletcher et al., 2004; Huckemann et al.,
2010) estimates geodesic submanifolds, Riemannian
principal curves (Hauberg, 2016) and barycentric sub-
spaces (Pennec, 2015) estimate less constrained sub-
manifolds. Probabilistic PGA (Zhang and Fletcher,
2013) introduces uncertainty by estimating probabilis-
tic geodesic subspaces. The WGPLVM contributes
non-geodesic, probabilistic learning of the submanifold
from a prior model, allowing considerable flexibility
compared to previous models.

Examples of manifold valued data include directional
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statistics, which consider spherical data (Mardia and
Jupp, 2009; Urtasun et al., 2006), covariance matri-
ces as data objects in economics and computer vi-
sion (Tuzel et al., 2006; Wilson and Ghahramani, 2011)
and in diffusion MRI or materials science (Batchelor
et al., 2005; Fletcher and Joshi, 2004), and statistics
of shape, which is of fundamental interest in computer
vision (Freifeld and Black, 2012; Kendall, 1984). In
each example, the common approach is to incorporate
the Riemannian structure in the statistical analysis.

2 PRELIMINARIES

This section introduces the necessary preliminaries and
notation. We first review Gaussian processes (GPs) and
the Gaussian process latent variable model (GPLVM)
(Lawrence, 2004). Next, we summarize the necessary
concepts from Riemannian geometry. Subsequently,
we review the wrapped Gaussian processes (WGPs)
introduced by Mallasto and Feragen (2018), which
form the cornerstone of the present work.

Gaussian processes. Let N (µ,Σ) denote a multivari-
ate Gaussian distribution (GD) with mean µ ∈ Rd and
covariance matrix Σ ∈ Rd×d, and write the associated
probability density function as N (v|µ,Σ) for v ∈ Rd.
A Gaussian process (GP) is a collection f of random
variables, so that any finite subcollection (f(ωi))

N
i=1

is jointly Gaussian, where ωi ∈ Ω are elements of the
index set. Any GP f is uniquely characterized by

m(ω) = E [f(ω)] ,

k(ω, ω′) = E
[
(f(ω)−m(ω))(f(ω′)−m(ω′))T

]
,
(1)

called the mean function m and covariance function k,
denoted f ∼ GP(m, k). For more about GPs and their
applications, see Rasmussen (2004).

Gaussian process latent variable model. The
Gaussian process latent variable model (GPLVM) is a
GP-based dimensionality reduction technique, which
aims to learn a probabilistic model relating elements
in the low dimensional latent space L ⊆ Rn′ to ob-
served data Y = {yi}Ni=1 ⊂ Rn, with n′ < n. The
model approximates the manifold that Y lives on. The
probabilistic model is computed by choosing a prior
GP f ∼ GP(m, kθ) with hyper-parameters θ ∈ Θ. The
hyper-parameters are optimized with the latent vari-
ables X = {xi}Ni=1 ∈ L to maximize the log-likelihood

log(P(Y |X, θ)) =− nN

2
ln(2π)− n

2
ln |KX,θ|

− 1

2
Tr
(
K−1
X,θY Y

T
)
,

(2)

where (KX,θ)ij = kθ(xi, xj), and X,Y denote the cor-
responding data matrices. Finally, we condition the
optimal prior f on the chosen latent variables X and

data Y , to yield the predictive distribution of the model.
Note that any prediction f(x) has support in the whole
Rn, thus ignoring any constraints or invariances.

In differential geometric terms, a GPLVM can be
viewed to learn a stochastic chart for the approximate
manifold on which the dataset Y lives.

Riemannian geometry. A Riemannian manifold is
a smooth manifold M with a Riemannian metric, i.e. a
smoothly varying inner product gp(·, ·) on the tangent
space TpM at each p ∈ M , which induces a distance
function dM on M . Each (p, v) in the tangent bundle
TM =

⋃
p∈M ({p} × TpM) defines a geodesic γ (locally

shortest path) on M , so that γ(0) = p and γ̇(0) = v.

