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Abstract

In articulated tracking, one is concerned with estimating the pose of a person in every frame of a film. This pose is most
often represented as a kinematic skeleton where the joint angles are the degrees of freedom. Least-committed predictive
models are then phrased as a Brownian motion in joint angle space. However, the metric of the joint angle space is rather
unintuitive as it ignores both bone lengths and how bones are connected. As Brownian motion is strongly linked with
the underlying metric, this has severe impact on the predictive models. We introduce the spatial kinematic manifold of
joint positions, which is embedded in a high dimensional Euclidean space. This Riemannian manifold inherits the metric
from the embedding space, such that distances are measured as the combined physical length that joints travel during
movements. We then develop a least-committed Brownian motion model on the manifold that respects the natural
metric. This model is expressed in terms of a stochastic differential equation, which we solve using a novel numerical
scheme. Empirically, we validate the new model in a particle filter based articulated tracking system. Here, we not only
outperform the standard Brownian motion in joint angle space, we are also able to specialise the model in ways that
otherwise are both difficult and expensive in joint angle space.

Keywords: Articulated Tracking, Brownian Motion on Riemannian Manifolds, Manifold-valued Stochastic Differential
Equations, Numerical Solutions to SDEs

1. Introduction

This paper is concerned with least-committed priors for
probabilistic articulated tracking, i.e. estimation of human
poses in sequences of images (Poppe, 2007). When treating
such problems, a maximum a posteriori estimate is typi-
cally found by solving an optimisation problem, and the
optimisation is then guided by a prior model for predict-
ing future motion. For such statistical models of human
motion, it is common to express the model as a kinematic
skeleton (see fig. 1). This “stick figure” model is com-
plex enough to be descriptive and simple enough to give
tractable algorithms. Most of the resulting models are,
however, expressed in a space with rather unnatural metric
properties, which is also apparent in the models. Specifi-
cally, the applied metrics most often only study changes in
joint angles; the “size” of a movement is simply measured
by summing how much each joint was bent. This ends up
with the flick of a finger being just as large a motion as
waving an arm, even though one would expect the latter
to be much larger (see fig. 2). This rather unintuitive be-
haviour occurs as the metric ignores both the length of the
individual bones and the hierarchical nature of the human
body (the arm bone is connected to the shoulder bone, the
shoulder bone is connected to the back bone, etc.). Often
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this problem is mitigated by weighting the joints, but, as
we will show, this cannot lead to a spatially consistent
metric.

In this paper, we define a representation of the kine-
matic skeleton with natural metric properties. Instead of
studying joint angles, we explicitly model joint positions,
such that our representation consists of the three dimen-
sional spatial coordinates of all joints. As bone lengths
are constant, the distance between connected joints is also
constant. This constraint confines our representation to
a manifold embedded in the Euclidean space consisting
of all joint positions. By inheriting the metric from the
embedding space, we get a metric corresponding to the
length of the spatial curves that joint positions follow dur-
ing the movement. Interestingly, this natural metric is well
in tune with how humans plan, think about and discuss
motion (Morasso, 1981; Abend et al., 1982).

Using our spatial representation, we define a Brownian
motion model on the Riemannian representation manifold
that reflects the metric. The Brownian motion model is
expressed as a manifold-valued stochastic differential equa-
tion (SDE), for which we need numerical solvers. We
present a novel scheme for solving the SDE, which we ap-
ply as a least-committed prior in a particle filter based
articulated tracking system. Furthermore, we show how
the spatial nature of the model allows us to model in-
teractions with the environment; something that is often
ignored when the model is expressed with joint angles.
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Figure 1: Left: a rendering of the kinematic skeleton. Each bone
position is computed by a rotation and a translation relative to its
parent. Right: an image showing a human in the pose represented
by the skeleton to the left.

1.1. Organisation of the Paper

We start the paper by discussing relevant background
material and related work with emphasis on the non-spatial
joint angle metric most often used when modelling human
motion. We continue by defining a spatial manifold-valued
pose representation with a natural and intuitive metric.
The next step is to define a least-committed stochastic
process on this manifold for predicting human motion; in
sec. 3.2 we define a Brownian motion model that serves this
purpose. In order to apply the model in real-world scenar-
ios we need a suitable numerical scheme for working with
this stochastic process; in sec. 4 we show how the under-
lying manifold-valued stochastic differential equation can
be simulated. We then incorporate the predictive model
in an articulated tracking system and compare with the
standard Brownian motion in joint angle space. Further-
more, we show how interaction with the environment can
trivially be included in the motion model due to the spatial
nature of our framework. Finally, the paper is concluded
with a discussion in sec. 6.

2. Background and Related Work

Probabilistic articulated tracking concerns the maxi-
mum a posteriori estimate of the pose of a person in every
frame of a film. This requires a representation of human
poses and a framework for computing the statistics of the
observed poses. As we are seeking a posterior estimate,
we need a prior model of the motion. This prior is the
focus of this paper. In this section, we describe the pose
representation, the probabilistic framework, the standard
priors and other related work.

