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Abstract. We present two data-driven importance distributions for particle filter-
based articulated tracking; one based on background subtraction, another on depth
information. In order to keep the algorithms efficient, we represent human poses
in terms of spatial joint positions. To ensure constant bone lengths, the joint po-
sitions are confined to a non-linear representation manifold embedded in a high-
dimensional Euclidean space. We define the importance distributions in the em-
bedding space and project them onto the representation manifold. The resulting
importance distributions are used in a particle filter, where they improve both ac-
curacy and efficiency of the tracker. In fact, they triple the effective number of
samples compared to the most commonly used importance distribution at little
extra computational cost.
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1 Motivation

Articulated tracking is the process of estimating the pose of a person in each frame in an
image sequence [1]. Often this is expressed in a Bayesian framework and subsequently
the poses are inferred using a particle filter [1–11]. Such filters generate a set of sample
hypotheses and assign them weights according to the likelihood of the observed data
given the hypothesis is correct. Usually, the hypotheses are sampled directly from the
motion prior as this vastly simplifies development. However, as the motion prior is in-
herently independent of the observed data, samples are generated completely oblivious
to the current observation. This has the practical consequence that many sampled pose
hypotheses are far away from the modes of the likelihood. This means that many sam-
ples are needed for accurate results. As the likelihood has to be evaluated for each of
these samples, the resulting filter becomes computationally demanding.

One solution, is to sample hypotheses from a distribution that is not “blind” to the
current observation. The particle filter allows for such importance distributions. While
the design of good importance distributions can be the deciding point of a filter, not
much attention has been given to their development in articulated tracking. The root
of the problem is that the pose parameters are related to the observation in a highly
non-linear fashion, which makes good importance distributions hard to design. In this
paper, we change the pose parametrisation and then suggest a simple approximation
that allows us to design highly efficient importance distributions that account for the
current observation.
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1.1 Articulated Tracking using Particle Filters

Estimating the pose of a person using a single view point or a small baseline stereo
camera is an inherently difficult problem due to self-occlusions and visual ambiguities.
This manifests itself in that the distribution of the human pose is multi-modal with an
unknown number of modes. Currently, the best method for coping with such distribu-
tions is the particle filter [12]. This relies on a prior motion model p(θt|θt−1) and a
data likelihood model p(Zt|θt). Here θt denotes the human pose at time t and Zt the
observation at the same time. The particle filter approximates the posterior p(θt|Z1:t)
as a set of weighted samples. These samples are drawn from an importance distribution
q(θt|Zt, θt−1) and the weights are computed recursively as
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In practice, it is common use the motion prior as the importance distribution, i.e. to
let q(θt|Zt, θt−1) = p(θt|θt−1) as then r(n)t = 1 which simplifies development. This
does, however, have the unwanted side-effect that the importance distribution is “blind”
to the current observation, such that the samples can easily be placed far away from
the modes of the likelihood (and hence the modes of the posterior). In practice, this
increases the number of samples needed for successful tracking. As the likelihood has
to be evaluated for each sample, this quickly becomes a costly affair; in general the
likelihood is expensive to evaluate as it has to traverse the data.

To use the particle filter for articulated tracking, we need a human pose representa-
tion. As is common [1], we shall use the kinematic skeleton (see fig. 1). This represen-
tation is a collection of connected rigid bones organised in a tree structure. Each bone
can be rotated at the point of connection between the bone and its parent. We model
the bones as having known constant length, so the angles between connected bones
constitutes the only degrees of freedom in the kinematic skeleton. We collect these into
one large vector θt representing all joint angles in the model at time t. To represent
constraints on the joint angles, they are confined to a subset Θ of RN .

From known bone lengths and a joint angle vector θt, the joint positions can be
computed recursively using forward kinematics [13]. We will let F (θt) denote the joint
positions corresponding to the joint angles θt. In this paper, we will make a distinction
between joint angles and joint positions as this has profound impact when designing
data-driven importance distributions.

