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The isotropic spherical normal distribution has density
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In the main paper, we claim that the normalization constant is
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when D is even and odd. Here erf is the imaginary error function, while Re[·] and Im[·] takes the real
and imaginary parts of a complex number, respectively. In this section, we provide the derivation of this
constant.

By definition, we have

Z1(λ) =

∫
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)
dx. (3)

We express this integral in the tangent space of the sphere at µ, i.e. we perform the substitution

v = Logµ(x). (4)

The appropriate Jacobian is
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We then write this in hyper-spherical coordinates1
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Since the radius r and the angles φ are never mixed in the integrand, we can split this into the product
of two integrals
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The second term is merely the surface area of the D − 2 dimensional unit sphere
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where Γ is the usual Gamma function. The integral (9) then reduces to

Z1(λ) = AD−2

∫ π

r=0

exp

(
−λr

2

2

)
sinD−2(r)dr. (10)

To evaluate this expression we need the trigonometric power formulas [2]
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We are now ready evaluate the normalization constant. First we consider the case were D − 2 is even.
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To evaluate this we need two simple integrals, which we evaluate using Maple,∫ π
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where i denotes the complex unit. Inserting these expressions into Eq. 14 and simplifying expressions
gives the desired result (2a). Note that in the simple special case D = 2, the spherical normal is a
distribution over the unit circle. Here, the normalization constant reduce to
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1Using the convention of https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
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We now consider the case where D − 2 is odd. Akin to the previous derivation, we insert Eq. 12 into
Eq. 10 and get
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To evaluate this, we need to evaluate the integral∫ π
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which we have evaluated using Maple. Inserting this expression into Eq. 19 and simplifying gives the
result in Eq. 2b. In the important special-case D = 3, the normalization constant reduce to
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This concludes the derivation.

A. Quality of the approximation

We approximate the inverse normalization constant 1/Z1 with a straight line in order to derive an
expression for the anisotropic normalization constant. Figure 1 (center) show the inverse normalization
constant for varying values of λ. The right panel of the figure show the difference between the inverse
normalization and a fitted straight line. From this we draw two conclusions: 1) the inverse normalization
is indeed not a straight line; 2) a straight line is, however, a good approximation. While using one
globally fitted straight line gives a fairly accurate estimate of the normalization constant, we find that
accuracy can be slightly improved by fitting the line locally. We make this local fit through 1/Z1(λ2)

and 1/Z1(λ2 + α(λ1 − λ2)). By extensive numerical optimization we have found that α−1 = 0.46λ2 + 1.55
minimizes the worst-case approximation error of the integral.

At times it may be easier to interpret a variance parameter rather than a concentration parameter. The
variance of the spherical normal distribution is defined as [1]
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When the distribution is isotropic, this expression can be evaluated for S2 similarly to the proof of
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The left panel of Fig. 1 show how the variance change as a function of λ. Notice that the curve is roughly
shaped as 1/λ.



Fig. 1. Left: the variance as a function of the concentration. Center: the inverse normalization constant for the isotropic distribution.
Right: The deviation between the inverse normalization constant and a single linear approximation.

REFERENCES

[1] X. Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements.
Journal of Mathematical Imaging and Vision (JMIV), 25(1):127–154, 2006.

[2] E. W. Weisstein. Trigonometric power formulas. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/TrigonometricPowerFormulas.html.

http://mathworld.wolfram.com/TrigonometricPowerFormulas.html

	Appendix
	Quality of the approximation