2.1. The Kinematic Skeleton

To represent the human body, we use the kinematic
skeleton (see fig. 1), which is by far the most common
choice (Poppe, 2007). This representation is a collection of
connected rigid bones organised in a tree structure. Each
bone can be rotated at the point of connection between
the bone and its parent. We will refer to such a connection
point as a joint. Elbow joints will be represented using one
parameter while all other joints will be represented using
three parameters.

Figure 2: Examples of three motions that are equally large in the
commonly used angular metric. All examples have a 45 degree an-
gular distance to the initial pose.

We model the bones as having known constant length
and, therefore, the angles between joints constitute the
only degrees of freedom in the kinematic skeleton. We may
collect all these joint angle vectors into one large vector θ,
which will be confined to the N dimensional torus TN .

From joint angles it is straightforward to compute joint
positions using Forward Kinematics (Erleben et al., 2005).
This process starts at the skeleton root and recursively
computes a joint position by translating its parent in the
direction encoded by the joint angles, i.e.

al = Rl (al−1 + tl) , (1)

where al is the end-point of the lth bone, and Rl and
tl denotes a rotation and a translation respectively. The
rotation is parametrised by the relevant components of
the pose vector θ and the length of the translation corre-
sponds to the known length of the bone. We shall denote
the vector containing all spatial joint coordinates as F (θ).
The forward kinematics function F , thus, encodes bone
lengths, bone connectivity as well as joint types.

In the human body, bones cannot move freely. A simple
example is the elbow joint, which can approximately only
bend between 0 and 160 degrees. To represent this, θ is
confined to a subset Θ of TN . For simplicity, Θ is often
defined by confining each component of θ to an interval,
i.e. Θ =

∏N
n=1[ln, un], where ln and un denote the lower

and upper bounds of the nth component. More realistic
joint constraints are also possible, e.g. the implicit surface
models of Herda et al. (2004). For our purposes any hard
constraint model is applicable, though the choice will have
an impact on the computational requirements.

2.2. Probabilistic Motion Inference

The objective in articulated human motion estimation
is to infer θ in each observation in a sequence (Poppe,
2007). To make things practical, it is common to assume
that the joint angles follow a first order Markov chain and
that observations are conditionally independent given the
true joint configuration. From all observations seen so far,
the current joint angles can then be estimated from (Cappé
et al., 2007)

p(θt|Z1:t) ∝ p(Zt|θt)
∫
p(θt|θt−1)p(θt−1|Z1:t−1)dθt−1 ,

(2)
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where θ1:T = {θ1, . . . , θT } and Zt denotes the observation
at time t.

When only using a single camera or a narrow base-
line stereo camera, p(Zt|θt) becomes multi-modal due to
self-occlusions and visual ambiguities. For this reason,
we apply the particle filter (Cappé et al., 2007) for in-
ferring pose parameters. Briefly put, this algorithm recur-

sively draws samples θ
(j)
t+1 from the motion prior p(θt+1|θt)

and assigns weights to these according to the likelihood
p(Zt+1|θt+1). These weighted samples form an approxima-
tion of p(θt+1|Z1:t+1); the mean of which can be estimated
from

E[θt+1|Z1:t+1] ≈
J∑
j=1

wjθ
(j)
t+1 , (3)

where wj ∝ p(Zt+1|θt+1) are normalised likelihoods that
sum to one.

2.3. Brownian Motion of Joint Angles

The focus of this paper is motion priors, i.e. p(θt+1|θt).
When no specific motion is being modelled, it is common
to assume that θt follows an Euclidean Brownian motion,
i.e.

p(θt+1|θt) ∝ exp

(
−1

2
d2θ(θt+1, θt)

)
, (4)

where dθ(θt+1, θt) = ‖θt+1 − θt‖ is the Euclidean distance
in joint angle space. In practice it is common to scale the
individual joint angles to encode that some joints move
more than others. This corresponds to introducing a co-
variance matrix in eq. 4. Formally, this makes the model
an Itô diffusion (Øksendal, 2000), but we will simply treat
it as a Brownian motion in the scaled coordinate system.
However, as we shall see, the Brownian motion model in
angle space has some rather unintuitive properties, which
cannot be avoided by scaling the coordinates.

Formally, Euclidean Brownian motion, also known as
the Wiener process, is defined (Sato, 1999) as a stochastic
process Wt on Rd having independent increments, such
that for any partitioning, n ≥ 1 and 0 ≤ t0 < t1 <
. . . < tn, Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1

are indepen-
dent random variables. Furthermore, the increments are
zero mean Gaussian distributed Ws+t−Ws ∼ N (0, tI) for
all s, t > 0. Hence, we may intuitively think of Euclidean
Brownian motion as the result of time integration of zero
mean Gaussian white noise, that is an infinite sum of i.i.d.
infinitesimal Gaussian steps. As such the Euclidean Brow-
nian motion is both a d-dimensional Gaussian and a Levy
process (Sato, 1999).

Brownian motion is generally considered the least-com-
mitted motion model as it 1) assumes no knowledge of the
past motion given our current position and 2) takes steps
with maximum entropy under the constraint of a fixed
finite variance. The last point arises from the fact that
the steps are Gaussian distributed, which is the maximum
entropy distribution constrained by a finite variance and
known mean value.

