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Abstract. Manifolds are widely used to model non-linearity arising in
a range of computer vision applications. This paper treats statistics on
manifolds and the loss of accuracy occurring when linearizing the mani-
fold prior to performing statistical operations. Using recent advances in
manifold computations, we present a comparison between the non-linear
analog of Principal Component Analysis, Principal Geodesic Analysis,
in its linearized form and its exact counterpart that uses true intrinsic
distances. We give examples of datasets for which the linearized version
provides good approximations and for which it does not. Indicators for
the differences between the two versions are then developed and applied
to two examples of manifold valued data: outlines of vertebrae from a
study of vertebral fractures and spacial coordinates of human skeleton
end-effectors acquired using a stereo camera and tracking software.
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1 Introduction

This paper treats the effect of linearization when using the non-linear analog
of Principal Component Analysis, Principal Geodesic Analysis (PGA, [1]), to
estimate the variability in sets of manifold valued data. Until recently, PGA has
been performed by linearizing the manifold, which distorts intrinsic distances,
but with the introduction of more powerful computational tools [2], PGA can
now be computed with true intrinsic distances. We show how simple and fast
indicators allow us to approximate the differences between linearized PGA and
exact PGA with true intrinsic distances and evaluate the effect of the lineariza-
tion.

As a test case for the indicators, we perform a comparison between two man-
ifold valued datasets: outlines of vertebrae from a study of vertebral fractures,
and human skeleton end-effectors in spatial coordinates recorded using a stereo
camera and tracking software. We will show that linearized PGA provides a rea-
sonable approximation in only one of the experiments and that the indicators
allow us to predict this before doing the time-intensive computation of exact
PGA with intrinsic distances.
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1.1 Motivation

A wide variety of problems in computer vision possess non-linear structure and
are therefore naturally modeled using Riemannian geometry. In diffusion tensor
imaging [3–5], for image segmentation [6] and registration [7], shape spaces [8],
and human motion modeling [9, 10], Riemannian manifolds have been used to
enforce consistency in data, provide dimensionality reduction, and define more
accurate metrics. The wide applicability of manifolds in modeling problems has
created the need for statistical tools for manifold data.

Generalizing linear statistical operations to manifolds [1, 11–13] provides ex-
amples of the theoretical and computational problems arising when departing
from familiar Euclidean spaces. The tools developed when pursuing this have
been used successfully for a range of computer vision applications, and the area
is the subject of active research [2, 13]. Depending on the level of approximation
used in the computations, manifold statistics can be hard to carry out in prac-
tice because operations such as finding distances and performing optimization
do not admit the closed-form solutions often found in Euclidean spaces [1].

One way of doing manifold statistics is projecting the set of manifold valued
data points to the tangent space of a mean point of the manifold. The vector
space structure of the tangent space brings back convenient Euclidean statis-
tics, but the distortion of the distances between the data points inherent in the
linearization may however lead to sub-optimal solutions to the statistical prob-
lems. In contrast to this, some statistical operations can be carried out with true
intrinsic manifold distances giving a true picture of the data [2, 13]. This, how-
ever, often comes at the cost of increased computational complexity and requires
conditions on the locality of data.

Because of the trade-offs between convenient linearization and exact mod-
eling, we seek for ways to evaluate the extent of the distortion between the
linearized data and true manifold data; we are interested in determining if per-
forming statistics with intrinsic distances offers significant advantages over the
linearized approach. Such knowledge has the potential of saving substantial com-
putation time and to improve results of statistical operations.

1.2 Related Work

The mathematical aspects of manifolds are covered extensively in the literature
with [14, 15] providing good references. Numerical and computational aspects
of interest in a general setting are considered in the theoretical papers [16, 17]
while more specific shape related applications are proposed in [18–20].

Both the mathematical community, e.g. [11], and more applied fields, com-
puter vision in particular [1, 12], have worked with different aspect of statistics
on manifolds. A recent wave of interest by statisticians [21, 13] has created new
methods with strong links to tools developed in computer vision [13].

The manifold generalization of linear PCA, PGA, was first introduced in
[22], but it was formulated in the form most widely used in [1]. It has subse-
quently been used for several applications. To mention a few, the authors in
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[1, 4] study variations of medial atoms, [23] uses a variation of PGA for facial
classification, [24] presents examples on motion capture data, and [20] applies
PGA to vertebrae outlines. The algorithm presented in [1] for computing PGA
with linearization has been most widely used. In contrast to this, [24] computes
PGA as defined in [22] without approximations, but only for a specific mani-
fold, the Lie group SO(3). By using ODE formulations of geodesics and taking
derivatives, [2] provides algorithms for computing PGA without approximations
on wide classes of manifolds.