The Riemannian exponential map Exp: TM → M
is given by (p, v) 7→ Expp(v) = γ(1), where γ is the
geodesic corresponding to (p, v). The exponential Expp
at p is a diffeomorphism between a neighborhood 0 ∈
Up ⊂ TpM and a neighborhood p ∈ Vp ⊂M , which is
chosen in a maximal way to preserve injectivity. The
logarithmic map Logp : Vp → TpM is characterized by
the identity Expp(Logp(p

′)) = p′. Outside of Vp, we use
Logp(p

′) to denote v ∈ Exp−1
p (p′) with a minimal norm,

chosen in a measurable way. The complement of Vp in
M is called the cut-locus at p, where unique geodesics
cannot be defined. Multiple useful manifolds have
empty cut-locus, so that Vp = M , including manifolds
with non-positive curvature as well as the space of
positive-definite symmetric matrices used below.

Let Expp(v) = q and γ(t) = Expp(tv). The differential
DpLogp(q) (in some coordinate chart) is given by (see
supplementary material for (Pennec, 2016))

DpLogp(q) = (J0(1))
−1
J1(1), (3)

where Ji are Jacobi fields solving the linear ordinary
differential equation

J̈i(t) +R(t)Ji(t) = 0, (4)

with initial conditions J0(0) = 0, J̇0(0) = In, and
J1(0) = In, J̇1(0) = 0. Here R(t) is given by Rij =
〈Riemγ(t)(γ̇(t), ei(t))γ̇(t), ej(t)〉γ(t) and (e1(t), ..., en(t))
is an orthonormal basis for Tγ(t)M , defined by e1(0) =
v
‖v‖2 and each ej(t) evolves through parallel transporta-
tion. Furthermore, Riemγt denotes the curvature tensor
and In is the n-by-n identity matrix, where n is the
dimension of the manifold. For a thorough exposition
in Riemannian geometry, see (Do Carmo, 1992).

Let Mi be Riemannian manifolds with metrics gi, ex-
ponential maps Expi and logarithmic maps Logi for
i = 1, 2. Then M = M1×M2 turns into a Riemannian
manifold when endowed with the metric g = g1 + g2,
which has the component-wise computed exponen-
tial map Exp(p1,p2)((v1, v2)) =

(
Exp1

p1(v1),Exp2
p2(v2)

)
.

The logarithmic map Log on the product manifold is
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Figure 3: WGDs defined as a Gaussian N (0,K) in
the tangent space TµM over the basepoint µ, which is
pushed forward by the exponential map Expµ to M .

defined likewise.

Wrapped Gaussian distributions. Let (M, g) be
an n-dimensional geodesically complete Riemannian
manifold. Let ν be a measure on X and f : X → Y
be a measurable map. We define the push-forward
as f#ν(A) := ν(f−1(A)) for any measurable set A
in Y . A random point X on M follows a wrapped
Gaussian distribution (WGD), if for some µ ∈M and
a symmetric positive definite matrix K ∈ Rn×n

X ∼
(
Expµ

)
#

(N (0,K)) , (5)

denoted by X ∼ NM (µ,K). The WGD is thus defined
by a GD N (0,K) in the tangent space TµM , that is
pushed-forward onto M by the exponential map Expµ
(see Fig. 3). We call µ =: µNM

(X) the basepoint of X,
and K =: CovNM

(X) the tangent space covariance.

Two random points Xi ∼ NMi
(µi,Ki), i = 1, 2 are

jointly WGD, if (X1, X2) is a WGD on the product
manifold M1 ×M2, given by

(X1, X2) ∼ NM1×M2

((
µ1

µ2

)
,

(
K1 K12

K21 K2

))
, (6)

for some matrix K12 = KT
21. Then, X1 can be condi-

tioned on X2, resulting in a push-forward of a Gaussian
mixture in Tµ1M1 by the exponential map

X1|(X2 = p2) ∼
(
Expµ1

)
#

(∑
v∈A

λvN (µv,Kv)

)
,

(7)
where A = {v ∈ Tµ2M | Expµ2

(v) = p2} is the preim-
age of p2. The means and covariance matrices of the
Gaussian mixture components are given by

