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Abstract

We present Multi-chart flows, a flow-based model for concurrently learning topo-
logically non-trivial manifolds and statistical densities on them. Current methods
focus on manifolds that are topologically Euclidean, enforce strong structural priors
on the learned models or use operations that do not scale to high dimensions. In
contrast, our model learns the local manifold topology piecewise by “gluing” it
back together through a collection of learned coordinate charts. We demonstrate
the efficiency of our approach on synthetic data of known manifolds, as well as
higher dimensional manifolds of unknown topology, where we show better sample
efficiency and competitive or superior performance against current state-of-the-art.

1 Introduction

Normalizing flows [25, 29] provide an elegant framework for modelling complex, multimodal
probability distributions. Normalizing flows comprise a base distribution Py on a latent space
U and a diffeomorphism (a smooth bijection with a smooth inverse), which provides a 1-to-1
mapping of points in the data space to the latent space x = f(u) according to this base distribution.
The marginal likelihood of a data point can be computed via the change of variables formula
p(x) = p(u)|det Jr(u)|~! = p(u)|det J ;-1 (x)|. Typically, the base distribution Py is chosen to be
a standard normal or a uniform distribution, which are defined in Euclidean space.

Real world data, however, often lie on a manifold, with examples including protein structures [2, 14],
geological data [18, 28] or graph-structured and hierarchical data [31, 32]. Diffeomorphisms, being
bijections between smooth manifolds, preserve the topology of their domain and therefore modelling
the density of manifold-valued data is a known failure mode of flows, due to the topological mismatch
between the target distribution Py« and the base distribution Py [6—8]. In response, recent works
have constructed flows for specific manifolds, such as tori, spheres and hyperbolic spaces [3, 30].

Still, in many realistic situations one may not know the topology of a given data set a priori, but
one may reasonably assume an underlying manifold structure. Such cases generally fall under
the manifold hypothesis [11], an important heuristic in machine learning, which states that high
dimensional data can be described by a low dimensional submanifold embedded in the observation
space. So the question then emerges: Can flow models learn the shape of a data manifold along with
a probability density function on it? Works that provide an answer to this question can be roughly
divided between those that leverage known local geometric information of the manifold [10, 21, 22]
and those that learn its topological structure [4]. Our contribution falls in the latter category.

We present Multi-chart flows, a model that leverages the class of functions typically learned by flow
models to learn a collection of smooth coordinate charts that cover the data manifold. Unlike existing
methods, we learn data manifolds with complex (non-Euclidean) topologies, which in turn improves
our density estimates (Fig. 1). Furthermore, in contrast to methods that depend on local geometry,
our model scales to high dimensional data and is able to achieve competitive or superior performance
in all tasks with better sample efficiency and faster runtimes than most of our baselines.
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Ground truth Multi-chart flows M-flow [4] Figure 1: A bimodal distribution on
a sphere. Unlike our model, the Eu-
clidean M-flow model struggles to
push probability mass to cover both
modes.

2 Topological manifolds and smooth structures

To make subsequent exposition clearer we will briefly review a few basic notions. We begin with the
definition of a topological manifold since any smooth manifold is also a topological manifold.

Definition 1 A topological manifold M of dimension N is locally Euclidean, i.e. each point of M
has a neighborhood which is homeomorphic to an open subset of RN .

We can now formalize the “locally Euclidean” property of a topological manifold by introducing the
notion of local coordinate charts on M.

Definition 2 Given an N-dimensional topological manifold M, a coordinate chart on M is a pair
(U, ¢), where ¢: U — U is a homeomorphism between the open subsets U C M and U C RY.

To have local coordinates for every point on M
we can define a collection of coordinate charts
that covers M. This collection is called an at-
las and it is denoted by A. These definitions
are enough” to concretely define the topology
of a manifold M. However, in order to define
smooth functions, continuous densities and per-
form gradient-based optimization on M, we
need to impose further structure on it, which
will allow the use of differential forms. In par-
ticular, we need to impose a smooth structure.

We first require that our charts be smooth, in
the sense that for a function f : M — R, the
composition f o ¢! : U — R is smooth. Fur-
thermore, given two coordinate charts (Uy, ¢1), (U, ¢p2) if Uy N Uy # 0, the composition ¢ o ¢f1
is called the transition map between ¢; and ¢, and is a homeomorphism since it’s composed from
homeomorphisms. Two charts are called smoothly compatible if their transition map is a diffeomor-
phism, i.e. a smooth bijection with a smooth inverse (see Fig. 2). If all coordinate charts within an
atlas A are smoothly compatible, then A is called a smooth atlas. If furthermore, A contains all
smoothly compatible charts then A is called maximal. We are now ready to give the definition of a
smooth structure on a topological manifold.

Figure 2: Smoothly compatible charts.

Definition 3 Given a topological manifold M, a smooth structure on M, is a maximal smooth atlas.

In practice, when “gluing” together a collection of multiple smoothly compatible charts, it is
sufficient to choose the maximal smooth atlas 4 to be the atlas which contains all of these charts.

