
A Geometric take on Metric Learning

Søren Hauberg
MPI for Intelligent Systems

Tübingen, Germany
soren.hauberg@tue.mpg.de

Oren Freifeld
Brown University
Providence, US

freifeld@dam.brown.edu

Michael J. Black
MPI for Intelligent Systems

Tübingen, Germany
black@tue.mpg.de

Abstract

Multi-metric learning techniques learn local metric tensors in different parts of a
feature space. With such an approach, even simple classifiers can be competitive
with the state-of-the-art because the distance measure locally adapts to the struc-
ture of the data. The learned distance measure is, however, non-metric, which has
prevented multi-metric learning from generalizing to tasks such as dimensional-
ity reduction and regression in a principled way. We prove that, with appropriate
changes, multi-metric learning corresponds to learning the structure of a Rieman-
nian manifold. We then show that this structure gives us a principled way to
perform dimensionality reduction and regression according to the learned metrics.
Algorithmically, we provide the first practical algorithm for computing geodesics
according to the learned metrics, as well as algorithms for computing exponential
and logarithmic maps on the Riemannian manifold. Together, these tools let many
Euclidean algorithms take advantage of multi-metric learning. We illustrate the
approach on regression and dimensionality reduction tasks that involve predicting
measurements of the human body from shape data.

1 Learning and Computing Distances

Statistics relies on measuring distances. When the Euclidean metric is insufficient, as is the case in
many real problems, standard methods break down. This is a key motivation behind metric learning,
which strives to learn good distance measures from data. In the most simple scenarios a single
metric tensor is learned, but in recent years, several methods have proposed learning multiple metric
tensors, such that different distance measures are applied in different parts of the feature space. This
has proven to be a very powerful approach for classification tasks [1, 2], but the approach has not
generalized to other tasks. Here we consider the generalization of Principal Component Analysis
(PCA) and linear regression; see Fig. 1 for an illustration of our approach. The main problem with
generalizing multi-metric learning is that it is based on assumptions that make the feature space both
non-smooth and non-metric. Specifically, it is often assumed that straight lines form geodesic curves
and that the metric tensor stays constant along these lines. These assumptions are made because it
is believed that computing the actual geodesics is intractable, requiring a discretization of the entire
feature space [3]. We solve these problems by smoothing the transitions between different metric
tensors, which ensures a metric space where geodesics can be computed.

In this paper, we consider the scenario where the metric tensor at a given point in feature space is
defined as the weighted average of a set of learned metric tensors. In this model, we prove that the
feature space becomes a chart for a Riemannian manifold. This ensures a metric feature space, i.e.

dist(x,y) = 0 ⇔ x = y ,

dist(x,y) = dist(y,x) (symmetry),
dist(x, z) ≤ dist(x,y) + dist(y, z) (triangle inequality).

(1)

To compute statistics according to the learned metric, we need to be able to compute distances,
which implies that we need to compute geodesics. Based on the observation that geodesics are

1



(a) Local Metrics & Geodesics (b) Tangent Space Representation (c) First Principal Geodesic

Figure 1: Illustration of Principal Geodesic Analysis. (a) Geodesics are computed between the
mean and each data point. (b) Data is mapped to the Euclidean tangent space and the first principal
component is computed. (c) The principal component is mapped back to the feature space.

smooth curves in Riemannian spaces, we derive an algorithm for computing geodesics that only
requires a discretization of the geodesic rather than the entire feature space. Furthermore, we show
how to compute the exponential and logarithmic maps of the manifold. With this we can map any
point back and forth between a Euclidean tangent space and the manifold. This gives us a general
strategy for incorporating the learned metric tensors in many Euclidean algorithms: map the data to
the tangent of the manifold, perform the Euclidean analysis and map the results back to the manifold.

Before deriving the algorithms (Sec. 3) we set the scene by an analysis of the shortcomings of current
state-of-the-art methods (Sec. 2), which motivate our final model. The model is general and can be
used for many problems. Here we illustrate it with several challenging problems in 3D body shape
modeling and analysis (Sec. 4). All proofs can be found in the supplementary material along with
algorithmic details and further experimental results.

2 Background and Related Work

Single-metric learning learns a metric tensor, M, such that distances are measured as

dist2(xi,xj) = ‖xi − xj‖2M ≡ (xi − xj)
TM(xi − xj) , (2)

where M is a symmetric and positive definite D ×D matrix. Classic approaches for finding such a
metric tensor include PCA, where the metric is given by the inverse covariance matrix of the training
data; and linear discriminant analysis (LDA), where the metric tensor is M = S−1

W SBS
−1
W , with Sw

and SB being the within class scatter and the between class scatter respectively [9].

A more recent approach tries to learn a metric tensor from triplets of data points (xi,xj ,xk), where
the metric should obey the constraint that dist(xi,xj) < dist(xi,xk). Here the constraints are often
chosen such that xi and xj belong to the same class, while xi and xk do not. Various relaxed ver-
sions of this idea have been suggested such that the metric can be learned by solving a semi-definite
or a quadratic program [1, 2, 4–8]. Among the most popular approaches is the Large Margin Near-
est Neighbor (LMNN) classifier [5], which finds a linear transformation that satisfies local distance
constraints, making the approach suitable for multi-modal classes.