1.2 Related Work

In articulated tracking, much work has gone into improving either the likelihood model
or the motion prior. Likelihood models usually depend on cues such as edges [2–4],
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Fig. 1. An illustration of the kinematic skeleton. Bones are connected in a tree structure where
branches have constant length. Angles between connected bones constitute the only degrees of
freedom in the model.

optical flow [4, 11] or background subtraction [3, 5, 14–18]. Motion priors are usually
crafted by learning activity specific priors, such as for walking [6, 7, 19, 20]. These
approaches work by restricting the tracker to some subspace of the joint angle space,
which makes the priors activity specific. When no knowledge of the activity is available
it is common [5, 6, 18, 21] to simply let θt follow a normal distribution with a diagonal
covariance, i.e.

pgp(θt|θt−1) ∝ N (θt|θt−1, diag) UΘ(θt) , (3)

where UΘ is a uniform distribution on the legal set of angles that encodes the joint con-
straints. Recently, Hauberg et al. [8] showed that this model causes the spatial variance
of the joint positions to increase as the kinematic chains are traversed. In practice this
means that with this model the spatial variance of e.g. the hands is always larger than
of the shoulders. To avoid this somewhat arbitrary behaviour it was suggested to build
the prior distribution directly in the spatial domain; a solution we will review in sec. 3.

In this paper we design data-driven importance distributions; a sub-field of articu-
lated tracking where little work has been done. One notable exception is the work of
Poon and Fleet [9], where a hybrid Monte Carlo filter was suggested. In this filter, the
importance distribution uses the gradient of the log-likelihood, which moves the sam-
ples closer to the modes of the likelihood function (and, hence, also closer to the modes
of the posterior). This approach is reported to improve the overall system performance.

In the more general filtering literature, the optimal particle filter [12] is known to
vastly improve the performance of particle filters. This filter incorporates the obser-
vation in the importance distribution, such that samples are drawn from p(θt|θt−1,Zt),
where Zt denotes the observation at time t. In practice, the optimal particle filter is quite
difficult to implement as non-trivial integrals need to be solved in closed-form. Thus,
solutions are only available for non-linear extensions to the Kalman filter [12] and for
non-linear extensions of left-to-right Hidden Markov models with known expected state
durations [22].

2 A Failed Experiment

Our approach is motivated by a simple experiment, which proved to be a failure. In
an effort to design data-driven importance distributions, we designed a straight-forward
importance distribution based on silhouette observations. We, thus, assume we have a
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binary image Bt available, which roughly separates the human from the scene. When
sampling new poses, we will ensure that joint positions are within the human segment.
We model the motion prior according to eq. 3, i.e. assume that joint angles follow a
normal distribution with diagonal covariance.

Let UBt
denote the uniform distribution on the binary image Bt, such that back-

ground pixels have zero probability and let projim[F (θt)] be the projection of joint
positions F (θt) onto the image plane. We then define the importance distribution as

q̃(θt|Bt, θt−1) ∝ N (θt|θt−1, diag) UΘ(θt) UBt
(projim[F (θt)]) . (4)

The two first terms correspond to the motion prior and the third term ensures that sam-
pled joint positions are within the human segment in the silhouette image. It is worth
noticing that the correction factor r(n)t (eq. 2) becomes constant for this importance
distribution and hence can be ignored.

It is straight-forward to sample from this importance distribution using rejection
sampling [23]: new samples can be drawn from the motion prior until one is found
where all joint positions are within the human segment. This simple scheme, which is
illustrated in fig. 2, should improve tracking quality. To measure this, we develop one
articulated tracker where the motion prior (eq. 3) is used as importance distribution
and one where eq. 4 is used. We use a likelihood model and measure of tracking error
described later in the paper; for now details are not relevant. Fig. 3a and 3b shows
the tracking error as well as the running time for the two systems as a function of the
number of samples in the filter. As can be seen, the data-driven importance distribution
increases the tracking error with approximately one centimetre, while roughly requiring
10 times as many computations. An utter failure!