3 Multi-chart Flows

We now present our main contribution, Multi-chart flows (MCF). We introduce the model of the
generative process we are considering and subsequently discuss details on inference and training.

2A topological manifold is also a Hausdorff space and it is second countable but we omit these conditions
from the definition as they are not relevant for the setting we are considering.



Figure 3: Overview of the generative process proposed in Multi-chart flows. The base distribution on
a lower dimensional Euclidean space is transformed by a flow, »~!. Each point is then mapped onto
a manifold embedded in a higher dimensional space through its corresponding coordinate chart based
on its distance to the nearest chart center.

3.1 Model specification and generative process

We are considering a data manifold M of dimension d, embedded in some Euclidean space RP with
d < D. We will think of densities on M as arising from transforming points in its coordinate patches,

U; C R?. These points are themselves a result of a diffeomorphism h : R? — R?, which transforms
a simple base distribution defined in R, such as a standard Gaussian or a uniform distribution. We

furthermore segment R into NV local neighborhoods U;. We represent these with points ¢; in RY,
which we consider the centers of U;. We then “assign” a diffeomorphism to each such neighborhood
to construct local coordinate charts (U;, ¢;).

‘We now turn our attention to the generative process we seek to model. We begin by first sampling
from our base distribution P;; and then transform points with h—1:

u=h"'(1), whered~ Py (1)

We compute pairwise distances with neighborhood centers c; for all transformed points u, find the
closest nelghborhood center for each point and then map it onto the manifold with the corresponding

coordinate map ¢; * :U; — M:
x = ¢; ' (u), wherek = argmrn{Hu —¢)|3Y, and x € M C RP. (2)

3.2 Inference

The inference process for MCF is similar to established flow models. The generative model is
inverted in order to map the observed data distribution to the base distribution in latent space. For N
coordinate charts, the defined generative process induces a density on the embedded data manifold:

Zp )| det G (w)| 2 = p(u)|det Gr(w)| 2, 3)

where p(u) is the density in U C R?and G; = ( ¢_1)TJ 41 the metric tensor induced by the

embedding ¢i with the corresponding Jacobian matrix J -1 € R*P_ For ease of computation, we

define this density to be O when i # k in the sum in eq. 3 Where k is defined in eq. 2. The density in
U is a simple application of the typical change of variables and expands as usual:

p(w) = p(@)| det Jy-1 (8)| =" = p(h(w))| det i (w)]. 4)
Finally the complete log likelihood on the data manifold is given by:
1 _
log pam(x) = log p(h(dr(x))) + log | det Jp (dr(x))| — 3 log | det G(¢;, (%)) %)

While formally a coordinate chart is defined as a homeo- or diffeomorphic map, we can construct it
as an embedding, i.e. an injective map which preserves the topology of its domain and as such, it is
invertible with respect to its codomain. With regard to the embedded manifold, our injective maps
still function as coordinate charts. To construct such a map we append D — d zeros to u and map
to RP with ¢ 1. We denote this “augmented” variable by u’ = [ug, ..., up,0,...,0] and for the
remainder of the paper we will use this symbol to refer to this construction.



3.3 Introducing a lower bound to the density

While the determinant term in eq. 5 can be computed exactly, it involves evaluating the metric tensor
G, which is prohibitively expensive even for a modest number of dimensions, since computing the
determinant is an O(d®) operation. We introduce a lower bound to the log likelihood by replacing the
determinant with the trace of G which is an O(d) operation. A sketch of a proof follows. For a more
complete proof see Appendix A. Denoting the singular values of J,-1 by {s;}4_, we have:

o5 () = ogp(w) — g os et G ()| = logp(u) — 5 3o ©
Using Jensen’s inequality we can bound this density by:
log p(x) > log p(u) — flogzs = logp(u) — %log Tr[(Jy-1 () Jpr(w)]. ()
We can compute the trace efficiently using Hutchinson’s estimator [16] finally arriving at:
log p(x) > log p(u) — logE V[V Tsl13],  with v ~ N(0,Ip). 8)

Alternatively, since we construct ¢ : R? — M C RP such that u’ +— ¢(u’), we can apply a coarse-
grained approximation 1 log det |G(u)| ~ log det |.J4-1| of the transformed volume from U to M.

3.4 Training

To compute the likelihood of a data point x we must determine which coordinate chart needs to be
inverted to map x to the latent space U or inversely, which coordinate chart gave rise to x. This
information is not readily available, since we segment the latent space instead of the observation space.

One solution to this problem is by having an ‘oracle’, which accurately approximates the inverse of a
coordinate chart given a data point. Given a large and flexible enough family of mappings, the chart
inverses can be approximated reasonably well for all practical purposes. We use continuously indexed
flows (CIFs) [6] to act as an ‘oracle map’. Whereas typical flows represent a single diffeomorphism
x = f(u), CIFs represent a whole family of indexed diffeomorphisms {F'(u;a)}ac 4. The indices
are continuous and are represented by variables a € R%4. We note that a separate unrestricted
encoder network should also perform well in this task.