For many problems, a single global metric tensor is not enough, which motivates learning several
local metric tensors. The classic work by Hastie and Tibshirani [9] advocates locally learning metric
tensors according to LDA and using these as part of a kNN classifier. In a somewhat similar fashion,
Weinberger and Saul [5] cluster the training data and learn a separate metric tensor for each cluster
using LMNN. A more extreme point of view was taken by Frome et al. [1, 2], who learn a diagonal
metric tensor for every point in the training set, such that distance rankings are preserved. Similarly,
Malisiewicz and Efros [6] find a diagonal metric tensor for each training point such that the distance
to a subset of the training data from the same class is kept small.

Once a set of metric tensors {M1, . . . ,MR} has been learned, the distance dist(a,b) is measured
according to (2) where “the nearest” metric tensor is used, i.e.

M(x) =

R∑
r=1

w̃r(x)∑
j w̃j(x)

Mr , where w̃r(x) =

{
1 ‖x− xr‖2Mr

≤ ‖x− xj‖2Mj
,∀j

0 otherwise
, (3)

where x is either a or b depending on the algorithm. Note that this gives a non-metric distance
function as it is not symmetric. To derive this equation, it is necessary to assume that 1) geodesics

2



 

 

−8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

Assumed Geodesics

Location of Metric Tensors

Test Points

 

 

−8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

Actual Geodesics

Location of Metric Tensors

Test Points

 

 

−8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

Riemannian Geodesics

Location of Metric Tensors

Test Points

(a) (b) (c) (d)

Figure 2: (a)–(b) An illustrative example where straight lines do not form geodesics and where
the metric tensor does not stay constant along lines; see text for details. The background color
is proportional to the trace of the metric tensor, such that light grey corresponds to regions where
paths are short (M1), and dark grey corresponds to regions they are long (M2). (c) The suggested
geometric model along with the geodesics. Again, background colour is proportional to the trace
of the metric tensor; the colour scale is the same is used in (a) and (b). (d) An illustration of the
exponential and logarithmic maps.

form straight lines, and 2) the metric tensor stays constant along these lines [3]. Both assumptions
are problematic, which we illustrate with a simple example in Fig. 2a–c.

Assume we are given two metric tensors M1 = 2I and M2 = I positioned at x1 = (2, 2)T and
x2 = (4, 4)T respectively. This gives rise to two regions in feature space in which x1 is nearest
in the first and x2 is nearest in the second, according to (3). This is illustrated in Fig. 2a. In the
same figure, we also show the assumed straight-line geodesics between selected points in space. As
can be seen, two of the lines goes through both regions, such that the assumption of constant metric
tensors along the line is violated. Hence, it would seem natural to measure the length of the line,
by adding the length of the line segments which pass through the different regions of feature space.
This was suggested by Ramanan and Baker [3] who also proposed a polynomial time algorithm for
measuring these line lengths. This gives a symmetric distance function.

Properly computing line lengths according to the local metrics is, however, not enough to ensure that
the distance function is metric. As can be seen in Fig. 2a the straight line does not form a geodesic
as a shorter path can be found by circumventing the region with the “expensive” metric tensor M1

as illustrated in Fig. 2b. This issue makes it trivial to construct cases where the triangle inequality is
violated, which again makes the line length measure non-metric.

In summary, if we want a metric feature space, we can neither assume that geodesics are straight
lines nor that the metric tensor stays constant along such lines. In practice, good results have been
reported using (3) [1,3,5], so it seems obvious to ask: is metricity required? For kNN classifiers this
does not appear to be the case, with many successes based on dissimilarities rather than distances
[10]. We, however, want to generalize PCA and linear regression, which both seek to minimize the
reconstruction error of points projected onto a subspace. As the notion of projection is hard to define
sensibly in non-metric spaces, we consider metricity essential.

In order to build a model with a metric feature space, we change the weights in (3) to be smooth
functions. This impose a well-behaved geometric structure on the feature space, which we take
advantage of in order to perform statistical analysis according to the learned metrics. However, first
we review the basics of Riemannian geometry as this provides the theoretical foundation of our
work.

2.1 Geodesics and Riemannian Geometry

We start by defining Riemannian manifolds, which intuitively are smoothly curved spaces equipped
with an inner product. Formally, they are smooth manifolds endowed with a Riemannian metric [11]:

Definition A Riemannian metric M on a manifold M is a smoothly varying inner product
< a,b >x= aTM(x)b in the tangent space TxM of each point x ∈M .

3



Often Riemannian manifolds are represented by a chart; i.e. a parameter space for the curved sur-
face. An example chart is the spherical coordinate system often used to represent spheres. While
such charts are often flat spaces, the curvature of the manifold arises from the smooth changes in the
metric.

On a Riemannian manifold M, the length of a smooth curve c : [0, 1] → M is defined as the
integral of the norm of the tangent vector (interpreted as speed) along the curve:

Length(c) =

∫ 1

0

‖c′(λ)‖M(c(λ))dλ =

∫ 1

0

√
c′(λ)TM(c(λ))c′(λ)dλ , (4)

where c′ denotes the derivative of c and M(c(λ)) is the metric tensor at c(λ). A geodesic curve is
then a length-minimizing curve connecting two given points x and y, i.e.

cgeo = argmin
c

(
Length(c)

)
with c(0) = x and c(1) = y . (5)

The distance between x and y is defined as the length of the geodesic.

Given a tangent vector v ∈ TxM, there exists a unique geodesic cv(t) with initial velocity v at x.
The Riemannian exponential map, Expx, maps v to a point on the manifold along the geodesic cv
at t = 1. This mapping preserves distances such that dist(cv(0), cv(1)) = ‖v‖. The inverse of
the exponential map is the Riemannian logarithmic map denoted Logx. Informally, the exponential
and logarithmic maps move points back and forth between the manifold and the tangent space while
preserving distances (see Fig. 2d for an illustration). This provides a general strategy for generalizing
many Euclidean techniques to Riemannian domains: data points are mapped to the tangent space,
where ordinary Euclidean techniques are applied and the results are mapped back to the manifold.