µv = K12K
−1
2 v, Kv = K1 −K12K

−1
2 KT

12, (8)

and the component weights are

λv =
N (v|0,K2)

P{A}
, P{A} =

∑
v∈A
N (v|0,K2). (9)

Wrapped Gaussian processes. Wrapped Gaus-
sian processes generalize GPs to Riemannian mani-

Figure 4: A WGP f can be viewed as defining a GP
fEuc in the tangent spaces TmM ⊂ M over the base-
point function, so that each marginal f(xi) is pushed-
forward onto M by (Expm(xi))#(f(xi)).

folds (Mallasto and Feragen, 2018). A collection f of
random points on a Riemannian manifold M indexed
over a set Ω is a wrapped Gaussian process (WGP), if
every finite subcollection (f(ωi))

N
i=1 is jointly WGD on

MN . The functions
m(ω) = µNM

(f(ω)),

k(ω, ω′) = CovNM
(f(ω), f(ω′)),

(10)

are called the basepoint function and the tangent space
covariance function of f (also called as kernel of f), re-
spectively. To denote such a WGP, we use the notation
f ∼ GPM (m, k).

Formally, a WGP f can be viewed as a GP fEuc on
TmM ⊂ TM , the family of tangent spaces over the
basepoint functionm. Then, the resulting GP is pushed
forward to M using the Riemannian exponential map
Expm over m to obtain the WGP, see Fig. 4.

3 WRAPPED GAUSSIAN PROCESS
LATENT VARIABLE MODEL

We now introduce the wrapped Gaussian process latent
variable model (WGPLVM) for data P = {pi}Ni=1 lying
on an n-dimensional ambient Riemannian manifoldM.
The goal of WGPLVM is to learn a lower-dimensional
submanifold MPred ⊂M, where the data is assumed
to reside. The WGPLVM model is a straight-forward
generalization of the GPLVM model, where instead of
GPs, we maximize the likelihood of our data combined
with the latent variables under the WGPs that are
suitable for the manifold context. The WGPLVM
pipeline is illustrated in Fig. 5.

We consider a family of WGPs f ∼ GPM(m, kθ) from
the latent space L onto the ambient manifoldM, where
θ ∈ Θ are hyperparameters, that will be optimized over.
The basepoint function m can be utilized to delocalize
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Figure 5: The WGPLVM pipeline. 1. The data
pi ∈ M (blue and red dots) is transformed to the
tangent bundle by pi 7→ Logm(xi)(pi) ∈ Tm(xi)M ⊂
TmM along the prior basepoint function m (dotted
black line) at initial latent variables xi. 2. A GPLVM
is learned, yielding the latent variables x̂i ∈ L and the
GP fEuc from L to the tangent bundle. 3. The GP
fEuc is then pushed forward ontoM by (Exp)#(fEuc),
resulting in the predicted data submanifold.

the learning process in order to avoid distortions of the
metric caused by linearization of the curvedM. The
kernel kθ affects how observations in different tangent
spaces affect each other. For coherence, the kernel
should be adapted to a smooth frame (a smoothly
changing basis over m). Such a frame can e.g. be
constructed by parallel transporting a basis along m.

The likelihood assigned by the prior f to a data point
p with associated latent variable x is

P{p|x, θ} =
∑

v∈Exp−1
m(x)

(p)

N (v|0,Kx,θ)

≈ N
(

Logm(x)(p)|0,Kx,θ

)
,

(11)

where (Kx,θ)ij = kθ(x
i, xj) and x = (x1, x2, ..., xn).

The approximation in Eq. (11) only takes into ac-
count the preimage of p with a minimal norm (and
thus maximal likelihood), denoted by Logm(x)(p). The
expression gives a lower bound for P{p|x, θ}, thus, maxi-
mizing the likelihood of Logm(x)(p) maximizes the lower

bound for P{p|x, θ}. It also enforces the WGPLVM
to prefer local models over ones that wrap consider-
ably around the manifold. Note that, for manifolds
with empty cut-locus (such as ones with non-positive
curvature), the approximation in (11) is exact.