Brehmer and Cranmer [4] showed that for manifold probabilistic models it is desirable to split
training into a manifold learning phase, where the model learns to reconstruct the manifold, and
then a density learning phase, where the parameters of the probabilistic model are learned on the
converged reconstruction. This increases robustness of training with better convergence rates and
local optima. We follow the same approach, where in the reconstruction phase we train only the chart
maps, i.e. ¢ and ¢! on the following mean squared error loss.

e LN e st e 2
r= 7 2 I — o7 (@), ©)
i=1

where M is the number of samples in a batch. While in the manifold learning phase we train only the
h transform on the u coordinates by maximum likelihood. This way we restrict the evaluation of the
negative log likelihood on the learned manifold:

1 M
—a7 2 logp(w) = —*Zlogp ) (10)
=1

Beyond the advantages mentioned above, further benefits of this scheme include avoiding evaluating
the metric tensor during training (since the coordinate maps ¢ are trained on the reconstruction error
eq. 9) and also having a method to evaluate the likelihood of points close to the submanifold in the
observation space by first projecting them onto the manifold.



Target MCEF (ours) NMODE [21] NCPS [30]
Figure 4: Density estimation on the sphere S? visualized via the Mollweide projection.
Target MCEF (ours) NMODE [21] WHC [3

Figure 5: Density estimation on the hyperboloid H? projected on the Poincaré disk.

4 Related work

Learning the manifold structure. The work closest to ours is that of Brehmer and Cranmer
[4]. They, too, split training into two distinct phases. Initially they learn the data manifold via an
embedding g : M — RX, which can be considered a composition f o ¢ with ¢ : M — RP the
manifold chart and f : RP — R an injective map. Then they learn the density on the manifold via a
transformation  : RP? — RP. A crucial limitation is that the data manifold is assumed to be covered
by the single chart ¢, i.e. it is homeomorphic to Euclidean space. The model, thus, cannot represent
non-trivial manifolds. Lou et al. [21] proposed another closely related method treating the exponential
map as a chart. Since the exponential map exp : T, M — M is a local diffeomorphism between
the (Euclidean) tangent space at « and the manifold M, it is treated as a chart ¢ centered at x. They
learn a vector field in T, M by solving a local ODE for a short time interval [¢s, t.], which is mapped
to M by the expmap. They use the inverse chart, log : M — T, M, to map to the new tangent
space centered at ' and repeat the process. In principle, this scheme is general, but in practice, the
exponential and logarithmic maps are prohibitively expensive for high dimensional manifolds.

Flows on fixed manifolds. A related body of work pertains to flows on manifolds with a priori
known topological structure. Rezende et al. [30] construct flows defined on circles, tori and spheres
through projective transformations, as well as by adapting Euclidean models, such as autoregressive
flows [24] and spline flows [9, 23]. Flow-based models defined in hyperbolic space were presented
by Bose et al. [3], wherein two variants are proposed, which use parallel transport of vectors and
repeated calls to the exponential and logarithmic maps to map between the tangent bundle and the
manifold. A more general method of learning a flow on a manifold was proposed by Gemici et al.
[13], which assumes knowledge of a coordinate chart ¢ : M — R” and an embedding g : M — RX
with D < K. A limitation here is that M needs to be homeomorphic to R?, since it is described by
a single chart. When ¢ and g are learned we arrive at the models presented by Brehmer and Cranmer
[4]. We generalize this setting by learning transformations between patches of the manifold M and
subsets of Euclidean space R”.



Fires Earthquakes

MCF 0.46 £ 0.001 0.24 £0.004
NMODE —-0.78 £0.003 —0.93 +0.001
NCPS —1.14+£0.004 —1.32+0.002

Figure 6: Density estimation results on real world densities. Left: the learned density of the fires
and earthquakes geological data as distributions on a sphere. Green denotes training points, while
red denotes evaluation points. Right: kernel density estimation for samples drawn from the model.
Higher is better

5 Experiments

5.1 Qualitative experiments: Estimation of synthetic densities on 2D manifolds

For our first experiment we trained our model, denoted MCF, on synthetic densities on 2D manifolds
of well studied topology: the sphere S? and hyperbolic space H?2. Our baselines were chosen among
models that encode topological information as structural priors by way of a prescribed chart to
access the manifold and models that generally rely on the exponential map which still encodes local
topological information on the manifold. Of the former we chose the Wrapped Hyperboloid Coupling
(denoted by WHC) [3] for H? and the recursive circular spline flow (NCPS) [30] for S2. As for
the latter type of models, we chose neural manifold ODEs (NMODE) [21]. Results can be seen in
Figures 4 and 5. Our approach achieves improved performance over NCPS and WHC and performs
on par with NMODE at significantly reduced running times (see section 5.5). Complete experimental
details can be found in Appendix B