Geodesic PCA (GPCA, [13, 21]) is in many respects close to PGA but opti-
mizes for the placement of the center point and minimizes projection residuals
along geodesics instead of maximizing variance in geodesic subspaces. GPCA
uses no linear approximation, but it is currently only computed on spaces where
explicit formulas for geodesics exist and on quotients of such spaces.

1.3 Content and Outline

In the next section, we discuss the benefits of using manifolds in modeling,
manifold valued statistics, and linearization. Then, in section 3, we consider in
detail the specific case of Principal Geodesic Analysis and use synthetic examples
to explain the differences between linearized PGA and exact PGA with true
intrinsic distances. We progress to developing indicators of these differences,
and, in section 4, we compare linearized and intrinsic PGA on real-life examples
of manifold valued datasets and analyze the power of the indicators. The paper
thus contributes by

(1) developing simple and fast indicators of the difference between linearized
PGA and exact PGA that show the effect of linearization,

(2) giving examples of the differences between linearized PGA and exact PGA
on real-life datasets from computer vision,

(3) and showing the power of the indicators when applied to the datasets.

2 Manifolds and Manifold Valued Statistics

The interest in manifolds as modeling tools arises from the non-linearity apparent
in a variety of problems. We will in the following exemplify this by considering
the pose of a human skeleton captured by e.g. a tracking system or motion
capture equipment. Consider the position of a moving hand while the elbow and
the rest of the body stay fixed. The hand cannot move freely as the length of the
lower arm restricts it movement. Linear vector space structure is not present; if
we multiply the position of the hand by a scalar, the length of the arm would in
general change in order to accommodate the new hand position. Even switching
to an angular representation of the pose of the elbow joint will not help; angles
have inherent periodicity, which is not compatible with vector space structure.

Though the space of possible hand positions is not linear, it has the structure
of a manifold since it possesses the property that it locally can be approximated
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by a vector space. Furthermore, we can, in a natural way, equip it with a Rieman-
nian metric [14], which allows us to make precise notions of length of curves on
the space and intrinsic acceleration. This in turns defines the Riemannian man-
ifold equivalent of straight lines: geodesics. The length of geodesics connecting
points defines a distance metric on the manifold.

2.1 Benefits from Modeling using Manifolds

The main advantages of introducing manifolds in modeling are as follows: con-
sistency in representation, dimensionality reduction, and accuracy in measure-
ments. Consistency ensures the modeled object satisfies the requirements making
up the manifold; when moving the position of the hand on the manifold, we are
certain the length of the lower arm is kept constant. Such requirements reduce
the number of degrees of freedom and hence provide dimensionality reduction.
Consistency and dimensionality reduction are therefore closely linked.

Accuracy is connected to the distance measure defined by the Riemannian
metric. A reasonable measure of the distance between two positions of the hand
will be the length of the shortest curve arising when moving the hand between
the positions. Such a curve will, in this example, be a circular arc, and, in the
manifold model, the distance will be the length of the arc. In the vector space
model, however, the distance will be the length of the straight line connecting the
hand positions and, hence, will not reflect the length of an allowed movement of
the hand. The manifold model therefore gives a more accurate distance measure.

2.2 Linearizing the Manifold

By linearizing the manifold to the tangent space of a mean point, we can in many
applications ensure consistency, but not accuracy, in statistical operations. Let
M be a manifold and {x1, . . . , xN} a dataset consisting of points on the manifold.
An intrinsic mean [11] is defined as a solution to the optimization problem

µ = argminq

N∑
i=1

d(xi, q)
2 (1)

with d(xi, q) denoting the manifold distance between the ith data point and the
mean candidate q.

Each point p of a manifold has a connected linear space called the tangent
space and denoted TpM . The dimension of TpM is equal to the dimension of the
manifold, which, as in the vector space case, specifies the number of degrees of
freedom. Vectors in the tangent space are often mapped back to the manifold
using the exponential map, Expp, which maps straight lines trough the origin of
TpM to geodesics on M passing p.

If we consider the tangent space of an intrinsic mean, TµM , we can represent
xi by vectors wi in TµM such that Expµwi = xi.