Furthermore, Brownian motion lies at the heart of sto-
chastic calculus and the theory of stochastic differential
equations (Øksendal, 2000). It allows for the formula-
tion of general stochastic process models, including the
Kalman-Bucy filter, the continuous time formulation of
the Kalman filter. Brownian motion also forms the basis
of most other models of interest for articulated tracking.

2.4. The Joint Angle Metric

The Euclidean Brownian motion model in eq. 4 is strongly
linked to the metric. Specifically, eq. 4 assumes that dθ(θt, θt−1) =
‖θt−θt−1‖ is a suitable metric for comparing poses. While
this model might seem reasonable at first glance, we shall
soon see that it exhibits several unnatural properties.

As a motivating example of the behaviour of dθ, we
show three movements of “equal size” in fig. 2. In all
movements one joint has been moved 45 degrees, while
the remaining have been kept constant. While the actual
numerical changes from the initial positions are the same,
the movements appear to be substantially different, with
the movement on the left of the figure appearing to be
much larger than the one on the right. The example in
fig. 2 just scratches the surface of the unnatural behaviour
of dθ. The main causes of difficulty with dθ are due to two
phenomena.

First, the metric ignores the length of the bones in the
body. As such, even a small change in the angle of a joint
connected to a long bone can lead to large spatial changes.
This problem can be avoided by assigning a weight to each
joint angle according to the length of the bone controlled
by the joint.

The second phenomena, is that the metric ignores the
order of the joint in the kinematic chain. By bending one
joint, the position of all joints further down the kinematic
chain is altered, while the position of joints closer to the
root of the kinematic tree remain unaltered. From a prob-
abilistic point of view, this means that the variance of
joint positions increases as the kinematic chains are tra-
versed. Hence the joint angle model artificially increases
the spatial variance, which means that the model is bound
to perform poorly as a temporal low-pass filter.

These phenomena effectively means that some joint an-
gles have much more influence than others. In practice this
often leads to unstable predictive models. To mitigate this
instability, it is common to introduce a covariance Σθ in
joint angle space that influences the relative importance of
each joint. To illustrate this, we learn the covariance of a
Brownian motion in joint angle space corresponding to a
person waving his arms. In fig. 3a, we then show samples
from this distribution. As can be seen, the variance of each
joint position increases with the distance to the skeleton
root. This increase in variance is an inherent part of the
model and does not come from the motion data.

To gain further insight into the spatial behaviour of the
joint angle model, we approximate the covariance of joint
positions defined by the forward kinematics function F (θ)
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(a) (b)

Figure 3: Samples from two Brownian motion models, where the
covariance is learned from the same motion data. (a) Samples from
a model in joint angle space. (b) Samples from a spatial manifold-
valued Brownian motion. Note that the joint angle model is inher-
ently more variant.

(Hauberg et al., 2010). Linearising F (·) around θ gives an
approximation of this covariance,

cov[F (θ)] ≈ JθΣθJ
T
θ , (5)

where Jθ denotes the Jacobian of F (·) in θ. From this
expression, we see that if we want a consistent model of
joint positions, expressed in terms of joint angles, we need
different covariance matrices for every value of θ because
Jθ varies. A model where the covariance smoothly varies
is essentially a model on a Riemannian manifold. This is
the approach we will study in this paper.

To conclude, using dθ as the underlying metric when
defining Brownian motion priors leads to the rather un-
natural above-mentioned phenomena. These cannot be
avoided by introducing a single covariance matrix in joint
angle space, instead a Riemannian approach is needed.

2.5. Modelling Interaction with the Environment

In practice, articulated tracking systems are often based
on particle filters due to the multi-modality of the likeli-
hood. Unfortunately, the particle filter scales exponen-
tially with the dimensionality of the state space. One so-
lution is to specialise the motion prior p(θt+1|θt) to the
studied motion. This can “guide” the filter through the
multiple modes of the likelihood.

Humans are constantly interacting with the environ-
ment: picking up objects, leaning against walls, touching
the ground plane, and so on. Hence, an immediate way
to improve motion models is to include this knowledge.
When motion models are expressed in terms of joint an-
gles, it is, however, difficult to incorporate knowledge of
the environment into the models. As the environment is
inherently spatial, the relationship between joint angles
and the environment is given by the non-linear forward
kinematics function F . Due to this non-linearity, only lim-
ited work has been done to build models that incorporate
environmental knowledge. One notable exception include
the work of Yamamoto and Yagishita (2000), where the
forward kinematics function is linearised. This approach
shows promise in constrained situations, even though the

linearised function is highly non-linear. Brubaker et al.
(2010) also model interaction with the ground plane as
part of a biomechanical model of walking; their model is,
however, only capable of describing walking.