5.2 Qualitative experiments: Estimation of real world densities on 2D manifolds

We next examine a scenario of real world densities on a low dimensional manifold with known non-
Euclidean topology. Our datasets contain the locations of 2 types of natural disasters: earthquakes
[12] and fires [1]. These distributions are represented on the sphere S?. They are complex and
multimodal and as such, they are suitable for assessing our model’s usefulness in real world scenarios.
Figure 6 shows our model’s results. The density learned by our model, while relatively diffuse,
captures the modes and general patterns in the data and can serve as a modelling tool which can be
subject to further refinement by domain experts. As baselines, we trained NCPS and NMODE:s, the
same models we trained on spherical densities in section 5.1, but could not achieve satisfactory results.
We include them for completeness along with different spherical projections in Appendix C. For a
quantitative measure of the learned density, we drew samples from the model and evaluated their
density in the ambient space with kernel density estimation, using a Gaussian kernel with bandwidth
set to e = 0.1. For NCPS we used its evaluated density to construct an importance sampler for points
drawn uniformly on the sphere, since the model does not have a generative mode. Results are shown
in Figure 6.

5.3 Qualitative experiments: Lorenz attractor

Next we model densities residing on topologically complex manifolds. Following Brehmer and
Cranmer [4] we illustrate our model’s ability to learn the manifold structure and probability density
of the Lorenz system by training on points along sampled trajectories. The stable manifold of the
system’s trajectories is a genus 2, two-dimensional manifold embedded in R3. For the classical
parameter values, the Lorenz attractor admits a Sinai-Ruelle-Bowen (SRB) measure with support over
the surface of the system [33]. Informally, we can say that initial values “diffuse” over this surface.

To create an i.i.d. data set we generated 100 trajectories using the classical parameter values for the
system, then uniformly sampled positions x(t) € R? for ¢ € [0, 1000] along these. The procedure
for the creation of the data set matches [4]. Our model takes advantage of rational-quadratic spline
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Figure 7: The learned manifold and probability density for the Lorenz attractor system. Brighter
color represents areas of higher estimated density. Ground truth shows sampled trajectories from the
Lorenz system.

coupling transformations and models the manifold using four coordinate charts. More details on
architectures and hyperparameter settings can be found in Appendix D.

Fig. 7 shows the manifold and probability density learned by our model and M-flow. Parameterizing
the manifold with multiple charts yields visible advantages as our model is able to capture the
topology faithfully, without any artifacts, even though the surface is self-intersecting. The single
charted M-flow struggles to accurately reconstruct the manifold, as it tries to cover the surface with
a single coordinate chart, which implies an underlying Euclidean topology.

5.4 Quantitative experiments: Real world particle physics data

Our quantitative experiment focuses on the task of inferring the parameters of a proton-proton
collision process at the Large Hadron Collider. Raw data is usually in the order of millions, but
following common practice among domain experts, we use a vector of 40 features to represent
the data. The model of the process is based on a simulator which generates data x € R*° given
parameters @ € R? according to an implicit probability distribution p(x|@). From domain experts we
know that the data resides in a 14-dimensional manifold embedded in R*°. Given the observations x
and parameters 6, our task is to infer the posterior distribution over the parameters p(8|x). Thus, we
train our model as a conditional density estimator to learn the simulator likelihood function.

Our baselines include a Euclidean flow based on rational quadratic spline transformations [9] (RQ-
Flow), the M-flow model, as well as an M-flow variant with an unrestricted encoder denoted by
M -flow, both of which were proposed by [4]. Furthermore, [4] introduced versions of the models
trained with the SCANDAL method [5], which improves inference. All baselines are composed of 35
coupling layers, interspersed with invertible, LU-decomposed linear transformations. The RQ-Flow
is trained with maximum likelihood, while the M-flow models are trained in two phases, as in [4]
corresponding to the manifold learning phase and the density estimation phase. Our model (MCF) is
composed of 12 coupling layers, interspersed with invertible, LU-decomposed linear transformations
and trained similarly to the M-flow variants. We furthermore introduce a variant of MCF, which
we fine-tune with early stopping on both phases of training. For further details on architectures and
hyperparameters, see Appendix E.

We evaluate our model through a series of metrics. First, we investigate the generative capabilities of
all models by evaluating a series of tests on model samples. These “closure tests” are a weighted
sum of individual constraints encoding relationships (derived from domain knowledge) between
dimensions in the observed vector, taking values in [0, 1], where the closer the value is to 0 the
higher the quality of the samples. Then, we project test samples on the learned manifold and



Model sample closure ~ mean reconstruction error  log posterior

RQ-Flow 0.0019 =+ 0.0001 - -3.94 £ 0.87
RQ-Flow (SCANDAL) 0.0565 £ 0.0059 - -0.49 £0.09
M-flow 0.0045 £ 0.0004 0.012 £ 0.001 -1.71 £0.30
M-flow (SCANDAL)  0.0045 + 0.0004 0.011 £ 0.001 0.11 £ 0.04
M-flow 0.0046 £ 0.0002 0.029 +£ 0.001 -1.44 £0.34
M.-flow (SCANDAL) 0.0291 +£ 0.0010 0.03 + 0.002 0.14 + 0.09
MCEF [ours] 0.031 £ 0.0024 0.0015 £ 0.0005 -1.02 £0.14