3 The map that sends xi ∈ M
3 See Figure 1 for an example of a 2-dimensional manifold with sampled elements of

the tangent space of the mean and corresponding points on the manifold.
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to wi ∈ TµM is called the logarithm map and denoted Logµ. The vector space
structure of TµM allows us to use standard statistical tools on {w1, . . . , wN}.
We could for example infer some distribution in TµM , sample a vector v from
it, and project the result back to a point p on the manifold so that p = Expµv.
It is important to note that consistency is ensured in doing this; p will be on the
manifold and hence satisfy the encoded requirements. Turning to the example
of hand positions, we have found a consistent way of sampling hand positions
without violating the fixed length of the lower arm.

The above procedure can be seen as a way of linearizing the manifold around
the intrinsic mean µ because the tangent space TµM provides a first order ap-
proximation of the manifold around µ. Yet, distances between vectors in TµM
do not always reflect the manifold distances between the corresponding points
on the manifold: distances between wi and the origin of TµM equal the distances
d(xi, µ), but the inter-point distances d(xi, xj) are not in general equal to the
tangent space distances‖wi −wj‖. Accuracy may therefore be lost as a result of
the approximation. In short, linearization preserves consistency but may destroy
accuracy.

3 Principal Geodesic Analysis

Principal Component Analysis (PCA) is widely used to model the variability of
datasets of vector space valued data and provide linear dimensionality reduction.
PCA gives a sequence of linear subspaces maximizing the variance of the projec-
tion of the data or, equivalently, minimizing the reconstruction errors. The kth
subspace is spanned by an orthogonal basis {v1, . . . , vk} of principal components
vi.

PCA is dependent on the vector space structure and hence cannot be per-
formed on manifold valued datasets. Principal Geodesic Analysis was developed
to overcome this limitation. PGA centers its operations at a point µ ∈M with µ
usually being an intrinsic mean of the dataset {x1, . . . , xN}, and finds geodesic
subspaces, which are images S = ExpµV of linear subspaces V of the tangent
space TµM . A projection operator πS is defined by letting πS(x) be a point
in S closest to x. The kth geodesic subspace Sk is then given as Expµ(Vk),

Vk = span {v1, . . . , vk}, where the principal directions vi are given recursively
by

vi = argmax‖v‖=1,v∈V ⊥i−1

1

N

N∑
j=1

d(µ, πSv
(xj))

2 ,

Sv = Expµ(span (Vi−1, v)) .

(2)

The term being maximized is the sample variance, the expected value of the
squared distance to µ. PGA therefore extends PCA by finding geodesic subspaces
in which variance is maximized.

Since the projection πSk
(x) is hard to compute, PGA is traditionally approx-

imated by linearizing the manifold. The data x1, . . . , xN are projected to TµM
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using Logµ, and regular PCA is performed on wi = Logµxi. Equation (2) then
becomes

vi ≈ argmax‖v‖=1,v∈V ⊥i−1

1

N

N∑
j=1

(
〈wj , v〉2 +

k−1∑
l=1

〈
wj , v

l
〉2)

. (3)

We can define a normal distribution N in TµM using the result of the PCA
procedure, and, in doing so, we have performed the procedure described in sec-
tion 2.2. We will refer to PGA with the approximation as linearized PGA. PGA
as defined by (2) without the approximation will be referred to as exact PGA.
Advances in manifold computations allow exact PGA to be computed on the Lie
group SO(3) [24] and, more recently, on wide classes of manifolds [2].

Replacing maximization of the sample variances d(µ, πSv
(xj))

2 by minimiza-
tion of the squared reconstruction errors d(xj , πSv

(xj))
2, we obtain another man-

ifold extension of PCA and thus an alternate definition of PGA:

vi = argmin‖v‖=1,v∈V ⊥i−1

1

N

N∑
j=1

d(xj , πSv (xj))
2 . (4)

In contrast to vector space PCA, the two definitions are not equivalent. It can be
shown that, in some cases, solutions to (2) will approach parts of the manifold
where the cost function is non differentiable, a problem we have not encountered
when solving for (4). We are currently working on a paper giving a theoretical
treatment of this phenomenon and other differences between the definitions. The
latter formulation is chosen for Geodesic PCA to avoid similar instabilities of
variance maximization [13]. In correspondence with this, we will use (4) in the
rest of the paper, but we stress that this choice is made only to avoid instabilities
in (2) and that all computations presented can be performed using the former
definition with only minor changes to the optimization algorithms [2].