3 A Metric Feature Space

With the preliminaries settled we define the new model. Let C = RD denote the feature space. We
endow C with a metric tensor in every point x, which we define akin to (3),

M(x) =

R∑
r=1

wr(x)Mr , where wr(x) =
w̃r(x)∑R
j=1 w̃j(x)

, (6)

with w̃r > 0. The only difference from (3) is that we shall not restrict ourselves to binary weight
functions w̃r. We assume the metric tensors Mr have already been learned; Sec. 4 contain examples
where they have been learned using LMNN [5] and LDA [9].

From the definition of a Riemannian metric, we trivially have the following result:

Lemma 1 The space C = RD endowed with the metric tensor from (6) is a chart of a Riemannian
manifold, iff the weights wr(x) change smoothly with x.

Hence, by only considering smooth weight functions w̃r we get a well-studied geometric structure
on the feature space, which ensures us that it is metric. To illustrate the implications we return to the
example in Fig. 2. We change the weight functions from binary to squared exponentials, which gives
the feature space shown in Fig. 2c. As can be seen, the metric tensor now changes smoothly, which
also makes the geodesics smooth curves (a property we will use when computing the geodesics).

It is worth noting that Ramanan and Baker [3] also consider the idea of smoothly averaging the
metric tensor. They, however, only evaluate the metric tensor at the test point of their classifier
and then assume straight line geodesics with a constant metric tensor. Such assumptions violate the
premise of a smoothly changing metric tensor and, again, the distance measure becomes non-metric.

Lemma 1 shows that metric learning can be viewed as manifold learning. The main difference be-
tween our approach and techniques such as Isomap [12] is that, while Isomap learns an embedding
of the data points, we learn the actual manifold structure. This gives us the benefit that we can
compute geodesics as well as the exponential and logarithmic maps. These provide us with map-
pings back and forth between the manifold and Euclidean representation of the data, which preserve
distances as well as possible. The availability of such mappings is in stark contrast to e.g. Isomap.

In the next section we will derive a system of ordinary differential equations (ODE’s) that geodesics
in C have to satisfy, which provides us with algorithms for computing geodesics as well as exponen-
tial and logarithmic maps. With these we can generalize many Euclidean techniques.

4



3.1 Computing Geodesics, Maps and Statistics

At minima of (4) we know that the Euler-Lagrange equation must hold [11], i.e.

∂L

∂c
=

d

dλ

∂L

∂c′
, where L(λ, c, c′) = c′(λ)TM(c(λ))c′(λ) . (7)

As we have an explicit expression for the metric tensor we can compute (7) in closed form:

Theorem 2 Geodesic curves in C satisfy the following system of 2nd order ODE’s

M(c(λ))c′′(λ) = −1

2

[
∂vec [M(c(λ))]

∂c(λ)

]T
(c′(λ)⊗ c′(λ)) , (8)

where⊗ denotes the Kronecker product and vec [·] stacks the columns of a matrix into a vector [13].

Proof See supplementary material. �

This result holds for any smooth weight functions w̃r. We, however, still need to compute ∂vec[M]
∂c ,

which depends on the specific choice of w̃r. Any smooth weighting scheme is applicable, but we
restrict ourselves to the obvious smooth generalization of (3) and use squared exponentials. From
this assumption, we get the following result

Theorem 3 For w̃r(x) = exp
(
−ρ2‖x− xr‖2Mr

)
the derivative of the metric tensor from (6) is

∂vec [M(c)]

∂c
=

ρ(∑R
j=1 w̃j

)2

R∑
r=1

w̃rvec [Mr]

R∑
j=1

w̃j

(
(c− xj)

T
Mj − (c− xr)

T
Mr

)
. (9)

Proof See supplementary material. �

Computing Geodesics. Any geodesic curve must be a solution to (8). Hence, to compute a
geodesic between x and y, we can solve (8) subject to the constraints

c(0) = x and c(1) = y . (10)

This is a boundary value problem, which has a smooth solution. This allows us to solve the prob-
lem numerically using a standard three-stage Lobatto IIIa formula, which provides a fourth-order
accurate C1–continuous solution [14].

Ramanan and Baker [3] discuss the possibility of computing geodesics, but arrive at the conclusion
that this is intractable based on the assumption that it requires discretizing the entire feature space.
Our solution avoids discretizing the feature space by discretizing the geodesic curve instead. As this
is always one-dimensional the approach remains tractable in high-dimensional feature spaces.

Computing Logarithmic Maps. Once a geodesic c is found, it follows from the definition of the
logarithmic map, Logx(y), that it can be computed as

v = Logx(y) =
c′(0)

‖c′(0)‖
Length(c) . (11)

In practice, we solve (8) by rewriting it as a system of first order ODE’s, such that we compute both
c and c′ simultaneously (see supplementary material for details).

Computing Exponential Maps. Given a starting point x on the manifold and a vector v in the
tangent space, the exponential map, Expx(v), finds the unique geodesic starting at x with initial
velocity v. As the geodesic must fulfill (8), we can compute the exponential map by solving this
system of ODE’s with the initial conditions

c(0) = x and c′(0) = v . (12)

This initial value problem has a unique solution, which we find numerically using a standard Runge-
Kutta scheme [15].