The objective function to be maximized is then the
approximated log-likelihood

ln (P{p|x, θ}) ≈− dN

2
ln(2π)− d

2
ln |Kx,θ|

−1

2
Logm(x)(p)

TK−1
x,θLogm(x)(p),

(12)

for which the gradient with respect to x is given by
∂

∂xj
ln (P{p|x, θ}) ≈

−d
2

Tr

(
K−1
x,θ

∂Kx,θ

∂xj

)
−1

2
Logm(x)(p)

TK−1
x,θDm(x)Logm(x)(p)

∂m

∂xj
(x)

−1

2
Logm(x)(p)

T
∂K−1

x,θ

∂xj
Logm(x)(p),

(13)

The differential Dm(x)Logm(x)(p) can be computed us-
ing Jacobi fields as explained in expression (3), if no
analytical expression exists.

Assuming that the data is i.i.d, the approximate log-
likelihood for the data set P can be written using
Eq. (12), by considering P as a single element of the
product manifold PN . This quantitity is then maxi-
mized by optimizing over the latent variables and the
hyperparameters θ, resulting in the optimal latent vari-
ables X̂ and hyperparameters θ̂ for the kernel.

The approximate submanifold can then be pre-
dicted at arbitrary latent variables XPred, by condi-
tioning f̂ ∼ GPM(m, kθ̂) on the data P with the as-
sociated latent variables X̂ (using Eq. (7)). The con-
ditional distribution will then be a non-centered GP
fEuc ∼ GP(mEuc, kEuc) defined on TmM pushed for-
ward by the exponential map (see Fig. 5), resulting in
the predictive distribution ϕpred ∼ (Expm(x))#(fEuc).
Then, the mean prediction is given by ϕ̄pred(x) =
(Expm(x))#(mEuc)(x)).

In Eq. (7), if the preimage Exp−1
µ2

(p2) is not uniquely
defined, the conditional distribution is approximated
by using a preimage with minimal norm, as previously.
This approximation is justified as the weights λv of the
components of the Gaussian mixture decrease exponen-
tially as ‖v‖p2 increases.

The initial latent variables X = {xi}Ni=1 can be
chosen strategically to aid optimization. We use princi-
pal geodesic analysis (PGA) (Fletcher et al., 2004) and
principal curves (Hauberg, 2016). PGA is appropriate
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when the data expresses a geodesic trend (analogy of
linearity on Riemannian manifolds), which is not the
case for the femur dataset, see Fig. 6 in Section 4.

The Computational complexity for the method
is O(NL + N3), where L is the cost of computing
the Riemannian logarithm. This varies from manifold
to manifold, but for example, in Section 4, the most
expensive is O(d3) for the Log-Euclidean metric on
d× d symmetric, positive-definite matrices.

We provide a pseudo-algorithm for the method in the
supplementary material.

4 EXPERIMENTS

The WGPLVM is demonstrated on three different man-
ifolds, arising from three different applications: The
sphere, Kendall’s shape space (Kendall, 1984), and
the space of symmetric, positive definite (SPD) matri-
ces. Furthermore, the WGPLVM is compared with the
Euclidean GPLVM, whose predictive distribution is ex-
pected not to lie on the manifold. This effect is clearly
visible in Fig. 6. A third model, also shown in Fig. 6, is
a modification of the Euclidean GPLVM, where the GP
predictions are projected onto the manifold in order to
make them satisfy the desired constraints.

We first introduce the datasets and their associated
tasks, along with dataset-specific details related to
training the models. In each case, we train the model
assuming independent coordinates, applying the same
kernel to each coordinate.

Femur dataset on S2. A set of directions P =
{pi}Ni=1 ∈ S2 of the left femur bone of a person walk-
ing in a circular pattern (CMU Graphics Lab, 2003;
Hauberg, 2016) is measured at N = 338 time points.
The movement is expected to be one dimensional and
periodic, and thus we learn a 1-dimensional submani-
fold homeomorphic to a circle to approximate the data
manifold. The latent variable optimization is initialized
using principal curves (Hauberg, 2016), and the prior
WGP and GP had kernel

k(t, t′) = σ2 exp

(
−2 sin2(|t− t′|)/2

l2

)
, (14)

and mean m(t) = µS2 and m(t) = 0, respectively,
where µS2 is the Fréchet mean of the training set and
σ2, l2 are hyperparameters optimized to maximize the
likelihood of the dataset P with the latent variables X.
The trained models are visualized in Fig. 6.