MCEF (fine-tuned) [ours]  0.084 £ 0.016 0.009 £ 0.002 0.38 +0.14

Table 1: Quantitative results on the LHC data. Sample quality is measured by sample closure (lower
is better), mean reconstruction error is measured in the ambient/observation space and indicates
a model’s manifold learning capability (lower is better), while log-posterior score log p(6|Xobs)
measures quality of inference (higher is better). M-flow was proposed by [4], RQ-Flow by [9], while
MCEF denotes our approach. Baseline results from [4].

measure the reconstruction error, corresponding to the mean squared L2-norm measured in the
ambient/observation space. This gives us a measure for the manifold learning capabilities of the
models. Finally, we measure the quality of the log posterior inference. Given a set of 20 observed
samples Xops ~ p(x]|0*) we use all models to evaluate the likelihood in a Metropolis-Hastings
MCMC sampler to generate posterior samples § ~ p(6|xops). To evaluate the posterior, we then use
kernel density estimation with a Gaussian kernel. We evaluate all models for three different ground
truth parameter points 8. For more details on the experimental setting of the task, see [4].

Table 1 summarizes results for the the Large Hadron Collider data. While the RQ-Flow learns a good
sampler for the observed data judging by the closure test score, it does not estimate the density well,
as evidenced by the low log posterior estimate. Naive maximum likelihood does not take manifold
topology into account, nor does it incentivize models to learn the shape of the embedded data
submanifold, rather it relies on models with enough capacity to transform the data in the observation
space to a base distribution using invertible maps. To the extent the model manages to learn such
a map, this will result in an adequate data sampler but might concurrently lead to overestimating
the density of off-the-manifold points. Conversely, models that learn the manifold, project points
off-the-manifold onto it, which might yield more accurate density estimates. This is suggested by
the results as models that also learn the manifold, result in much better density estimators. The
single charted M-flow variants achieve better estimates than the RQ-Flow, albeit with worse sample
quality. The fine-tuned (early-stopped) variant of our model yields comparable results in the manifold
learning task. It results in much better density estimates however, managing to capture a more
complex topology than what is suggested by a single chart covering the whole manifold, namely
Euclidean topology. Models trained with the SCANDAL scheme invariably trade sample quality off
for better density estimates.

5.5 Running times

Modelling the topology of the data manifold yields tangible benefits regarding computation time.
Since learning the topology of Euclidean patches is easier for a model, our approach generally uses
fewer flow layers and parameters than most baselines. Furthermore, with the exception of NCPS and
WHC for the synthetic data sets, convergence times are consistently faster than all other baselines even
when early stopping is used. Table 2 shows the wallclock times of all models. For the experiments
on section 5.1 all models were trained on the CPU since runtimes were significantly faster than on
GPUs. For all other experiments all models were trained on a Titan X (Pascal) GPU. Further details
can be found in Appendix F.

6 Conclusion

We have presented Multi-chart flows, a flow-based generative model for modelling data distributions
on non-Euclidean manifolds. Recent works in this direction either encode the topology of the
target manifold in the model’s architecture, rely on operations that do not scale to moderate and
high dimensions or can, in principle, only learn Euclidean manifolds. In contrast, our model can



Datasets Models

MCF (ours) NMODE NCPS

Wrapped normals (S?) | 7.21+0.30 54.28 £4.01  2.69 +0.42
Checkerboard (S?) 3.78£0.19 50.81+£274 8.13£0.82

MCEF (ours) NMODE WHC
Five gaussians (H?) 250+0.05 6.48£2.89 0.02£0.0028
Checkerboard (H?) 231+£0.17 50.88+9.29 0.01 +£0.0014

MCEF (ours) M-flow
Lorenz attractor 12.05 £ 0.75 35.84 +0.91
MCEF (ours) M-flow RQ-Flow

Large Hadron Collider | 12.04 £ 0.08 96.61 +1.93 99.74 £4.71

Table 2: Model wallclock time per dataset (in hours). Computed over 3 training runs with independent
initializations.

generalize to non-Euclidean manifolds, learning both their shape and probability densities residing
on them. Some of the advantages of our model include faster convergence times and better optima
compared to most Euclidean baselines. Shorter convergence times are not surprising since our model
does not need a lot of capacity to learn subsets of the data manifold that have simpler (Euclidean)
topology and optimization is also easier. Models employing ODEs and making use of local geometric
information match and in cases, surpass the performance of our model. This is expected since
geometric operations respect manifold topology, and therefore provide a strong inductive bias. Should
the bias of these models, however, be incorrect it is detrimental to performance as the bias is served as
a hard constraint. Furthermore, these models are inherently at a disadvantage regarding computational
cost, since they rely on sequential solvers and do not take full advantage of parallelization. Against
models with structural topological priors our model is slower both in wall-clock and convergence
time but achieves better optima since it does not rely on classical projection techniques (such as the
cylindrical projection as in the case of NCPS [30]) which do not preserve topology.