3.1 Linearized PGA vs. Exact PGA

Computing the projection map πS is particularly time-intensive causing the com-
putation of exact PGA to last substantially longer than linearized PGA. To give
an example, computing linearized PGA for one of the datasets later in this pa-
per takes 5 seconds with a parallelized Matlab implementation, and computing
exact PGA for the same example requires approximately 10 minutes. This time
penalty makes it is worth considering the actual gain of computing exact PGA.
We will in this section give examples of low dimensional manifolds on which it
is possible visually to identify the differences between the methods.

We consider surfaces embedded in R3 and defined by the equation

Sc = {(x, y, z)|cx2 + y2 + z2 = 1} (5)

for different values of the scalar c. For c > 0, Sc is an ellipsoid and equal to the
sphere S2 in the case c = 1. The surface S0 is a cylinder and, for c < 0, Sc is an
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hyperboloid. Consider the point p = (0, 0, 1) and note that p ∈ Sc for all c. The
curvature of Sc at p is equal to c. Note that in particular for the cylinder case
the curvature is zero; the cylinder locally has the geometry of the plane R2 even
though it informally seems to curve.

We evenly distribute 20 points along two straight lines through the origin
of the tangent space TpSc, project the points from TpSc to the surface Sc, and
perform linearized and exact PGA. Since linearized PCA amounts to Euclidean

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. TpS−2 with sampled points and first principal components (blue exact PGA,
green linearized PGA) (left) and S−2 with projected points and first principal compo-
nents (blue exact PGA (2), green linearized PGA) (right).

PCA in TpSc, the first principal component divides the angle between the lines
for all c. In contrast to this, the corresponding residuals and the first principal
component found using exact PGA are dependent on c. Table 1 shows the angle
between the principal components found using the different methods, the av-
erage squared residuals and differences between squared residuals for different
values of c. Let us give a brief explanation of the result. The symmetry of the

Table 1. Differences between methods for selected values of c.

c: 1 0.5 0 -0.5 -1 -1.5 -2 -3 -4 -5
angle (◦): 0.0 0.1 0.0 3.4 14.9 22.2 24.8 27.2 28.3 28.8
lin. sq. res.: 0.251 0.315 0.405 0.458 0.489 0.508 0.520 0.534 0.539 0.541
exact sq. res.: 0.251 0.315 0.405 0.458 0.478 0.482 0.485 0.489 0.491 0.492
diff (%): 0.0 0.0 0.0 0.1 2.3 5.1 6.7 8.4 8.9 9.0

sphere and the dataset causes the effect of curvature to even out in the spherical
case S1. The cylinder S0 has local geometry equal to R2 which causes the equal-
ity between the methods in the c = 0 case. The hyperboloids with c < 0 are
non-symmetric causing a decrease in residuals as the first principal component
approaches the hyperbolic axis. This effect increases with curvature causing the
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the first principal component to align with this axis for large negative values of
c.

It is tempting to think that increasing absolute curvature causes increasing
differences between the methods. Yet, redoing the experiment with the lines ro-
tated by π/4 making them symmetric around the x and y axes will produce
vanishing differences. Curvature in itself, therefore, does not necessarily imply
large differences, and the actual differences are hence dependent on both curva-
ture and the dataset.

3.2 The Difference Indicators

The projection πS is in (3) approximated using the orthogonal projection in the
tangent space TµM . We let τS denote the difference in residuals arising when
using the two projections and aim at approximating τS to give an estimate of the
gain in precision obtained by using true projections. The subspaces optimizing
(4) and (3) will in general differ due to the different projection methods and the
fact that residuals are approximated by tangent space distances in (3). We let ρ
denote the difference in residuals between the projection of the data to the two
subspaces, and we aim at approximating ρ to indicate the gain in accuracy when
computing exact PGA.

We start by giving precise definitions for τS and ρ before deriving the indica-
tors τ̃S and σ of their values. The term indicators is used to emphasize expected
correlation between the values of e.g. τS and the indicator τ̃S but with no direct
expression for the correlation.

Assume v1, . . . , vk−1 are principal components and let v ∈ TµM be such that
v1, . . . , vk−1, v constitues an orthonormal basis. Let the geodesic subspace Sv
be given by Expµspan {v1, . . . , vk−1, v}, and let wj = Logµxj for each element
of the dataset {x1, . . . , xN}. We denote by π̂Sv (xj) the point on the manifold
corresponding to the orthogonal tangent space projection of wj , i.e.