5



3.1.1 Generalizing PCA and Regression

At this stage, we know that the feature space is Riemannian and we know how to compute geodesics
and exponential and logarithmic maps. We now seek to generalize PCA and linear regression,
which becomes straightforward since solutions are available in Riemannian spaces [16, 17]. These
generalizations can be summarized as mapping the data to the tangent space at the mean, performing
standard Euclidean analysis in the tangent and mapping the results back.

The first step is to compute the mean value on the manifold, which is defined as the point that
minimizes the sum-of-squares distances to the data points. Pennec [18] provides an efficient gradient
descent approach for computing this point, which we also summarize in the supplementary material.

The empirical covariance of a set of points is defined as the ordinary Euclidean covariance in the
tangent space at the mean value [18]. With this in mind, it is not surprising that the principal
components of a dataset have been generalized as the geodesics starting at the mean with initial
velocity corresponding to the eigenvectors of the covariance [16],

γvd
(t) = Expµ(tvd) , (13)

where vd denotes the dth eigenvector of the covariance. This approach is called Principal Geodesic
Analysis (PGA), and the geodesic curve γvd

is called the principal geodesic. An illustration of the
approach can be seen in Fig. 1 and more algorithmic details are in the supplementary material.

Linear regression has been generalized in a similar way [17] by performing regression in the tangent
of the mean and mapping the resulting line back to the manifold using the exponential map.

The idea of working in the tangent space is both efficient and convenient, but comes with an element
of approximation as the logarithmic map is only guarantied to preserve distances to the origin of the
tangent and not between all pairs of data points. Practical experience, however, indicates that this is
a good tradeoff; see [19] for a more in-depth discussion of when the approximation is suitable.

4 Experiments

To illustrate the framework1 we consider an example in human body analysis, and then we analyze
the scalability of the approach. But first, to build intuition, Fig. 3a show synthetically generated
data samples from two classes. We sample random points xr and learn a local LDA metric [9] by
considering all data points within a radius; this locally pushes the two classes apart. We combine the
local metrics using (6) and Fig. 3b show the data in the tangent space of the resulting manifold. As
can be seen the two classes are now globally further apart, which shows the effect of local metrics.

4.1 Human Body Shape

We consider a regression example concerning human body shape analysis. We study 986 female
body laser scans from the CAESAR [20] data set; each shape is represented using the leading 35
principal components of the data learned using a SCAPE-like model [21, 22]. Each shape is asso-
ciated with anthropometric measurements such as body height, shoe size, etc. We show results for
shoulder to wrist distance and shoulder breadth, but results for more measurements are in the sup-
plementary material. To predict the measurements from shape coefficients, we learn local metrics
and perform linear regression according to these. As a further experiment, we use PGA to reduce
the dimensionality of the shape coefficients according to the local metrics, and measure the quality
of the reduction by performing linear regression to predict the measurements. As a baseline we use
the corresponding Euclidean techniques.

To learn the local metric we do the following. First we whiten the data such that the variance
captured by PGA will only be due to the change of metric; this allows easy visualization of the
impact of the learned metrics. We then cluster the body shapes into equal-sized clusters according
to the measurement and learn a LMNN metric for each cluster [5], which we associate with the
mean of each class. These push the clusters apart, which introduces variance along the directions
where the measurement changes. From this we construct a Riemannian manifold according to (6),

1Our software implementation for computing geodesics and performing manifold statistics is available at
http://ps.is.tue.mpg.de/project/Smooth Metric Learning

6



0 10 20 30
12

14

16

18

20

22

24

26

Dimensionality

A
v
e
ra

g
e
 P

re
d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

0 50 100 150

0

5

10

15

20

25

30

Dimensionality

R
u
n
n
in

g
 T

im
e
 (

s
e
c
.)

(a) (b) (c) (d)
Figure 3: Left panels: Synthetic data. (a) Samples from two classes along with illustratively
sampled metric tensors from (6). (b) The data represented in the tangent of a manifold constructed
from local LDA metrics learned at random positions. Right panels: Real data. (c) Average error
of linearly predicted body measurements (mm). (d) Running time (sec) of the geodesic computation
as a function of dimensionality.

Sh
ou

ld
er

to
w

ri
st

di
st

an
ce

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

0 5 10 15 20 25 30 35
10

15

20

25

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

Sh
ou

ld
er

br
ea

dt
h

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

0 5 10 15 20 25 30 35
9

10

11

12

13

14

15

16

17

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

Euclidean PCA Tangent Space PCA (PGA) Regression Error
Figure 4: Left: body shape data in the first two principal components according to the Euclidean
metric. Point color indicates cluster membership. Center: As on the left, but according to the
Riemannian model. Right: regression error as a function of the dimensionality of the shape space;
again the Euclidean metric and the Riemannian metric are compared.

compute the mean value on the manifold, map the data to the tangent space at the mean and perform
linear regression in the tangent space.

As a first visualization we plot the data expressed in the leading two dimensions of PGA in Fig. 4; as
can be seen the learned metrics provide principal geodesics, which are more strongly related with the
measurements than the Euclidean model. In order to predict the measurements from the body shape,
we perform linear regression, both directly in the shape space according to the Euclidean metric
and in the tangent space of the manifold corresponding to the learned metrics (using the logarithmic
map from (11)). We measure the prediction error using leave-one-out cross-validation. To further
illustrate the power of the PGA model, we repeat this experiment for different dimensionalities of
the data. The results are plotted in Fig. 4, showing that regression according to the learned metrics
outperforms the Euclidean model.