Limitations. Our model relies on rational quadratic (RQ) coupling layers and while we consider
the fact that our method is transformation-“‘agnostic” an advantage, it comes with its own challenges.
Specifically, RQ couplings yield unstable log-determinants if left unchecked. In our experiments
we have tried various strategies for mitigating this, such as penalizing and clipping gradients, as
well as penalizing large log-determinants. All of these methods resulted in similar behaviour and we
generally opted for the fastest one. Furthermore, an assumption we make is that the underlying data
follows a smooth manifold, which might not necessarily be true. In theory our model would have
difficulty modelling a manifold with disconnected components, although in practice it finds a good
smooth approximation as evidenced by the checkerboard synthetic densities in section 5.1. Moreover,
in the LHC experiments we observed the paradoxical phenomenon where higher sample quality
correlates with lower posterior estimates and vice versa. SCANDAL training alleviated this, but it
still trades sample quality off for better posterior estimates. This is certainly not new or exclusive
to our model but we could not provide a convincing explanation in this work. Finally, quantitative
comparisons with other models become harder as different chart parameterizations of manifolds
result in different units for the estimated log-likelihood.

Broader societal impact. While our model is a more fundamental contribution, it is general enough
to be used in more applied scenarios. Specifically, it can be used for learning image manifolds and
indeed, we wish to iterate in this direction in future work. While we do not expect our method
to immediately perform on par with state-of-the-art methods typically used in the generation of
malicious content, it will be part of the broader literature. Given runtime results our method provides
a road map for reducing computation times, and by extension, carbon footprints not just for flow
models but also deep learning in general. We furthermore showed in our experiments that our
approach can provide other disciplines with tools of exploratory and probabilistic analyses for domain
specific problems.
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A Appendix

A Proof of the lower bound on the data manifold log likelihood

Proposition 1 The log likelihood on the data manifold log p(x) = log p(u) — 1 log det |G (u)| is
bounded from below by L = log p(u) — % log Tr(JJ,1 (u)Jy-1(u)).

Proof Denoting the singular values of a matrix by s;, we have:

1 1

izl:logsfgglogzi:s? (1)
—1210g32>—110g252 (12)

2 - T2 - ‘

1
log p(u ffZIOgs > log p(u filogz.sz (13)

1
log p(x) > log p(u —§log232 (14)

Furthermore for a matrix A, we have:
Tr(ATA) =Tr(UTSTVVTISU) =Tr(S"SUUT) = Tr(2TY) 252 (15)

with U, V orthogonal matrices and > a diagonal matrix containing the singular values of A.

Thus, eq. 14 becomes:

1
log p(x) > log p(u) — 3 log Tr(J;,l(u)le(u)) =L (16)
a7

Using Hutchinson’s estimator we can compute the trace efficiently. With Jy—1 € RP*d and

p(v) = N(0, Ip):
1
L ~logp(u) — 3 logEpv) {VTJ;—ﬂ(u)le(u)v} (18)

1
= logp(u) = 5 log By [|Iv7 J4[Z] (19)

B Details on synthetic 2D experiments

Datasets For all target densities in figures 4 and 5, we generated 50000 points for the train set and
10000 points for the validation set. For details on generating the datasets, please see [21].

Architectures Table 3 shows the architecture details for MCFE. All flow layers are implemented as
rational quadratic coupling flows. In all cases, our base distribution is a standard normal in the latent
space U.

Baseline implementations are provided by Lou et al. [21] in https://github.com/CUAI/
Neural-Manifold-Ordinary-Differential-Equations.

Training To train MCF we split training in a manifold learning and a maximum likelihood phase
for all datasets. During the former we train for 150 epochs, while during the latter we train for 500
epochs. We used a learning rate of 2- 10~# and a batch size of 128. During reconstruction, to stabilize
training, we add a regularization term a = (log det Jy(x) + log det J,-1(u))? to the reconstruction
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Hyperparameters Datasets
Checkerboard (S?)  Four wrapped Normals (S?)
Charts 5 4
Chart flow layers 2 6
Base flow layers 2 6
Chart bins 32 6
Base bins 32 6
Spline range [-3, 3] [-6, 6]
Linear transform No random permutation
MLP layers (& units) 2 (100) 2 (64)
Activation ReLU tanh
Checkerboard (H?) Five Gaussians (H?)
Charts 2 2
Chart flow layers 4 2
Base flow layers 2 2
Chart bins 12 6
Base bins 12 32
Spline range [—4,4] [—4, 4]
Linear transform No No
MLP layers (& units) 2 (64) 2 (100)
Activation ReLLU RelLLU

Table 3: Architecture details for MCF on all synthetic datasets.

loss, which we multiply by 0.5. During the maximum likelihood phase we clip the gradient norm to
1.

To train NCPS we used a learning rate of 10~3 and a batch size of 200. For the spherical checkerboard
dataset we train for 10000 epochs, while for the four wrapped normals dataset we train for 5000
epochs.

