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This extended abstract summarizes work presented at CVPR 2015 [1].
Standard statistics and machine learning tools require input data residing in a Eu-

clidean space. However, many types of data are more faithfully represented in general
nonlinear metric spaces or Riemannian manifolds, e.g. shapes, symmetric positive def-
inite matrices, human poses or graphs. The underlying metric space captures domain
specific knowledge, e.g. non-linear constraints, which is available a priori. The intrinsic
geodesic metric encodes this knowledge, often leading to improved statistical models.

A seemingly straightforward approach to statistics in metric spaces is to use kernel
methods [3], designing exponential kernels:

k(x, y) = exp (−λ(d(x, y))q) , λ, q > 0, (1)

which only rely on geodesic distances d(x, y) between observations. For q = 2 this
gives a geodesic generalization of the Gaussian kernel, and q = 1 gives the geodesic
Laplacian kernel. While this idea has an appealing similarity to familiar Euclidean ker-
nel methods, we show that it is highly limited if the metric space is curved, see Table 1.

Theorem 1 For a geodesic metric space (X, d), assume that k(x, y) = exp(−λd2(x, y))
is positive definite (PD) for all λ > 0. Then (X, d) is flat in the sense of Alexandrov.

This is a negative result, as most metric spaces of interest are not flat. As a conse-
quence, we show that geodesic Gaussian kernels on Riemannian manifolds are PD
for all λ > 0 only if the Riemannian manifold is Euclidean.

Theorem 2 Let M be a complete, smooth Riemannian manifold with its associated
geodesic distance metric d. Assume, moreover, that k(x, y) = exp(−λd2(x, y)) is PD
for all λ > 0. Then the Riemannian manifold M is isometric to a Euclidean space.

Do these negative results depend on the choice q = 2 in (1)?

Extends to general
Kernel Metric spaces Riemannian manifolds
Gaussian (q = 2) No (only if flat) No (only if Euclidean)
Laplacian (q = 1) Yes, iff metric is CND Yes, iff metric is CND
Geodesic exp. (q > 2) Not known No

Table 1. Overview of results: For a geodesic metric, the geodesic exponential kernel (1) is only
positive definite for all λ > 0 for
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Space Distance metric Geodesic Euclidean? CND PD Gaussian PD Laplacian
metric? metric? metric? kernel? kernel?

Rn Euclidean metric X X X X X
Rn, n > 2 lq-norm ‖ · ‖q , q > 2 X ÷ ÷ ÷ ÷
Sphere Sn classical intrinsic X ÷ X ÷ X

Real projective space Pn(R) classical intrinsic X ÷ ÷ ÷ ÷
Grassmannian classical intrinsic X ÷ ÷ ÷ ÷

Sym+
d Frobenius X X X X X

Sym+
d Log-Euclidean X X X X X

Sym+
d Affine invariant X ÷ ÷ ÷ ÷

Sym+
d Fisher information metric X ÷ ÷ ÷ ÷

Hyperbolic space Hn classical intrinsic X ÷ X ÷ X
1-dimensional normal distributions Fisher information metric X ÷ X ÷ X

Metric trees tree metric X ÷ X ÷ X
Geometric graphs (e.g. kNN) shortest path distance X ÷ ÷ ÷ ÷

Strings string edit distance X ÷ ÷ ÷ ÷
Trees, graphs tree/graph edit distance X ÷ ÷ ÷ ÷

Table 2. For a set of popular data spaces and metrics, we record whether the metric is a geodesic
metric, whether it is a Euclidean metric, whether it is a CND metric, and whether its correspond-
ing Gaussian and Laplacian kernels are PD.

Theorem 3 Let M be a Riemannian manifold with its associated geodesic distance
metric d, and let q > 2. Then there is some λ > 0 so that the kernel (1) is not PD.

The existence of a λ > 0 such that the kernel is not PD may seem innocent; however,
as a consequence, the kernel bandwidth parameter cannot be learned. In contrast, the
choice q = 1 in (1), giving a geodesic Laplacian kernel, leads to a more positive result:

Theorem 4 i) The geodesic distance d in a geodesic metric space (X, d) is condi-
tionally negative definite (CND) if and only if the corresponding geodesic Lapla-
cian kernel is PD for all λ > 0.

ii) In this case, the square root d√ (x, y) =
√
d(x, y) is also a distance metric, and

(X, d√ ) can be isometrically embedded as a metric space into a Hilbert space H .
iii) The square root metric d√ is not a geodesic metric, and d√ corresponds to the

chordal metric in H , not the intrinsic metric on the image of X in H .

The proofs rely on Schönberg’s classical theorem [4], metric geometry and recent
results on conditionally negative definite kernels [2]. Theoretical and empirical results
on PD’ness of geodesic exponential kernels are summarized in Table 2.
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