Diatom shapes in Kendall’s shape space. Di-
atoms are unicellular algae, whose species are related
to their shapes. In Kendall’s shape space MK we an-
alyze a set of outline shapes of 780 diatoms (du Buf
and Bayer, 2002; Jalba et al., 2006) from 37 different

species. For visualization, a two dimensional latent
space is learned, using the prior f ∼ GPMK

(m, k),
with constant basepoint function m(t) = µMK

set to
be the Fréchet mean of the population and k given by
the radial basis function (RBF) kernel

k(x, x′) = σ2 exp

(
−‖x− x

′‖22
2l2

)
. (15)

We initialize the GPLVM and WGPLVM models with
PGA and PCA, respectively.

Diffusion tensors in SPD(3). In the space of 3× 3
SPD matrices with the Log-Euclidean metric (Arsigny
et al., 2006), we collect a set of 750 diffusion tensors
from a diffusion MRI dataset, sampled with approxi-
mately uniform fractional anisotropy (FA) values. The
FA is a well-known tensor shape descriptor; see the
supplementary material for the definition. As SPD
matrices form an open subset of the Euclidean space
of symmetric matrices, we do not get a “for free” di-
mensionality reduction by restricting to SPD matrices.
Instead, the data is transformed nonlinearly according
to the Log-Euclidean metric, which is commonly used
for diffusion tensors (Arsigny et al., 2006). The diffu-
sion MRI image was a single subject from the Human
Connectome Project (Glasser et al., 2013; Sotiropoulos
et al., 2013; Van Essen et al., 2013). In diffusion MRI,
low-dimensional encoding with uncertainty estimates
may speed up image acquisition and processing.

Crypto-tensors in SPD(10). On SPD(10) we col-
lect the price of 10 popular crypto-currencies1 in the
time 2.12.2014-15.5.2018. The crypto-currency intra-
relationship at a given time is encoded in the covariance
matrix between the prices in the past 20 days; we in-
clude every 7th day in the period, resulting in 126
10× 10 covariance matrices. Wilson and Ghahramani
(2011) provide a discussion of covariance descriptors
in economy. As the acquired covariance matrices in
SPD(10) have eigenvalues in different orders of magni-
tude, we use the Log-Euclidean metric (Arsigny et al.,
2006), capturing this trend better.

For both SPD(n) datasets, the basepoint function, the
kernel and the latent variable initialization are chosen
as for Kendall’s shape space. The latent spaces are
chosen to be 2-dimensional for visualization purposes.

Application 1: Encoding. The datasets are divided
into training and test sets (consisting of 8/10 and 2/10 of
the data, respectively), and we learn the models ϕpred

on the training set. Each test element p is “encoded”
by the projection π : p 7→ argmaxx∈L P{ϕpred(x) = p}.
We assess the quality of this encoding by measuring the
root-mean-square error (RMSE) of the reconstruction,

1Bitcoin, Dash, Digibyte, Dogecoin, Litecoin, Vertcoin,
Stellar, Monero, Ripple, and Verge.
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Figure 6: WGPLVM, GPLVM and GPLVMProj submanifold predictions for the femur data set. Mean predictions
are in black, with 20 samples from the noise models (in blue). Training data in black, with test points in red.