Training WHC proved to be very challenging and we used big batch sizes and slower learning rates in
an attempt to stabilize training. As such, we used a batch size of 500 and a learning rate of 3 - 10™4,
Even so, training still diverged after a number of epochs, so we checkpoint the model and show the
best obtained results in the main text.

For NMODE, on four wrapped normals we used a batch size of 200 and a learning rate of 1072,
training for 600 epochs. For the spherical checkerboard we used a batch size of 200 and a learning
rate of 1072, training for 700 epochs. For five gaussians we train for 500 epochs, using a learning
rate of 10~ and a batch size of 200. Finally, for hyperbolic checkerboard we train for 3000 epochs,
using a learning rate of 10~2 and a batch size of 200.

All models are trained with the Adam optimizer [19]. In general, we chose baseline hyperparameters
such that we can have the fastest possible convergence without sacrificing training stability. Please
note however that this is a different training setting to the one used for NMODE and the other
baselines by Lou et al. [21], as they generated a random batch of points on the manifold for every
iteration, whereas in our case we generate a fixed, modest amount of training points and iterate on
those. We think that while this is a much harder training scenario, it’s also a more realistic one.

C Details on real world 2D experiments

C.1 Experimental details

MCF For both datasets (fires and earthquakes) our model uses 3 coordinate charts to parameterize
the manifold. The chart centers are sampled from a standard normal distribution in the latent space U.
The chart models ¢ and base model h comprise 2 flow layers each. These are implemented as rational
quadratic coupling layers. We use no linear transformation between the flow layers but alternate
the masking of the vectors passing through the flow as is typically done when using flows on low
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dimensional vector data. We use 5 bins for the ¢ and h maps in the range [-4, 4]. Each coupling
transform is parameterized by an MLP with 2 hidden layers. Each hidden layer consists of 50 ReLU
units. The dimensionality of the index variable for CIF is 2. Our base distribution is a standard
normal in the latent space U.

Baselines The architectures of both the NMODE and NCPS baselines are the same as in the
synthetic datasets case.

Datasets The fires dataset consists of 66444 data points, while the earthquakes dataset consists of
5883 data points at the time of writing. We shuffle both datasets and keep 80% for the train sets and
20% for the validation sets.

Training on fires To train our model (MCF) we split training in two phases: manifold learning and
maximum likelihood. During the former we train the model for 200 epochs, while during the latter
we train for 500 epochs. We used the Adam optimizer with a learning rate of 3 - 107> and a batch
size of 200. During maximum likelihood training we clipped the gradient norm to 2.

We train NCPS with the Adam optimizer for 3000 epochs with a learning rate of 10~3 and a batch
size of 200.

We train NMODE with the Adam optimizer for 600 epochs with a learning rate 3 - 10~ and a batch
size of 500.

Training on earthquakes Once again, we train MCF with split training as before. We use 1000
epochs for the manifold learning phase and 3000 epochs for the maximum likelihood phase. We
use the Adam optimizer with a learning rate of 3 - 10~° and a batch size of 200. During maximum
likelihood training we clipped the gradient norm to 2.

We train NCPS with the Adam optimizer for 10000 epochs with a learning rate of 10~ and a batch
size of 200.

We train NMODE with the Adam optimizer for 10000 epochs with a learning rate 3 - 10~* and a
batch size of 500.

For all baselines in both datasets we decay the learning rate every 1/3d of the total epochs with a
scaling factor of 0.1. We found that training was difficult for all models. The hardest model to train
was NMODE even though results for both baselines are generally unsatisfactory (see figure 8). Given
this, in our choice of hyperparameters we attempted to strike a balance between fast convergence
and stable gradient updates. Furthermore, we checkpoint the models to retain the best performing
parameter configuration according to validation results. Finally, regarding MCEF, for both datasets we
add a regularization term a = (log det Jy(x) + log det J,-1(u))? to the reconstruction loss, which
we multiply by 0.3 to stabilize training.

D Details on the Lorenz experiment

MCF Our model uses 4 coordinate charts to parameterize the manifold. The chart centers are
sampled from a standard normal distribution in the latent space U. The chart models ¢ comprise
3 flow layers, while the base model i comprises 2 flow layers. These are implemented as rational
quadratic coupling layers, interspersed with random feature permutations. We use 5 bins for both the
¢ and h maps in the range [—6, 6]. Each coupling transform is parameterized by a residual network
with 2 residual blocks and 2 hidden layers per block. Each hidden layer consists of 64 ReLU units.
The dimensionality of the index variable for CIF is 2. Our base distribution is a standard normal in
the latent space U

M-flow For M-flow we reproduced the reference architecture given by Brehmer and Cranmer [4].
Both the chart model and the base model comprise 5 rational quadratic coupling layers, interspersed
with random feature permutations. We use 5 bins for both maps in the range [-3, 3]. Each coupling
transform is parameterized by a residual network with 2 residual blocks and 2 hidden layers per block.
Each hidden layer consists of 100 ReLU units.
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Earthquakes

Figure 8: Density estimation results on the earthquakes and fires data. Robinson projection. Top row:
MCF (ours), middle row: NMODE, bottom row: NCPS

