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The isotropic spherical normal distribution has density
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In the main paper, we claim that the normalization constant is
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when D is even and odd. Here erf is the imaginary error function, while Re[-] and Im[-] takes the real
and imaginary parts of a complex number, respectively. In this section, we provide the derivation of this
constant.

By definition, we have

Z(\) = /5D71 exp (—gLog“(X)TLogH(x)> dx. 3)

We express this integral in the tangent space of the sphere at u, i.e. we perform the substitution

v = Log,, (x). “)
The appropriate Jacobian is
. D-2
det(J) = (bm(”V”)> 5)
vl

and the integral becomes
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We then write this in hyper-spherical coordinates'
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Since the radius r and the angles ¢ are never mixed in the integrand, we can split this into the product
of two integrals

Z1(\) :/Tr exp <w> sin?~2(r)dr ®)
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The second term is merely the surface area of the D — 2 dimensional unit sphere
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where T is the usual Gamma function. The integral (9) then reduces to
4 A2\ s
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To evaluate this expression we need the trigonometric power formulas [2]
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We are now ready evaluate the normalization constant. First we consider the case were D — 2 is even.
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To evaluate this we need two simple integrals, which we evaluate using Maple,

/;0 exp (—f) dr = \/\/;\erf (”\}?) (15)
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where 7 denotes the complex unit. Inserting these expressions into Eq. 14 and simplifying expressions
gives the desired result (2a). Note that in the simple special case D = 2, the spherical normal is a
distribution over the unit circle. Here, the normalization constant reduce to
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1Using the convention of https:/en.wikipedia.org/wiki/N-sphere#Spherical_coordinates


https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

We now consider the case where D — 2 is odd. Akin to the previous derivation, we insert Eq. 12 into
Eq. 10 and get
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To evaluate this, we need to evaluate the integral
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which we have evaluated using Maple. Inserting this expression into Eq. 19 and simplifying gives the
result in Eq. 2b. In the important special-case D = 3, the normalization constant reduce to
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This concludes the derivation.
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A. Quality of the approximation

We approximate the inverse normalization constant !/z, with a straight line in order to derive an
expression for the anisotropic normalization constant. Figure 1 (center) show the inverse normalization
constant for varying values of A. The right panel of the figure show the difference between the inverse
normalization and a fitted straight line. From this we draw two conclusions: 1) the inverse normalization
is indeed not a straight line; 2) a straight line is, however, a good approximation. While using one
globally fitted straight line gives a fairly accurate estimate of the normalization constant, we find that
accuracy can be slightly improved by fitting the line locally. We make this local fit through 1/z, (x,)
and 1/2,(X> + a(A1 — A2)). By extensive numerical optimization we have found that a1 = 0.46 Ay + 1.55
minimizes the worst-case approximation error of the integral.

At times it may be easier to interpret a variance parameter rather than a concentration parameter. The
variance of the spherical normal distribution is defined as [1]

Var[x] :/ arccos®(xTp) SN(x | p, A)dx. (22)
SDh-1

When the distribution is isotropic, this expression can be evaluated for S? similarly to the proof of
proposition 1 to give
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The left panel of Fig. 1 show how the variance change as a function of \. Notice that the curve is roughly
shaped as 1/x.
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Fig. 1. Left: the variance as a function of the concentration. Center: the inverse normalization constant for the isotropic distribution.
Right: The deviation between the inverse normalization constant and a single linear approximation.
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