Riemannian Femur Diatoms Diffusion tensors Crypto-tensors
GPLVMProj (9.22± 0.55)× 10−2 (2.48± 0.25)× 10−2 0.582± 0.025 21.91± 2.26
WGPLVM (9.20± 0.53)× 10−2 (2.39± 0.15)× 10−2 0.391± 0.035 3.04± 0.26

Euclidean Femur Diatoms Diffusion tensors Crypto-tensors
GPLVM (9.21± 0.55)× 10−2 (2.48± 0.25)× 10−2 (6.03± 0.34)× 10−2 (7.36± 5.27)× 105

GPLVMProj (9.21± 0.55)× 10−2 (2.48± 0.25× 10−2 (6.03± 0.34)× 10−2 (5.49± 3.17)× 105

WGPLVM (9.19± 0.53)× 10−2 (2.39± 0.15)× 10−2 (7.54± 0.36)× 10−2 (8.69± 7.12)× 105

Table 1: Mean ± standard error of mean reconstruction errors, measured in RMSE, over 10 repetitions of
the experiment. Top table: Deviations measured in the intrinsic distance on the manifold. Bottom table:
Deviations measured in the Euclidean distance.

Figure 7: The latent space for the crypto-tensor dataset,
with days visualized by color. Note that for GPLVM,
the dark blue points corresponding to early times are
hidden underneath the green points.

where the error is measured both by the Euclidean
metric and the intrinsic metric. Each experiment was
repeated 10 times with different training and test sets;
the results are reported in Table 1.

Under the intrinsic metric, the WGPLVM performs sig-
nificantly better on the tensor datasets, and marginally
better in the two other cases. Under the Euclidean
metric the WGPLVM encoding is better in two cases,
worse in one, and inconclusive for the crypto-tensors
where no model is significantly better than the others.

Application 2: Uncertainty quantification. Im-
portantly, GPLVM learns a probabilistic model, pro-
ducing an estimate of uncertainty. We evaluate these
uncertainty estimates on all four datasets. Since the
predictive distributions live in different spaces, the like-
lihoods of observed data under the different models

are not directly comparable. However, all three models
yield confidence intervals, which we compare using 10
resampled training and test sets (8⁄10 and 8⁄10 of the
data). The test set is projected onto the predicted
submanifold via π. Then, we sample the respective pre-
dictive distributions 50 times, computing the fraction
of samples closer to the mean prediction than the test
point. The results are visualized in Fig. 8, where the
densities of these fractions are shown with correspond-
ing cumulative distributions. For a perfect model fit,
we would observe the x = y curve (dashed line) as the
cumulative distribution. The experiment shows that
all models estimate uncertainty incorrectly, but that
WGPLVM obtains the best estimate.

Application 3: Visualization. In Fig. 7, we illus-
trate the latent spaces of WGPLVM versus GPLVM
on the crypto-tensor dataset, which comes with an as-
sociated time variable, shown in color. The WGPLVM
provides a smoother and more consistent transition in
color, while the GPLVM plots all the earlier (dark blue)
tensors on top of each other. Similar visualizations for
the other datasets can be found in the supplementary
material; in these examples, the two visualizations are
not significantly different in quality.

In the supplementary material, we provide a discus-
sion on why our model might perform better in the
SPD(n) experiments, including a comparison between
the Euclidean and Riemannian geometries.
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Figure 8: Uncertainty estimates given by the WGPLVM, GPLVM and projected GPLVM models for the four
datasets. The bars represent the frequency of occurances, where the fraction of samples, given by the x-value, lie
closer to the mean prediction than a test point. The continuous curves represent the cumulative distributions.
Whenever the cumulative distribution lies above x = y, we are overestimating the corresponding quantile.

5 DISCUSSION AND CONCLUSION

We introduced the WGPLVM for non-parametric and
probabilistic submanifold learning on Riemannian man-
ifolds. The model encodes known constraints or invari-
ances, and provides model flexibility, as metrics other
than the Euclidean one can be incorporated. This is
useful if a different metric captures trends in the data
better. The model was evaluated on several manifolds
and tasks against the GPLVM and a modified GPLVM,
which projects predictions onto the manifold.