To verify that the learned metrics improve accuracy, we average the prediction errors over all mil-
limeter measurements. The result in Fig. 3c shows that much can be gained in lower dimensions by
using the local metrics.

To provide visual insights into the behavior of the learned metrics, we uniformly sample body shape
along the first principal geodesic (in the range ±7 times the standard deviation) according to the
different metrics. The results are available as a movie in the supplementary material, but are also
shown in Fig. 5. As can be seen, the learned metrics pick up intuitive relationships between body
shape and the measurements, e.g. shoulder to wrist distance is related to overall body size, while
shoulder breadth is related to body weight.

7



Shoulder to wrist distance Shoulder breadth

Figure 5: Shapes corresponding to the mean (center) and±7 times the standard deviations along the
principal geodesics (left and right). Movies are available in the supplementary material.

4.2 Scalability

The human body data set is small enough (986 samples in 35 dimensions) that computing a geodesic
only takes a few seconds. To show that the current unoptimized Matlab implementation can handle
somewhat larger datasets, we briefly consider a dimensionality reduction task on the classic MNIST
handwritten digit data set. We use the preprocessed data available with [3] where the original 28×28
gray scale images were deskewed and projected onto their leading 164 Euclidean principal compo-
nents (which captures 95% of the variance in the original data).

We learn one diagonal LMNN metric per class, which we associate with the mean of the class. From
this we construct a Riemannian manifold from (6), compute the mean value on the manifold and
compute geodesics between the mean and each data point; this is the computationally expensive part
of performing PGA. Fig. 3d plots the average running time (sec) for the computation of geodesics as
a function of the dimensionality of the training data. A geodesic can be computed in 100 dimensions
in approximately 5 sec., whereas in 150 dimensions it takes about 30 sec.

In this experiment, we train a PGA model on 60,000 data points, and test a nearest neighbor classifier
in the tangent space as we decrease the dimensionality of the model. Compared to a Euclidean
model, this gives a modest improvement in classification accuracy of 2.3 percent, when averaged
across different dimensionalities. Plots of the results can be found in the supplementary material.

5 Discussion

This work shows that multi-metric learning techniques are indeed applicable outside the realm of
kNN classifiers. The idea of defining the metric tensor at any given point as the weighted average of
a finite set of learned metrics is quite natural from a modeling point of view, which is also validated
by the Riemannian structure of the resulting space. This opens both a theoretical and a practical
toolbox for analyzing and developing algorithms that use local metric tensors. Specifically, we
show how to use local metric tensors for both regression and dimensionality reduction tasks.

Others have attempted to solve non-classification problems using local metrics, but we feel that our
approach is the first to have a solid theoretical backing. For example, Hastie and Tibshirani [9] use
local LDA metrics for dimensionality reduction by averaging the local metrics and using the result-
ing metric as part of a Euclidean PCA, which essentially is a linear approach. Another approach
was suggested by Hong et al. [23] who simply compute the principal components according to each
metric separately, such that one low dimensional model is learned per metric.

The suggested approach is, however, not difficulty-free in its current implementation. Currently, we
are using off-the-shelf numerical solvers for computing geodesics, which can be computationally
demanding. While we managed to analyze medium-sized datasets, we believe that the run-time can
be drastically improved by developing specialized numerical solvers.

In the experiments, we learned local metrics using techniques specialized for classification tasks as
this is all the current literature provides. We expect improvements by learning the metrics specifi-
cally for regression and dimensionality reduction, but doing so is currently an open problem.

Acknowledgments: Søren Hauberg is supported in part by the Villum Foundation, and Oren Freifeld is
supported in part by NIH-NINDS EUREKA (R01-NS066311).

8



References
[1] Andrea Frome, Yoram Singer, and Jitendra Malik. Image retrieval and classification using local distance

functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing
Systems 19 (NIPS), pages 417–424, Cambridge, MA, 2007. MIT Press.

[2] Andrea Frome, Fei Sha, Yoram Singer, and Jitendra Malik. Learning globally-consistent local distance
functions for shape-based image retrieval and classification. In International Conference on Computer
Vision (ICCV), pages 1–8, 2007.

[3] Deva Ramanan and Simon Baker. Local distance functions: A taxonomy, new algorithms, and an evalua-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):794–806, 2011.

[4] Shai Shalev-Shwartz, Yoram Singer, and Andrew Y. Ng. Online and batch learning of pseudo-metrics. In
Proceedings of the twenty-first international conference on Machine learning, ICML ’04, pages 94–101.
ACM, 2004.

[5] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor
classification. The Journal of Machine Learning Research, 10:207–244, 2009.

[6] Tomasz Malisiewicz and Alexei A. Efros. Recognition by association via learning per-exemplar distances.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[7] Yiming Ying and Peng Li. Distance metric learning with eigenvalue optimization. The Journal of Machine
Learning Research, 13:1–26, 2012.

[8] Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons. In
Advances in Neural Information Processing Systems 16 (NIPS), 2004.

[9] Trevor Hastie and Robert Tibshirani. Discriminant adaptive nearest neighbor classification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 18(6):607–616, June 1996.

[10] Elzbieta Pekalska, Pavel Paclik, and Robert P. W. Duin. A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research, 2:175–211, 2002.

[11] Manfredo Perdigao do Carmo. Riemannian Geometry. Birkhäuser Boston, January 1992.

[12] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[13] Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics and
Econometrics. John Wiley & Sons, 2007.