Kjellström et al. (2010) has suggested a more general
object interaction model. They model a person interac-
tion with a stick with known position, which gives them
information about the position of the hands. They then
suggest a motion model consisting of angular Brownian
motion subject to the constraint that the hands attain
the known positions. Kjellström et al. samples approxi-
mately from this model using rejection sampling. While
this approach works, the rejection sampling is, computa-
tionally very demanding due to the high dimensionality of
the angle space. We will consider this model further in the
experimental section of the paper.

2.6. Manifold Learning in Motion Analysis

Another way to craft motion models is to learn a mani-
fold in angle space and confine the motion to this mani-
fold. A predictive motion model can then be learned on
this manifold. Sidenbladh et al. (2000) learned a low-
dimensional linear subspace using Principal Component
Analysis and used a linear motion model in this subspace.
Sminchisescu and Jepson (2004) use Laplacian Eigenmaps
(Belkin and Niyogi, 2003) to learn a nonlinear motion
manifold. Similarly, Lu et al. (2008) use a Laplacian Eigen-
maps Latent Variable Model (Carreira-Perpinan and Lu,
2007) to learn a manifold. All three learning schemes can
be phrased in terms of pair-wise distances between training
data, where the metric is the joint angle distance discussed
in sec. 2.4.

The above approaches learn a manifold and then ignore
the training data. A reasonable alternative is to also use
the data for learning a predictive model on the manifold.
Urtasun et al. (2005) suggested to learn a prior distribu-
tion in a low dimensional latent space using a Scaled Gaus-
sian Process Latent Variable Model (Grochow et al., 2004).
This not only restricts the tracking to a low dimensional
latent space, but also makes parts of this space more likely
than others. The approach, however, ignores all temporal
aspects of the training data. To remedy this, both Urta-
sun et al. (2006) and Wang et al. (2008) suggested learn-
ing a low dimensional latent space and a temporal model
at once using a Gaussian Process Dynamical Model. The
learning algorithms in both approaches, however, require
regularisation to give stable results. This regularisation is
in practice based on the joint angle metric.

All manifold learning approaches discussed in this sec-
tion rely on the joint angle metric. As we have discussed
in sec. 2.4, this metric has several undesirable properties,
which will influence the learning. In this paper, we take a
step back and design a sensible metric along with a com-
patible least-committed motion model. This will allow us
to fix the problems with the joint angle metric and the re-
lated angular Brownian motion. It should be stressed that
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we will not be learning any manifolds; we will analytically
be designing one.

3. A Spatial Metric

For years, experimental neurologists have studied how
people move (Morasso, 1981; Abend et al., 1982) and have
found strong evidence that humans plan motion in terms
of the spatial location of limbs. This unsurprising conclu-
sion complements the fact that both the surrounding envi-
ronment and images thereof are inherently spatial as well.
We, thus, set out to model how joint positions change over
time. This will allow us to improve upon the joint angle
metric and will also ease modelling that includes knowl-
edge of the environment. As we will see, the constraints
imposed by constant bone lengths confines the collection
of all joint positions to a smooth manifold. As most statis-
tical tools have been developed for Euclidean spaces, defin-
ing a probabilistic model on the manifold is not straightfor-
ward. There is, e.g., no direct generalisation of the normal
distribution to the Riemannian domain. For this reason,
we turn to the underlying stochastic differential equation
(SDE) of Brownian motion. This SDE has the nice prop-
erty that it can be generalised to the Riemannian domain
(see e.g. (Hsu, 2002)). One problem with SDE’s on man-
ifolds, is that, to the best of our knowledge, no general
literature exists on their numerical treatment. Later in
the paper, we will introduce a novel method for simulat-
ing the manifold valued SDE’s numerically and use this
for predicting human motion in an articulated tracking
system.

In (Hauberg et al., 2010; Hauberg and Pedersen, 2011b),
we introduced the kinematic manifold and showed that
it is suitable for modelling interactions with the environ-
ment. In these papers, a somewhat ad hoc predictive
model was defined where motion was modelled in the em-
bedding space followed by a projection onto the manifold.
In contrast to this, the model developed here has a solid
foundation in the well-known Brownian motion model.

3.1. The Metric and the Kinematic Manifold

The joint angle representation has at least two good
properties. First, it is fairly simple to create statistical
models in joint angle space. Secondly, as long as the joint
limits are respected, the resulting pose is valid. As pre-
viously mentioned, the metric in angle space is, however,
not as well-behaved as one would like, which gives rise to
unstable statistical models.

As we are studying images of motion, we want a met-
ric where the size of a movement is determined by “how
large” it appears. To achieve this, we consider the physi-
cal length of the spatial curves that joint positions follow
when going from one pose to another. To properly define
these curves, we first consider the set of spatial joint co-
ordinates of all possible poses as the image of the forward

kinematics function F . The resulting set

M≡ {F (θ) | θ ∈ Θ} . (6)

is a subset of the space R3L with L denoting the number of
bone end-points counting only one for each joint. Hence,
a point in M is a vector of spatial joint positions. Since
the angle space is compact and F is an injective function
with a full-rank Jacobian, M is a compact differentiable
manifold with boundary embedded in R3L. We denote
M the kinematic manifold. It should be stressed that M
is topologically equivalent to the angle space Θ, but has a
different geometry. In other words, the two representations
capture the same set of poses, but have different metrics.