The experimental results show that the WGPLVM pro-
vides a better probabilistic model to fit the data; in
particular the uncertainty estimates are superior to
the Euclidean models on three out of four datasets,
and virtually identical on the fourth. We note that
for Euclidean models, the uncertainty is visibly higher.
These are strong indications that our model carries
out modelling the data distribution better. The mean
predictions of the WGPLVM encode the data space
significantly better than the GPLVM and projected
GPLVM models on two of the datasets, and marginally
better on the other two, when measured in the Rie-
mannian metric. Under the Euclidean metricr, the
GPVLM performs notably better in one experiment,
and WGPLVM marginally better in two. On crypto-
tensors, we deem the results inconclusive due to high
variance. The aforementioned effects are also seen in
the latent space visualizations, e.g. on the cryptotensors
the WGPLVM better detects small-scale differences in
the early time steps.

One might suspect that the improved performance
stems from a “for free” dimensionality reduction
through constraints. However, we note that the most
significant improvement in both reconstruction error
and visualization was obtained on SPD(n), where the
Riemannian manifold is a full-dimensional, convex sub-
set of the Euclidean ambient space. This might still be
due to the constraints, which forces the distributions
to lie in the manifold. The difference could also be

caused by the choice of metric. For the crypto-tensors
in particular, we observe that some of the eigenvalues
are very small; the Log-Euclidean metric essentially
acts as a log-transform and therefore converts the data
to a scale on which changes in the smaller eigenvalues
can be detected.

In three of the experiments, the mean predictions of
GPLVM lie essentially on the manifold, thus the pro-
jected version does not improve the mean reconstruc-
tion error. However, in the femur experiment, the
uncertainty estimates are clearly improved, but also
notably outperformed by WGPLVM. Due to the metric
and curvature of the manifold, interpolation between
two points in the ambient space Rn does not necessarily
project even closely onto the manifold interpolation be-
tween the projected points. This distortion affects the
statistics relying on interpolation, and explains both
the reduced reconstruction capability and the increased
variance. Furthermore, the projected model ignores
any metric choices imposed on the manifold.

Although the WGPLVM provides flexibility through
the prior basepoint function, we fixed this to be the
Fréchet mean of the training set in our experiments.
The choice is well justified if the data is local enough,
and makes the comparison to GPLVM fair. The flex-
ibility to delocalize the learning process through the
basepoint function is, however, important for inference
on manifolds when the locality assumption fails. The
non-trivial optimization of the basepoint function thus
provides a venue for future research.

In summary, the WGPLVM is a probabilistic submani-
fold learning algorithm that respects known Rieman-
nian manifold structure in the data by taking values
in the associated Riemannian manifold. We compare
the model to its Euclidean counterparts on a num-
ber of manifolds, datasets and tasks, and show that it
has superior representation capabilities more faithful
visualizations and improved uncertainty estimates.
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Supplementary Material

A Pseudo-Algorithm forWGPLVM

A pseudo-code algorithm for training the WGPLVM is
provied in Alg. 1.

B Details on Manifolds Used

The n-sphere Sn is a Riemannian manifold with ex-
ponential and logarithmic maps given by

Expp(v) = cos(‖v‖2)p+ sin(‖v‖2)
v

‖v‖2
,

Logp(q) = arccos (〈p, q〉) q − 〈p, q〉p
‖q − 〈p, q〉p‖2

,
(16)

where ‖ · ‖2 is the 2-norm induced by the standard
Euclidean innerproduct 〈·, ·〉.

Kendall’s shape space forms a quontient manifold
of the sphere, so the operations defined for Sn apply,
when working with the right quotient representatives.
Kendall’s shape space has the additional constraint of



Mallasto, Hauberg, Feragen

Algorithm 1 Training WGPLVM. Input: basepoint
function m, kernel kΘ, initial latent variables x =
{xi}Ni=1, dataset p = {pi}Ni=1, learning rate λ. Each
logarithmic map should be express with respect to a
frame W on the manifold.
while Not converged do

# Compute logarithmic maps and save into a
matrix as rows

[Logm(x)(p)]i ← Logm(xi)(pi)
# Compute prior covariance matrix:
[Kx,Θ]ij ← kΘ(xi, xj)
# Compute objective:
L ← − − dN

2 ln(2π) − d
2 ln |Kx,Θ| −

1
2Logm(x)(p)

TK−1
x,ΘLogm(x)(p)

# Compute gradients and update parameters
x← x+ λ∇xL
Θ← Θ + λ∇ΘL

end while

representing shapes with respect to an optimal transla-
tion between a pair of shapes. Let X,Y be the 2×N
data matrices of two shapes, where N is the amount
of landmarks, and each column represents the x, y-
coordinates after quontienting away scale and trans-
lation. Then, the Procrustean distance between the
shapes X,Y is given by

min
R
‖X −RY ‖2, (17)

where R is a rotation matrix. The shapes are aligned by
choosing a reference point, and aligning the population
elements by minimizing the Procrustean distance.