π̂S(xj) = Expµ

(
〈wj , v〉 v +

k−1∑
l=1

〈
wj , v

l
〉
vl

)
, (6)

and define the average projection difference

τS =
1

N

N∑
j=1

(
d(xj , π̂Sv

(xj))
2 − d(xj , πSv

(xj))
2
)
. (7)

Let now v be an exact PGA principal geodesic component computed using (4)
and let v̂ be a linearized PGA principal component computed using (3). We let
Sv and Sv̂ denote the geodesic subspaces corresponding to v and v̂. The average
residual difference is then given by

ρ =
1

N

N∑
j=1

(
d(xj , πSv̂

(xj))
2 − d(xj , πSv (xj))

2
)
. (8)

Note that both τS and ρ are positive since πSv minimizes residuals and v mini-
mizes (4).
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3.3 The Projection Difference

Since πSv
(xj) is the point in Sv closest to xj , the differences expressed in each

term of (7) measure the difference between f(π̂Sv
(xj)) and f(yj) with yj ∈ Sv

minimizing the map f(y) = d(xj , y)2. The gradient ∇yf vanishes in such a
minimum leading us to approximate the difference by the norm of the gradient
at π̂Sv

(xj). The gradient is readily evaluated since it is given by the component
of −2Logπ̂Sv (xj)(xj) in the tangent space of Sv [11]. We use this to approximate
τS by

τSv ≈ τ̃Sv =
2

N

N∑
j=1

‖∇π̂Sv (xj)f‖ (9)

and note that each term of the sum, and therefore the entire indicator τ̃Sv
, is

inexpensive to compute.

3.4 The Residual Difference

We now heuristically derive an indicator σ that is correlated with ρ. The cor-
relation will be confirmed later by the experiments. Assume for a moment that
distances in the tangent space TµM approximate the true manifold distances

well. The residual sums 1
N

∑N
j=1 d(xj , πSv̂

(xj))
2 and 1

N

∑N
j=1 d(xj , πSv

(xj))
2 will

then be close to identical since v is chosen to minimize the latter sum, and v̂
is chosen to minimize the sum of tangent space residuals. The difference ρ will
therefore be close to zero. Conversely, assume that distances in the tangent space
differ greatly from the true manifold distances. On constant curvature spaces like
the sphere S1, these distance differences will generally be uniformly distributed
causing the linearized principal component v̂ to be close to v and ρ therefore
close to zero. On the contrary, the distance differences will vary on spaces with
non-constant curvature like S−1 where v̂ in general is far from v causing ρ to
be large. We therefore expect ρ to be correlated with the standard deviation σ
of the differences between the tangent space residual approximations and the
actual orthogonal projection residuals,

σ =

√√√√ 1

N

N∑
j=1

(
‖wj − Logµ(π̂Sv̂

)‖ − d(xj , π̂Sv̂
(xj))− µ

)2

, (10)

with µ the mean value of the scalars ‖wj −Logµ(π̂Sv̂
)‖− d(xj , π̂Sv̂

(xj)). We use
σ, which again is fast to compute, to indicate the size of ρ.

4 Experiments

We present experiments on the synthetic data of section 3.1 and on two real-life
datasets for two purposes: the experiments will show examples where computing
exact PGA results in increased accuracy as well as examples where linearized
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PGA performs well, and the power of the indicators developed in section 3 will
be explored.

When investigating the correlation between the indicator τ̃Sv̂
and the pro-

jection difference τSv̂
, we let v̂ be the first principal component computed using

linearized PGA. In addition, we compare the residual difference ρ with the in-
dicator σ.

4.1 Synthetic Data

We test the indicators on the manifolds Sc with the synthetic data described in
section 3.1. Figure 2 shows τS as a function of the indicator τ̃Sv̂

and ρ as a func-
tion of the indicator σ for each value of c. For both graphs, we see correlation

0 0.05 0.1 0.15 0.2 0.25
0
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0
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0.015
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0.025

0.03

0.035

0.04
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Fig. 2. Synthethic data: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

with the broken line fitted to the points (left) and residual difference ρ as a function
of the indicator σ with the broken line fitted to the points (right).

between the indicators and actual differences. For c = 1 and c = 0.5, σ is rela-
tively high compared to ρ stressing that the indicators only give approximations
and that, if full precision is required, exact PGA should be computed.