The distance between two poses on the kinematic mani-
fold is given by the manifold metric and is therefore defined
as the length of the shortest curve on M connecting the
poses. Formally, for poses x, x′ ∈M, we have

distM(x, x′) = min
c(τ)∈M,

c(0)=x,c(1)=x′

∫ 1

0

‖ċ(τ)‖dτ , (7)

with ‖ċ(τ)‖ denoting the size in R3L of the curve deriva-
tive ċ(τ). Hence, the integral corresponds to the ordinary
curve length. The distance between two poses, thus, is
the shortest of all curves on M that connect the poses.
As a curve on M is a sequence of poses, this metric cor-
responds to the minimal combined physical distance that
the joints need to move. This gives the metric a strong
physical interpretation as it measures distances directly in
the world coordinate system. This is in stark contrast to
the joint angle metric, which measures distances in terms
of an intrinsic set of parameters.

From the definition of M (eq. 6) it is clear that poses
on M encodes all knowledge of the forward kinematics
function F . This includes both bone lengths and connec-
tivity. The manifold metric, thus, incorporates knowledge
of the skeleton layout when measuring the size of a move-
ment. This is a quite natural requirement for a “movement
metric”, yet the joint angle metric is inherently unable to
include such knowledge.

3.2. Manifold-Valued Brownian Motion

Having a natural metric for measuring movements, the
next step is to define a least-committed temporal model
that respects this metric. We will define a manifold-valued
Brownian motion model for this. While the normal distri-
bution provides a Brownian motion model in the Euclidean
case, no such simple model is available in the general Rie-
mannian domain. We, thus, turn to stochastic differential
equations for such models.

The Brownian motion model is completely characterised
by its mean and covariance function. The temporal evolu-
tion of these moments are given by the Kolmogorov back-
ward equation (Øksendal, 2000), i.e. by a diffusion gov-
erned by the infinitesimal generator of the process. For the
Euclidean Brownian motion process, this generator is half
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(a) (b) (c)

Figure 4: Steps in the Brownian motion model. (a) The manifold M along with the tangent space TxtM at xt. (b) A normal distribution
dWt in the embedding space with mean value xt is projected to the tangent space. The value xt+1 is sampled from the projection of dWt.
Note that for infinitesimal variances, xt+1 stays on the manifold. (c) A normal distribution dWt+1 with mean value xt+1 is again projected
to the tangent space at xt+1. A new position xt+2 is sampled and the procedure is repeated.

the Laplace operator 1/2∆. Similarly, Brownian motion on
a manifold is generated by half the Laplace-Beltrami oper-
ator 1/2∆M (Hsu, 2002), which, in coordinates, is defined
by

∆Mf =

dimM∑
i,j=1

1√
det g

∂i

(√
det g gij∂jf

)
(8)

for smooth scalar valued functions f : M → R. Here gij

denotes the components of the metric tensor g which deter-
mines the geometry of M. For embedded manifolds such
as the kinematic manifold, the Laplace-Beltrami operator
has a particularly simple form. Let Pα(xt) denote the pro-
jection of the αth coordinate unit vector in the embedding
space R3L to the tangent space of M at xt. Then

∆Mf =

3L∑
α=1

∂2Pαf , (9)

i.e., the operator differentiates twice in each direction Pα

before summing the results. Using this form, Brownian
motion is a solution to the stochastic differential equation

dxt =

3L∑
α=1

Pα(xt) ◦ dWα
t , (10)

in the embedding space R3L. HereWt is a Euclidean Brow-
nian motion in the embedding space with Wα

t denoting
the αth coordinate, and the equation is written using the
Stratonovich integral (Hsu, 2002; Øksendal, 2000) as in-
dicated by the notation ◦d. It is interesting to note that
while the geodesic distance played an important part when
the model was defined it does not appear in eq. 10; for this
reason it need not be computed in the numerical imple-
mentation.

Because the projection of a Gaussian distribution into
a linear subspace is still a Gaussian, the above SDE can
be interpreted as taking infinitesimal Gaussian steps in
the tangent space. It is important to note that solutions
to eq. 10 will stay on the manifold even though the in-
finitesimal steps are taken in the tangent space, i.e.

P
(
xt ∈M

∣∣ x0 ∈M) = 1 . (11)

An illustration of this model can be seen in fig. 4. New
steps along the Brownian path are generated by following
an infinitesimal Euclidean Brownian motion in the tangent
space at the current position of the path. These steps are
then integrated over time to generate the final path.

As with the joint angle model, it is often convenient to
be able to express that some bones move more than others.
This can be achieved by scaling the coordinates in the
embedding space resulting in a model which, technically,
is not a Brownian motion on the manifold, but instead an
instance of Itô diffusion.

3.3. Spatially Constrained Brownian Motion

When building motion models, it can be practical to
constraint certain bone positions. This can be used to
ensure that the feet are touching the ground plane, that
the hands are holding on to an object of known position
and so forth. As a point on the kinematic manifold consists
of the spatial position of individual bone end points, it is
trivial to incorporate such knowledge into the model. If,
for instance, we wish to keep the hand positions fixed,
we can force the relevant entries of dWt to zero. More
complicated constraints can be encoded in the same way
as long as they are physically possible.