The space SPD(n) of symmetric, positive defi-
nite matrices can be given the structure of a Rieman-
nian manifold, by endowing it with the Log-Euclidean
metric. The tangent space at each point is the space
of n-by-n symmetric matrices, and the affine-invariant
metric is given by

gP (V,U) = Trace[V TU ], (18)

and the exponential and logarithmic maps are given
by

ExpP (A) = exp(log(p)+v), LogP (Q) = log(Q)−log(P ),
(19)

where exp stands for the matrix exponential and log
for the matrix logarithm.

C Latent Space Visualization

Here we provide the latent space visualizations for the
diffusion-tensor and diatom datasets.
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Figure 9: The latent spaces for the diffusion-tensor
dataset learned using the WGPLVM and GPLVM mod-
els. The colors indicate the FA of the given tensor.

The fractional anisotropy (FA) of a 3× 3 SPD matrix
is a shape descriptor taking values between 0 and 1,
where an FA of 0 corresponds to a round tensor, and
an FA near 0 corresponds to a very thin one. Given
the eigenvalues λ1, λ2, λ3 for an SPD matrix, its FA is
defined as√

3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

,

where λ̂ is the mean of the eigenvalues. In the latent
space shown in Fig. 9, the latent variables are colored
according to the FA of their associated tensor, and
we see that both models provide a smooth transition
between different FA values.

The latent space visualization of the diatom dataset is
found in Fig. 10; here the latent variables are colored
by the species of the corresponding diatom, see Fig. 11
for a visualization of species representatives.
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Figure 10: The latent spaces for the diatom dataset
learned using the WGPLVM and GPLVM models. The
colors indicate the species of the diatom corresponding
to the latent variable, see Fig. 11.

D Comparing the Geometries

In this section, we compare the geometries in Euclidean
and Riemannian cases. The aim is to try and under-
stand, when the performance is improved. We do this
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Figure 11: Representatives of each of the 37 diatom classes with corresponding class colors used in Fig. 10. Note
that variation inside of each class can be considerable.

Figure 12: Distributions of distances between the data points and the population means. The bar plots indicate
the density of data points that lie x-fraction of the maximum distance away from the mean. The corresponding
continuous curves represent the cumulative distributions.

by visualizing the distribution of data point distances
to the corresponding population means, the distances
and means computed according to the corresponding
metrics.

As can be seen in Fig. 12, in the femur (2-sphere) and
diatom (Kendall’s shape space) cases, the distributions
look very similar. In fact, in the diatom case, they
are essentially the same. The Kendall’s shape space
forms a quotient manifold of the sphere, which in this
case is high dimensional (d = 180). In such high
dimension, escaping the manifold becomes increasingly
more difficult (most of the volume of the sphere is
close to the boundary), and thus both the metrics are
essentially the same. This might explain, why the
WGPLVM did not improve notably on the GPLVM.

In the crypto-tensor experiment, the distribution im-
plies the presence of extreme outliers under the Eu-
clidean metric. The Log-Euclidean metric, on the other
hand, transforms the metric scale, evening out the dis-
tribution. This could very well explain, why we see
large improvement with the WGPLVM compared to
the GPLVM.

In the DTI experiment, the distribution of Euclidean
distances looks more even. This might imply, that in
this occasion, the Euclidean distance is better at cap-
turing the trend of the data. However, the improved
uncertainty estimates of the WGPLVM could be ex-

plained, as the Euclidean models are not confined to
SPD(n). Therefore, the distributions do not follow
the conic shape of SPD(n).