[14] Jacek Kierzenka and Lawrence F. Shampine. A BVP solver based on residual control and the Matlab
PSE. ACM Transactions on Mathematical Software, 27(3):299–316, 2001.

[15] John R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6:19–26, 1980.

[16] P. Thomas Fletcher, Conglin Lu, Stephen M. Pizer, and Sarang Joshi. Principal Geodesic Analysis for the
study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imaging, 23(8):995–1005, 2004.

[17] Peter E. Jupp and John T. Kent. Fitting smooth paths to spherical data. Applied Statistics, 36(1):34–46,
1987.

[18] Xavier Pennec. Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measure-
ments. In Proceedings of Nonlinear Signal and Image Processing, pages 194–198, 1999.

[19] Stefan Sommer, François Lauze, Søren Hauberg, and Mads Nielsen. Manifold valued statistics, exact
principal geodesic analysis and the effect of linear approximations. In European Conference on Computer
Vision (ECCV), pages 43–56, 2010.

[20] Kathleen M. Robinette, Hein Daanen, and Eric Paquet. The CAESAR project: a 3-D surface anthropom-
etry survey. In 3-D Digital Imaging and Modeling, pages 380–386, 1999.

[21] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis.
Scape: shape completion and animation of people. ACM Transactions on Graphics, 24(3):408–416, 2005.

[22] Oren Freifeld and Michael J. Black. Lie bodies: A manifold representation of 3D human shape. In A.
Fitzgibbon et al. (Eds.), editor, European Conference on Computer Vision (ECCV), Part I, LNCS 7572,
pages 1–14. Springer-Verlag, oct 2012.

[23] Yi Hong, Quannan Li, Jiayan Jiang, and Zhuowen Tu. Learning a mixture of sparse distance metrics
for classification and dimensionality reduction. In International Conference on Computer Vision (ICCV),
pages 906–913, 2011.

9



A Supplementary Material for A Geometric take on Metric Learning

The supplementary material contains proofs for the theorems found in the paper as well as further results
that were left out due to page constraints. When reading the proofs it can be convenient to remember the
dimensionality of the individual parts of the equations, which we briefly summarize here:

c(λ) ∈ RD×1 c′(λ) ∈ RD×1 c′(λ)⊗ c′(λ) ∈ RD
2×1

M(c(λ)) ∈ RD×D vec [M(c(λ))] ∈ RD
2×1 ∂vec[M(c(λ))]

∂c(λ)
∈ RD

2×D

A.1 Proof of Theorem 2

We remind the reader that we need to minimize curve length (eq. 4). Conveniently, these minima coincides
with those of the curve energy [11] defined as

Energy(c) =

∫ 1

0

Ldλ =

∫ 1

0

c′(λ)TM(c(λ))c′(λ)dλ . (14)

At times, we will find it useful to express L in terms of Kronecker products:

L = c′(λ)TM(c(λ))c′(λ) =
(
c′(λ)⊗ c′(λ)

)T
vec [M(c(λ))] , (15)

where ⊗ denotes the Kronecker product and vec [·] unfolds a matrix to a vector by stacking its columns; see
the book by Magnus and Neudecker [13] for details on this notation.

We compute the derivative of this expression using the Euler-Lagrange equation

∂L

∂c
=

d

dλ

∂L

∂c′
. (16)

We derive the individual terms of this equation below.

∂L

∂c(λ)
=

∂

∂c(λ)

[(
c′(λ)⊗ c′(λ)

)T
vec [M(c(λ))]

]
(17)

=
(
c′(λ)⊗ c′(λ)

)T [∂vec [M(c(λ))]

∂c(λ)

]
. (18)

∂L

∂c′(λ)
= 2c′(λ)TM(c(λ)) (19)

= 2vec
[
c′(λ)TM(c(λ))

]
(20)

= 2
(
ID ⊗ c′(λ)T

)
vec [M(c(λ))] . (21)

d

dλ

∂L

∂c′(λ)
= 2

d
(
ID ⊗ c′(λ)T

)
dλ

vec [M(c(λ))] + 2
(
ID ⊗ c′(λ)T

) dvec [M(c(λ))]

dλ
(22)

= 2
(
ID ⊗ c′′(λ)T

)
vec [M(c(λ))] + 2

(
ID ⊗ c′(λ)T

)[∂vec [M(c(λ))]

∂c(λ)

]
c′(λ) (23)

= 2c′′(λ)TM(c(λ)) + 2
(
c′(λ)⊗ c′(λ)

)T [∂vec [M(c(λ))]

∂c(λ)

]
. (24)

Here ID denotes the D ×D identity matrix.

All this can be combined to give(
c′(λ)⊗ c′(λ)

)T [∂vec [M(c(λ))]

∂c(λ)

]
= 2c′′(λ)TM(c(λ))

+ 2
(
c′(λ)⊗ c′(λ)

)T [∂vec [M(c(λ))]

∂c(λ)

]
⇔

(25)

−1

2

(
c′(λ)⊗ c′(λ)

)T [∂vec [M(c(λ))]

∂c(λ)

]
= c′′(λ)TM(c(λ)) ⇔ (26)

M(c(λ))c′′(λ) = −1

2

[
∂vec [M(c(λ))]

∂c(λ)

]T (
c′(λ)⊗ c′(λ)

)
, (27)

which concludes the proof.

10



A.2 Proof of Theorem 3

First we consider the following general weighting scheme

wr =
w̃r∑R
j=1 w̃j

. (28)

We will consider different choices of w̃r , but first we compute the derivative of the metric tensor wrt. c.