Training Both models were trained on a dataset of 10° samples with split manifold learning
and maximum likelihood training phases. The AdamW optimizer [20] was used in both cases
with a learning rate of 3 - 10~%, cosine annealing and weight decay of 10~%. We use a batch
size of 100. Initially we used 50 epochs for the manifold learning phase and another 50 epochs
and for the maximum likelihood phase but we noticed that our model consistently converged in
about 1/5th of the available epochs for both phases so ultimately we used only 15 epochs for
each training phase for MCF. We checkpoint both models to retain the best performing parameter
configuration according to validation results. To stabilize training we add a regularization term
a = (log det J4(x) +log det J,-1(u))? to the reconstruction loss, which we multiply by 0.3. Finally
we clip the gradient norm to 2 during the maximum likelihood phase.

E Details on the Large Hadron Collider experiment

For details on dataset generation, as well as an explanation on the closure tests we refer the interested
reader to [4]. The dataset itself can be found in https://drive.google.com/drive/folders/
13x81E08--L8-0RoN_QTUbSC_fRBAdARPT.

MCF Our model uses 4 coordinate charts to parameterize the manifold. The chart centers are
sampled from a standard normal distribution in the latent space U. The chart models ¢ comprise 4
flow layers, while the base model h comprises 12 layers. These are implemented as rational quadratic
coupling layers, interspersed with LU-decomposed invertible linear transformations. We use 11 bins
for both maps in the range [-10, 10]. Each coupling transform is parameterized by a residual network
with 2 residual blocks of 2 hidden layers per block. Each hidden layer consists of 100 ReLU units.
The dimensionality of the index variable for CIF is 14. Our base distribution is a standard normal in
the latent space U
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Baselines To estimate baseline runtimes we run both RQ-flow and M-flow but we note that baseline
results are taken from the paper itself. Both baselines are composed of 35 rational quadratic coupling
layers, interspersed with LU-decomposed invertible linear transformations. For M-flow, the chart
model ¢ uses 20 layers and the base model / uses 15 layers. Each coupling transform is parameterized
by a residual network with 2 residual blocks of 2 hidden layers per block. Each hidden layer consists
of 100 ReLU units. All runtime estimations are based on the implementation provided by Brehmer and
Cranmer [4], which can be found in https://github.com/johannbrehmer/manifold-flow.

Training We trained our model on the same dataset as [4], using 10° samples. We used the AdamW
optimizer with a learning rate of 3 - 10~%, cosine annealing and a weight decay of 10~°. We split
our training in two phases, manifold learning and maximum likelihood. We do not multiply terms in
our loss functions with coefficients throughout training as Brehmer and Cranmer [4] do because we
found this often destabilized training. In general, we found that our model converges to better optima
when trained for fewer iterations, so our fine-tuned version of the model is only trained for 20 epochs
with 5 epochs devoted to manifold reconstruction and 15 epochs to density estimation.

Evaluation Our evaluation procedure is identical to [4]. In brief, we generate 3 different datasets
using 3 different parameter points ¢; = (0,0), 602 = (0.5,0) and 5 = (—1, —1). Each dataset has
15 i.i.d. samples. For each model and each observed dataset, we generate four MCMC chains of
length 750 each, with a Gaussian proposal distribution with mean step size 0.15 and a burn in of 100
steps. Then we obtain kernel density estimates of the log-posterior for each of the 3 parameter points
and report the average value in table 1. Like Brehmer and Cranmer [4] we train 5 instances of our
model with independent initializations, remove the top and bottom value and report the mean over
the remaining runs.

F Details on Runtimes

Tables 4, 5 & 6 show additional (per epoch) runtime measurements for all models and tasks. NCPS
and WHC are faster than our model in per epoch runtimes but converge to worse performing minima.
Our construction is generally faster than most baselines and while it is matched in pure per epoch
runtimes, it often needs much fewer iterations to converge (as in the case of the Lorenz attractor and
the two hyperbolic datasets).

Sphere S?
Dataset Models
MCF NMODE NCPS
Wrapped normals | 42.20 £4.30 225+0.70 3.14+0.20
Checkerboard 20.17+1.50 230+£5.60 2.840.60

Hyperboloid H?
Dataset Models
MCF NMODE WHC

Five gaussians 14.62£0.72 15+ 1.75 7+0.15
Checkerboard 13.86 £2.24 20£2.15 8.5+0.30

Table 4: Per epoch runtimes in seconds for synthetic datasets. Measured over 500 epochs.

\ MCF M-flow
29.09+1.8 30.00£0.7
287+2.3 29.844+2.0

Reconstruction phase
Density phase

Table 5: Per epoch runtimes in minutes for the Lorenz attractor data, measured over 100 epochs.

|  MCF M-flow RQ-Flow
39.09+1.8 117.8+4.7 -
32.7+£2.3 110.53 £3.9 121.3+£5.5

Reconstruction phase
Density phase

Table 6: Per epoch runtimes in minutes for the Large Hadron Collider data, measured over 50 epochs.
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