3.4. Relations to Directional Statistics

A large part of the work on manifold-valued statis-
tics has been done on spheres; this is known as direc-
tional statistics (Mardia and Jupp, 1999). Here easy-to-
use Brownian motion models are available in the Von Mises
distribution. In sequential analysis, this has found uses
in such different areas as multi-target air plane tracking
(Miller et al., 1995) and white matter tracking in Diffu-
sion Tensor MRI (Zhang et al., 2007). Except for the spe-
cial case of the kinematic skeleton consisting of only one
bone, the kinematic manifold is not spherical and hence
the Von Mises distribution is not applicable. The more
general Brownian motion model defined using the Laplace-
Beltrami operator is nevertheless compatible with direc-
tional statistics in the sense that the definition coincides
with the Von Mises model for spherical manifolds.
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4. Numerical Scheme

So far we have defined a Brownian motion model that
respects the manifold metric. We now set out to simulate
this model using the SDE in eq. 10. While there exists
literature on both simulating SDE’s in Euclidean spaces
(Kloeden and Platen, 1992) and solving ODE’s on mani-
folds (Hairer et al., 2004), to the best of our knowledge,
no general solvers for manifold-valued SDE’s have been
described in the literature.

The most basic scheme for simulating Stratonovich SDE’s
in Euclidean domains is the Euler-Heun scheme, which is
an ordinary first-order scheme for the Stratonovich inte-
gral (Kloeden and Platen, 1992). Given the current end-
position xt of the Brownian path, the next position xt+1

can be simulated in N steps with N controlling the preci-
sion of the scheme. For the SDE in eq. 10, a step in the
Euler-Heun scheme takes the form

xt+1/N = xt +
1

2
[Pxt + Px̃t ]

∆Wt√
N

x̃t = xt + Pxt
∆Wt√
N

,

(12)

where ∆Wt is normally distributed in R3L and Px is the
orthogonal projection operator to the tangent space TxM.
Letting Ux be a matrix with columns constituting an or-
thonormal basis of TxM, we can get the projection as

Px = UxU
T
x . (13)

Unfortunately, the scheme in eq. 12 fails to ensure that
the Brownian path stays on the manifold. We handle this
issue by projecting each step to the manifold, resulting in
the scheme

xt+1/N = projM

(
xt +

1

2
[Pxt + Px̃t ]

∆Wt√
N

)
x̃t = projM

(
xt + Pxt

∆Wt√
N

)
.

(14)

Similar methods are used for ODE’s on manifolds where
a simple argument shows that the solution to the mod-
ified equation converges to the solution of the original
ODE (Hairer et al., 2004, Chap. IV). The situation is
more complex for the less well-behaved SDE’s. Though
the Euler-Heun scheme without the projection converges
to a solution to the SDE (Kloeden and Platen, 1992), we
have at this point no theoretical proof of convergence of
the scheme in eq. 14.

In fig. 3b we show samples generated using this nu-
merical scheme. The spatial covariance has been learned
from the same data as the angular Brownian motion shown
in fig. 3a. Comparing the two set of samples shows that
the spatial Brownian motion model has smaller variance
than the angular model. As the two models are learned
from the same data, this clearly shows that the angular
model artificially increases the variance. This makes the
manifold-valued Brownian motion model a superior tem-
poral low-pass filter.

4.1. Simulating Spatially Constrained Brownian Motion

As discussed in sec. 3.3 it can be practical to spatially
constrain the Brownian motion, such that e.g. the hands
attain known positions. The numerical scheme in eq. 14
easily allows for such extensions. Before projecting back to
the manifold, the relevant entries of the joint position vec-
tor can be fixed to attain the desired positions. This will
result in a simulated human pose where the constraints are
approximately fulfilled: the projection can lead to minor
violations of the constraints.

4.2. Manifold Projection

In order to implement the numerical scheme, we need
a method for projecting points onto the manifold. We do
this by defining projection as a search for the nearest point
on the manifold. Specifically, let x̂t denote a sample from
the distribution in embedding space; we now seek θ̂t such
that F (θ̂t) = projM[x̂t]. We perform the projection in a
direct manner by seeking

θ̂t = arg min
θt

∥∥x̂t − F (θt)
∥∥2 s.t. θt ∈ Θ , (15)

where the constraints correspond to the joint limits. Solv-
ing this problem corresponds to finding a pose in a kine-
matic skeleton such that the joint positions are as close
as possible to a given set of positions. This is known as
inverse kinematics (Erleben et al., 2005) in the anima-
tion and robotics literature. As this is an important tool
in much applied research, much work has gone into find-
ing good solvers; we apply a projected steepest descent
with line-search (Nocedal and Wright, 1999), as empirical
results have shown it to be both fast and stable (Engell-
Nørreg̊ard and Erleben, 2011). The search is started in
θt−1, which practically ensures that a good optimum is
found as the numerical simulation of Brownian motion
only makes small incremental changes to the previous pose.