∂vec [M(c)]

∂c
=

R∑
r=1

vec [Mr]
∂wr
∂c

(29)

∂wr
∂c

=

(
R∑
j=1

w̃j

)−2(
∂w̃r
∂c

R∑
j=1

w̃j − w̃r
R∑
j=1

∂w̃j
∂c

)
. (30)

In the following we derive ∂vec[M(c)]
∂c

for two squared exponential schemes. Other schemes can easily be
derived as long as the chosen weights are smooth.

A.2.1 Global Weights: w̃r = exp
(
− 1

2‖c(λ)− xr‖2Γ
)

We first consider a weighting scheme using a global metric

w̃r(c) = exp

(
−1

2
‖c− xr‖2Γ

)
, (31)

where Γ is a metric tensor. The derivative is given as

∂w̃r
∂c

= −w̃r (c− xr)
T Γ (32)

∂wr
∂c

= −w̃r

(
R∑
j=1

w̃j

)−2(
(c− xr)

T Γ

R∑
j=1

w̃j −
R∑
j=1

w̃j (c− xj)
T Γ

)
(33)

= −w̃r

(
R∑
j=1

w̃j

)−2 R∑
j=1

w̃j
(

(c− xr)
T Γ− (c− xj)

T Γ
)

(34)

= −w̃r

(
R∑
j=1

w̃j

)−2 R∑
j=1

w̃j
(

(xj − xr)
T Γ
)
. (35)

This gives the following derivative

∂vec [M(c)]

∂c
= −

(
R∑
j=1

w̃j

)−2 R∑
r=1

w̃rvec [Mr]

R∑
j=1

w̃j
(

(xj − xr)
T Γ
)
. (36)

A.2.2 Local Weights: w̃r = exp
(
−ρ2‖c(λ)− xr‖2Mr

)
We now consider using the prototype metric tensors to determine the weights:

w̃r(c) = exp
(
−ρ

2
‖c− xr‖2Mr

)
. (37)

We can then compute the derivative as

∂w̃r
∂c

= −ρw̃r (c− xr)
T Mr (38)

∂wr
∂c

= −ρw̃r

(
R∑
j=1

w̃j

)−2(
(c− xr)

T Mr

R∑
j=1

w̃j −
R∑
j=1

w̃j (c− xj)
T Mj

)
(39)

= −ρw̃r

(
R∑
j=1

w̃j

)−2 R∑
j=1

w̃j
(

(c− xr)
T Mr − (c− xj)

T Mj

)
. (40)

This gives the following derivative

∂vec [M(c)]

∂c
= −ρ

(
R∑
j=1

w̃j

)−2 R∑
r=1

w̃rvec [Mr]

R∑
j=1

w̃j
(

(c− xr)
T Mr − (c− xj)

T Mj

)
. (41)

11



A.3 From 2nd order to 1st order

When computing geodesics we have to solve a system of 2nd order ODE’s, which we solve by rewriting it
as a system of 1st order ODE’s. This is standard practice, but we briefly describe it here for the sake of
completeness.

We are interested in solving a system of the form

c′′(λ) = f(λ, c, c′) = −1

2
M−1(c(λ))

[
∂vec [M(c(λ))]

∂c(λ)

]T (
c′(λ)⊗ c′(λ)

)
. (42)

We now let

g(λ) = c′(λ) . (43)

Now eq. 42 can be re-expressed by solving for both c and c′ as[
c′(λ)
g′(λ)

]
=

[
g(λ)

f(λ, c,g)

]
, (44)

which is a system of 1st order equations.

A.4 Algorithmic Details

We use standard algorithms for doing statistics on manifolds. Specifically, we use the mean value estimator
from Pennec [18] and the standard PGA model from Fletcher et al. [16]. For completeness, these are presented
in Algorithm 1 and 2 respectively. The algorithm for regression is identical to the PGA algorithm, with the
exception that the PCA part is replaced by standard linear regression.

The algorithms rely on functions for computing geodesics and exponential maps on the manifold. We compute
these by setting up the boundary value problem in (10) and the initial value problem in (12). We solve these
numerically using standard off-the-shelf solver; specifically we use bvp4c and ode45 from Matlab.

input : Training data p1:N ; and manifold structure in the form of metric tensors M1:R and
their positions x1:R

output: Mean value µ

// Compute initial mean:

µ1 ← 1
N

∑N
n=1 pn;

// Iteratively improve mean value estimate:
for i← 2 . . . do

// Compute geodesics to the current mean estimate:
parallel for n← 1 to N do

γn ← compute geodesic(pn, µi−1,M1:R,x1:R);

ln ← γ′
n(0)

‖γ′
n(0)‖Length(γn) ;

end
// Compute tangent space mean:

µ̂i ← 1
N

∑N
n=1 ln;

// Map tangent space mean to the feature space:
µi ← exponential map(µi−1, µi,M1:R,x1:R);

end
Algorithm 1: Computing Karcher means.

12



input : Training data p1:N ; and manifold structure in the form of metric tensors M1:R and
their positions x1:R

output: Principal geodesics γv1:D

// Compute mean value on manifold:
µ← karcher mean(p1:N ,M1:R,x1:R);

// Compute geodesics to the mean:
parallel for n← 1 to N do

γn ← compute geodesic(pn, µ,M1:R,x1:R);

ln ← γ′
n(0)

‖γ′
n(0)‖Length(γn) ;

end
// Perform PCA in the tangent space:
v1:D ← PCA(l1:N);

// Map results back to the feature space:
for d← 1 to D do

γvd
← exponential map(µ,vd,M1:R,x1:R);

end
Algorithm 2: Principal Geodesic Analysis (PGA).