4.2 Vertebrae Outlines

In this experiment, we consider outlines of vertebrae obtained in a study of verte-
bral fractures. The dataset of 36 lateral X-rays have been manually annotated by
medical experts to identify the outline of the vertebra of each image. To remove
variability in the number and placement of points, a resampling is performed
to ensured constant inter-point distances. With this equidistance property in
mind, the authors in [20] define a submanifold of R2n on which the outlines
naturally reside. We give a brief review of the setup but refer to the paper for
details. The equidistance constraint is encoded using a map F : R2n → Rn−2

with components

F i(P1, ..., Pn) = di+2,i+1 − di+1,i, i = 1, .., n− 2 (11)
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Fig. 3. Manually annotated vertebrae outline (left) and resampled outline (right).

with n the number of points and di,j = (xi − xj)
2 + (yi − yj)

2 the squared
distances between points Pi and Pj . The constraint is satisfied for a vertebra
outline c = {P1, . . . , Pn} if F (c) = 0. An additional constraint is added to
remove scaling effects by ensuring the outline reside on the unit sphere. The
preimage An = F−1(0) is then a submanifold of R2n, the space of equidistant
vertebra outlines. We choose 8 random outlines from the dataset and perform
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x 10
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Fig. 4. Vertebrae outlines: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

(left) and residual difference ρ as a function of the indicator σ (right).

linearized PGA and exact PGA. The experiment consists of 20 such selections,
and, for each selection, the entities τSv̂

, τ̃Sv̂
, ρ and σ are computed and plotted

in Figure 4. Though we visually see correlation between the indicators and their
respective associated values in the figures, not only are the correlations low, as
the indicators and their values have significantly different orders of magnitude,
but in reality, both the indicators and the associated values are in the order of
the computation tolerance, i.e close to zero from a numerical point of view. As
small indicators should imply small values, we can conclude that the indicators



12 Sommer, Lauze, Hauberg, Nielsen

works as required and that, for the example of vertebra outlines, doing statistics
on the manifold An is helpful in keeping the data consistent, i.e. the equidistance
constraint satisfied, but provides little added accuracy.

4.3 Human Poses

In this experiment, we consider human poses obtained using tracking software.
A consumer stereo camera4 is placed in front of a test person, and the tracking
software described in [10] is invoked in order to track the pose of the persons up-
per body. The recorded poses are represented by the human body end-effectors;
the end-points of each bone of the skeleton. The placement of each end-effector
is given spatial coordinates so that an entire pose with k end-effectors can be
considered a point in R3k. To simplify the representation, only the end-effectors
of a subset of the skeleton are included, and, when two bones meet at a joint,
their end-points are considered one end-effector. Figure 5 shows a human pose
with 11 end-effectors marked by thick dots.

−1.5−1−0.500.511.522.5
−0.5

0
0.5

0

0.5

1

1.5

2

2.5

Fig. 5. Camera output superimposed with tracking result (left) and a tracked pose
with 11 end-effectors marked by thick dots (right).

The fact that bones do not change length in short time spans gives rise to a
constraint for each bone; the distance between the pair of end-effectors must be
constant. We incorporate this into a pose model with b bones by restricting the
allowed poses to the preimage F−1(0) of the map F : R3k → Rb given by

F i(x) = ‖ei1 − ei2‖2 − l2i , (12)

where ei1 and ei2 denote the spatial coordinates of the end-effectors and li the
constant length of the ith bone. In this way, the set of allowed poses constitute
a 3k − b-dimensional implicitly represented manifold.

We record 26 poses using the tracking setup, and, amongst those, we make
20 random choices of 8 poses and perform linearized PGA and exact PGA. For
each experiment, τSv̂

, τ̃Sv̂
, ρ, and σ are computed and plotted in Figure 6. The

4 http://www.ptgrey.com/products/bumblebee2/
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Fig. 6. Human poses: Projection difference τSv̂ as a function of the indicator τ̃Sv̂ (left)
and residual difference ρ as a function of the indicator σ (right).

indicators provide a good picture of the projection and residual differences, which
are significantly greater than for the vertebra experiment. The indicators and
the corresponding true values are now at the same order of magnitude, and the
correlation between the indicators and the values they correspond to is therefore
significant. The maximal increase in average squared residuals is 1.53 percent
with individual squared point residuals changing up to 30.7 percent.