The optimisation problem in eq. 15 is defined as find-
ing a set of joint angles corresponding to the projected
point on the manifold. This shows that while our model
is phrased spatially, it can be implemented in terms of
joint angles in kinematic skeletons, which simplifies devel-
opment.

5. Experiments

Having designed a numerical scheme, we now experi-
mentally validate the least-committed spatial motion model
by 1) comparing it to a least-committed model in joint an-
gle space and 2) showing how the model can be extended
to include knowledge of the environment. First, we briefly
describe the tracking system where the motion model is
used.
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Figure 5: Left: an input data example. Noisy three dimensional
points are scattered around the surface of the human body. Right:
the skin model. Each bone is assigned a capsule and the collection
of capsules describes the skin.

5.1. The Articulated Tracking System

As previously mentioned we build an articulated track-
ing system using a particle filter (Cappé et al., 2007). For
the predictive model, p(θt+1|θt), we will compare different
models in the following sections. We describe the likeli-
hood system next; this likelihood was previously described
in (Hauberg and Pedersen, 2011a).

We use a small baseline consumer stereo camera1 for
acquiring data. At each time instance we, thus, get a

set of three dimensional points Zt = {z(1)t , . . . , z
(K)
t } that

are mostly scattered around the surface of the human as
well as around the surrounding environment (see fig. 5).
In order to compare a given pose hypothesis θt to this
data, we need a description of the surface of the pose. We
assign a capsule to each bone in the skeleton with a radius
corresponding to the width of the bone. This collection
of capsules will serve as our surface (or skin) model (see
fig. 5). We then define our likelihood measure as

p(Zt|θt) ∝ exp

(
−
∑
i ‖z

(i)
t − projskin(θt)(z

(i)
t )‖2

2σ2

)
, (16)

where σ is a parameter and projskin(θt)(·) denotes projec-
tion of a point onto the surface of the pose parametrised by
θt. This projection can easily be performed in closed-form
as the skin consists of a set of capsules.

5.2. Experiment 1: Comparing Priors

In our first experiment, we compare the Brownian mo-
tion model in angle space with the Brownian motion model
on the kinematic manifold. In both models, we scale the
individual coordinates to encode that some joints move
more than others. For both models, the scaling parame-
ters are learned from separate training data. We perform
tracking on an image sequence where a person is stand-
ing in place while waving a stick around. The sequence
consists of 300 frames and the tracking is manually ini-
tialised. In general, both motion models allows for suc-
cessful tracking of the motion, except for the part where
the person moves both arms behind the head; here the data

1http://www.ptgrey.com/products/bumblebee2/
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Figure 7: A comparison of Brownian motion in joint angle space
versus Brownian motion on the kinematic manifold. The latter con-
sistently outperforms the angular model. The vertical lines corre-
spond to the standard deviation of the error measure over several
runs of the particle filter, while the curve itself corresponds to the
mean value.

do not provide strong enough clues for successful tracking.
This is shown in fig. 6, where several frames are available;
frame 192 shows the just mentioned situation. The angu-
lar Brownian motion is able to capture the trends of the
motion, but it is rarely very accurate. The spatial Brow-
nian motion, on the other hand, captures the motion very
well. This is evident in both fig. 6 and in the supplemen-
tary film.

In order to quantify the above observations, we place
markers on the arms of the person and estimate their three
dimensional position using a commercial motion capture
system2. As an error measure, we measure the average dis-
tance between the motion capture markers and the capsule
skin of the estimated pose. This measure is then averaged
across frames, such that the error measure becomes

E(θ1:T ) =
1

TM

T∑
t=1

M∑
m=1

‖(skin(θt)− vmt‖ , (17)

where ‖skin(θt)− vmt‖ is the shortest Euclidean distance
between the mth motion capture marker and the skin at
time t. We vary the number of particles from 25 to 500
and report this error measure for both prior models in
fig. 7a. As can be seen, the Brownian motion model on the
kinematic manifold consistently outperforms the angular
Brownian motion model. This is also visually evident in
the supplementary film.

We repeat the above experiment on a different sequence
where the person is standing in place while moving his up-
per body. The resulting errors are shown in fig. 7b and
selected frames are available in fig. 8. Again, the results
clearly shows that the Brownian motion on the kinematic
manifold improves results noticeably compared to the an-
gular Brownian motion. This is also evident in the sup-
plementary film.

5.3. Experiment 2: Object Interaction

To illustrate models that incorporate environmental
knowledge, we replicate an experiment suggested by Kjell-

2http://phasespace.com/
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Frame 122 / 300 Frame 192 / 300 Frame 250 / 300 Frame 294 / 300

Figure 6: Selected frames from the tracking results using two different priors. The tracking is performed using 75 particles. The top row
contains frames from the angular Brownian motion model, and the bottom row contains frames from the Brownian motion model on the
kinematic manifold.