A.5 Further Results on Human Body Shapes

This section contains plots for the regression errors, when predicting body measurements from body shapes.
The experiments follow those in Sec. 4.1 of the paper, i.e.

1. First, we whiten the data to ensure that all changes in variance is due to the change of the metric.
2. We then sort the shape data according to the specific measurement (e.g. arm length) and split it in 5

equal-sized clusters.
3. For each cluster we learn a LMNN metric [5], which pushes the different clusters apart. This will

locally introduce variance in the directions that pushes the clusters apart. Globally, the learned metrics
stretches the feature space in the directions that are most important for the specific measurement.

4. We then construct a Riemannian metric according to (6) and compute the mean of the data according
to this metric (Algorithm 1).

5. We then compute geodesics between each data point and the mean, and map the data into the tangent
space at the mean using the logartihmic map (11).

6. In this Euclidean representation of the data, we perform linear regression to predict the measurement.
The measurement of an unseen point is predicted by mapping it into the tangent space and applying
the Euclidean model.

Acromial height, sitting (mm) Ankle circumference (mm) Arm length, shoulder to elbow (mm)

0 5 10 15 20 25 30 35
10

12

14

16

18

20

22

24

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
5.5

6

6.5

7

7.5

8

8.5

9

9.5

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
8

9

10

11

12

13

14

15

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Arm length, shoulder to wrist (mm) Arm length, spine to wrist (mm) Bust chest circumference under bust (mm)

0 5 10 15 20 25 30 35
10

15

20

25

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
10

12

14

16

18

20

22

24

26

28

30

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
14

16

18

20

22

24

26

28

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

13



Buttock knee length (mm) Crotch height (mm) Elbow height, sitting (mm)

0 5 10 15 20 25 30 35
8

10

12

14

16

18

20

22

24

26

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
10

12

14

16

18

20

22

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Eye height, sitting (mm) Foot length (mm) Hand circumference (mm)

0 5 10 15 20 25 30 35
10

12

14

16

18

20

22

24

26

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
5.5

6

6.5

7

7.5

8

8.5

9

9.5

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

Hip breadth, sitting (mm) Hip circ max height (mm) Knee height (mm)

0 5 10 15 20 25 30 35
11

12

13

14

15

16

17

18

19

20

21

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
15

20

25

30

35

40

45

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
6

8

10

12

14

16

18

20

22

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Neck base circumference (mm) Sitting height (mm) Spine to elbow (mm)

0 5 10 15 20 25 30 35
13

13.5

14

14.5

15

15.5

16

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
10

12

14

16

18

20

22

24

26

28

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
8

10

12

14

16

18

20

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Spine to shoulder (mm) Stature (mm) Thigh circumference, max sitting (mm)

0 5 10 15 20 25 30 35
6.5

7

7.5

8

8.5

9

9.5

Dimensionality

P
re

d
ic

ti
o
n
 E

rr
o
r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
10

15

20

25

30

35

40

45

50

55

60

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
14

16

18

20

22

24

26

28

30

32

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Thumb tip reach (mm) Thumb tip reach 1 (mm) Thumb tip reach 2 (mm)

0 5 10 15 20 25 30 35
14

16

18

20

22

24

26

28

30

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
14

16

18

20

22

24

26

28

30

32

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
14

16

18

20

22

24

26

28

30

32

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

14



Thumb tip reach 3 (mm) Waist front length (mm) Waist height preferred (mm)

0 5 10 15 20 25 30 35
15

20

25

30

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
19

20

21

22

23

24

25

26

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

0 5 10 15 20 25 30 35
15

20

25

30

35

40

45

Dimensionality

P
re

d
ic

ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

A.6 MNIST Dimensionality Reduction Plots

In Sec. 4.2 we considered PGA on the MNIST data set, where we learned one metric per class using LMNN [5],
which we associated with the class center. Fig. 6 show the first two principal components of the digits 4, 7 and
9, computed according to the Euclidean metric and in the tangent space of the manifold implied by the local
metrics. As can be seen, the two representations are quite different, but it is not clear that one is better than the
other. To quantify the behavior we also perform a classification study.

We perform nearest neightbor classification of 60,000 data points from all ten classes, and test on 1,000 separate
data points. We learn one LMNN metric per class, which we associate with the mean of the class. From this
we construct a Riemannian manifold from (6), compute the mean value on the manifold, map the data to
the tangent space at the mean and perform ordinary PCA in the tangent space, i.e. PGA. To study the effect
of dimensionality reduction according to the learned metrics, we measure the classification error while we
gradually reduce the dimensionality of the data using both the learned metrics and, for comparison, the ordinary
Euclidean metric. The results are plotted in Fig. 6. As can be seen, the model using the learned metrics slightly
out-performs the baseline Euclidean metric. The interesting result is that this result holds as the dimensionality
is reduced, which shows that the Riemannian PGA captures the important parts of the learned metric.

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8
4
7
9

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5
4
7
9

20 40 60 80 100 120 140 160
0.1

0.3

0.5

0.7

0.9

Dimensionality

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

 

 

Euclidean Model

Riemannian Model

Euclidean PCA Tangent Space PCA (PGA) Classification Error

Figure 6: Left: The MNIST data expressed in first two principal components computed according
to the Euclidean metric. Center: The same data expressed in the first two principal components
computed in the tangent space of the manifold implied by the local LMNN metrics. Right: The
classification error as a function of the dimensionality of the Euclidean and the Riemannian models.

15