5 Conclusion

In this paper, we have explored the differences between exact PGA and its widely
used simplification, linearized PGA. We have developed simple indicators of the
loss of accuracy when using the linearized PGA instead of exact PGA. As shown
on real-life examples of manifold valued datasets, these indicators provide mean-
ingful insight into the accuracy of the linearized method. The experiments, in
addition, show that linearization is in some cases a good and fast approximation,
but exact PGA offers better accuracy for other applications.

We are currently working on deriving formal arguments for the correlation
between σ and ρ. In the future, we plan to apply the developed indicators to the
many uses of PGA, which have previously been computed using the linearized
approach, to test whether exact PGA can provide significant increases in ac-
curacy and hence more precise modeling. In order to make better decisions on
whether to use linearized or exact PGA, it will be useful to find thresholds for
the values of τ̃Sv̂

and σ dependent on the sought for precision. Future research
will hopefully lead to such thresholds.

References

1. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study
of nonlinear statistics of shape. Medical Imaging, IEEE Transactions on 23 (2004)
995–1005



14 Sommer, Lauze, Hauberg, Nielsen

2. Sommer, S., Lauze, F., Nielsen, M.: The differential of the exponential map, jacobi
fields, and exact principal geodesic analysis. Submitted. (2010)

3. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of dif-
fusion tensor data. Signal Processing 87 (2007) 250–262

4. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics
of diffusion tensors. ECCV Workshops CVAMIA and MMBIA. 3117 (2004) 87—98

5. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing.
Int. J. Comput. Vision 66 (2006) 41–66

6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International
Journal of Computer Vision 22 (1995) 61—79

7. Pennec, X., Guttmann, C., Thirion, J.: Feature-based registration of medical im-
ages: Estimation and validation of the pose accuracy. In: MICCAI 1998. Springer
Berlin (1998) 1107–1114

8. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective
spaces. Bull. London Math. Soc. 16 (1984) 81–121

9. Sminchisescu, C., Jepson, A.: Generative modeling for continuous Non-Linearly
embedded visual inference. In ICML (2004) 759—766

10. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articu-
lated tracking. In: Computer Vision - ECCV 2010, Heraklion, Greece (2010)

11. Karcher, H.: Riemannian center of mass and mollifier smoothing. Communications
on Pure and Applied Mathematics 30 (1977) 509–541

12. Pennec, X.: Intrinsic statistics on riemannian manifolds: Basic tools for geometric
measurements. J. Math. Imaging Vis. 25 (2006) 127–154

13. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: Geodesic PCA for
riemannian manifolds modulo isometric lie group actions. Statistica Sinica 20
(2010) 1–100

14. do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications.
Birkhauser Boston Inc., Boston, MA (1992)

15. Lee, J.M.: Riemannian manifolds. Volume 176 of Graduate Texts in Mathematics.
Springer-Verlag, New York (1997) An introduction to curvature.

16. Dedieu, J., Nowicki, D.: Symplectic methods for the approximation of the expo-
nential map and the newton iteration on riemannian submanifolds. Journal of
Complexity 21 (2005) 487–501

17. Noakes, L.: A global algorithm for geodesics. Journal of the Australian Mathe-
matical Society 64 (1998) 37–50

18. Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using Path-
Straightening. In: ECCV 2006. Volume 3951. Springer (2006) 95–106

19. Schmidt, F., Clausen, M., Cremers, D.: Shape matching by variational computation
of geodesics on a manifold. In: Pattern Recognition. Springer Berlin (2006) 142–151

20. Sommer, S., Tatu, A., Chen, C., Jørgensen, D., de Bruijne, M., Loog, M., Nielsen,
M., Lauze, F.: Bicycle chain shape models. MMBIA/CVPR 2009 (2009) 157–163

21. Huckemann, S., Ziezold, H.: Principal component analysis for riemannian mani-
folds, with an application to triangular shape spaces. Advances in Applied Prob-
ability 38 (2006) 299–319

22. Fletcher, P., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis
on lie groups. In: CVPR 2003. Volume 1. (2003) I–95–I–101 vol.1

23. Wu, J., Smith, W., Hancock, E.: Weighted principal geodesic analysis for facial
gender classification. In: Progress in Pattern Recognition, Image Analysis and
Applications. Springer Berlin (2008) 331–339

24. Said, S., Courty, N., Bihan, N.L., Sangwine, S.: Exact principal geodesic analysis
for data on so(3). EUSIPCO 2007 (2007)