Frame 31 / 300 Frame 123 / 300 Frame 192 / 300 Frame 292 / 300

Figure 8: Selected frames from the tracking results using two different priors. The tracking is performed using 75 particles. The top row
contains frames from the angular Brownian motion model, and the bottom row contains frames from the Brownian motion model on the
kinematic manifold.
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Spatially Constrained Brownian Motion

Kjellstrom, Kragic and Black (2010)

Figure 10: Tracking error for the spatially constrained Brownian
motion used for modelling object interaction.

ström et al. (2010): the tracked person keeps both hands
on a stick-like object and a separate tracking system is
used to determine the position of the object. This knowl-
edge can then be used to constrain the tracker by enforcing
the hands to be on the object. Kjellström et al. achieve
this by sampling for the angular Brownian motion and re-
jecting those samples where the attained hand positions
are too far away from the object. While this strategy
works, the need for brute-force techniques such as rejec-
tion sampling clearly shows that the joint angle space is
not well-suited for this type of models. In contrast it is
straightforward to model this problem in the spatial do-
main as described in sec. 3.3.

In the experiment, we track a person waving a stick
in a sword-fighting manner. We attain the position of the
stick by placing motion capture markers at the end-points.
We then compare the rejection sampling strategy of Kjell-
ström et al. with our spatial model. In fig. 9 we show
selected frames from the sequence with results from the
two trackers. As can be seen, both methods provides fairly
good results, though the rejection sampling looses track of
the arms in some frames (frame 103 in the figure). This
error occurs when too many rejections are needed in or-
der to fulfil the spatial constraints; in our implementation,
we give up on fulfilling the constraints after 5000 rejec-
tions. As in the previous experiment, we plot the tracking
error of the two methods against the number of particles
(fig. 10). As can be seen the spatial model consistently
achieves an error around 2 centimetre, while the rejection
sampling approach is in the range of 3.5 to 3 centime-
tre. Computationally, the rejection sampling approach is
fairly expensive: on average it needs 32.2 times as many
resources as the spatial Brownian motion. Our spatial
model is, thus, more accurate and computationally more
efficient than current state-of-the-art.

6. Conclusion

We have discussed one of the most fundamental as-
pects of statistical models of human motion: the underly-
ing metric. We have questioned the commonly used joint

angle metric, which we feel has several unnatural proper-
ties. These occur as the metric specifically ignores both
bone lengths and connectivity. As the metric greatly influ-
ences the statistical models, we have designed a metric that
has a nice physical interpretation: it is the combined spa-
tial distance travelled by the joints. This metric is tightly
linked to both bone lengths and connectivity.

In order to design the metric, we introduced the kine-
matic manifold consisting of the position of all joints in the
kinematic skeleton. This manifold allows us to apply tech-
niques from Riemannian geometry when designing motion
models. Our specific focus has been on predictive stochas-
tic processes for describing human motion. We have de-
fined a Brownian motion model on the kinematic manifold
and demonstrated its usefulness. Moreover, since Brown-
ian motion is the most basic building block of stochastic
calculus, the work paves the way for even better models
using more complex stochastic processes on manifolds.

We have applied the spatial Brownian motion model
in an articulated tracking system, where we have theoret-
ically and empirically shown that this model has a tighter
covariance than the ordinary angular Brownian motion. In
our experiments this leads to better tracking results as the
new model performs better as a temporal low-pass filter.
Furthermore, we have shown how interaction with the en-
vironment can trivially be modelled in the spatial domain,
something that has previously required rather expensive
techniques. These observations makes us believe the spa-
tial domain is a more natural space for designing models
of human motion.

To apply the Brownian motion model in an articulated
tracking system, we used a particle filter, which requires us
to simulate the stochastic differential equation of Brownian
motion. To the best of our knowledge, no general-purpose
numerical schemes exists for SDE’s on manifolds. We
have, thus, suggested an Euler-Heun scheme with projec-
tion steps for this simulation. This is a general scheme that
allows the stochastic process to be simulated on other em-
bedded Riemannian manifolds. Our approach can, thus,
be carried on to other domains than human motion anal-
ysis. It is interesting to note that while Brownian motion
is strongly linked to the underlying metric, the numeri-
cal scheme never requires distances to be calculated. This
simplifies development substantially.

With our focus on Brownian motion, we have derived a
motion agnostic model. As previously mentioned, motion
specific models are often crafted by learning manifolds to
which the motion is confined. An obvious next step is,
thus, to learn a submanifold of the kinematic manifoldM
using e.g. Principal geodesic analysis (Fletcher et al., 2004)
or Geodesic PCA (Huckemann et al., 2010). This can then
be used to restrict the tracking system.

In this paper, we have focused exclusively on models of
human motion. The Brownian motion model is, however,
applicable to many other domains. Since the suggested
numerical scheme works for any embedded Riemannian
manifold, our work is directly transferable.
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Frame 29 / 300 Frame 103 / 300 Frame 208 / 300 Frame 291 / 300

Figure 9: Selected frames from the tracking results using the spatially constrained motion models for object interaction. The top row
corresponds to the rejection sampling approach by Kjellström et al. (2010) and the bottom row corresponds to our spatial model.
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