Fig. 2. An illustration of the rejection sampling scheme for simulating the importance distribution
in eq. 4. The green skeleton drawn in full lines is accepted, while the two red dashed skeletons
are rejected as at least one joint is outside the silhouette.

To get to the root of this failure, we need to look at the motion prior. As previously
mentioned, Hauberg et al. [8] have pointed out that the spatial variance of the joint posi-
tions increases as the kinematic chains are traversed. This means that e.g. hand positions
are always more variant than shoulder positions. In practice, this leads to rather large
spatial variances of joint positions. This makes the term UBt

(projim[F (θt)]) dominant
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Fig. 3. Various performance measures for the tracking systems; errorbars denote one standard
deviation of the attained results over several trials. (a) The tracking error measured in centimetre.
(b) The running time per frame. (c) The average number of rejections in each frame.

in eq. 4, thereby diminishing the effect of the motion prior. This explains the increased
tracking error. The large running time can also be explained by the large spatial vari-
ance of the motion prior. For a sampled pose to be accepted in the rejection sampling
scheme, all joint positions need to be inside the human silhouette. Due to the large
spatial variance of the motion prior, many samples will be rejected, leading to large
computational demands. To keep the running time under control, we maximally allow
for 10000 rejections. Fig. 3c shows the average number of rejections in each frame in a
sequence; on average 6162 rejections are required to generate a sample where all joint
positions are within the human silhouette. Thus, the poor performance, both in terms
accuracy and speed, of the importance distribution in eq. 4 is due to the large spatial
variance of the motion prior. This indicates that we should be looking for motion priors
with more well-behaved spatial variance. We will turn to the framework suggested by
Hauberg et al. [8] as it was specifically designed for controlling the spatial variance of
joint positions. We shall briefly review this work next.

3 Spatial Predictions

To design motion priors with easily controlled spatial variance, Hauberg et al. [8] first
define a spatial pose representation manifoldM ⊂ R3L, where L denotes the number
of joints. A point on this manifold corresponds to all spatial joint positions of a pose
parametrised by a set of joint angles. More stringently,M can be defined as

M = {F (θ) | θ ∈ Θ} , (5)

where F denotes the forward kinematics function for the entire skeleton. As this func-
tion is injective with a full-rank Jacobian,M is a compact differentiable manifold em-
bedded in R3L. Alternatively, one can think of M as a quadratic constraint manifold
arising due to the constant distance between connected joints. It should be noted that
while a point on M corresponds to a point in Θ, the metrics on the two spaces are
different, giving rise to different behaviours of seemingly similar distributions.
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A Gaussian-like predictive distribution onM can be defined simply by projecting
a Gaussian distribution in R3L ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σ)] . (6)

When using a particle filter for tracking, one only needs to be able to draw samples
from the prior model. This can easily be done by sampling from the normal distribution
in R3L and projecting the result ontoM. This projection can be performed in a direct
manner by seeking

θ̂t = argmin
θt

∥∥x̂t − F (θt)∥∥2 s.t. θt ∈ Θ , (7)

where x̂t ∼ N (F (θt)|F (θt−1), Σ). This is an inverse kinematics problem [13], where
all joints are assigned a goal. Eq. 7 can efficiently be solved using gradient descent by
starting the search in θt−1.

4 Data-Driven Importance Distributions

We now have the necessary ingredients for designing data-driven importance distribu-
tions. In this paper, we will be designing two such distributions: one based on silhouette
data and another on depth data from a stereo camera. Both will follow the same basic
strategy.

4.1 An Importance Distribution based on Silhouettes

Many articulated tracking systems base their likelihood models on simple background
subtractions [3, 5, 14–18]. As such, importance distributions based on silhouette data
are good candidates for improving many systems. We, thus, assume that we have a
binary image Bt available, which roughly separates the human from the scene. When
predicting new joint positions, we will ensure that they are within the human segment.

The projected prior (eq. 6) provides us with a motion model where the variance of
joint positions can easily be controlled. We can then create an importance distribution
similar to eq. 4,

qbg(θt|Bt, θt−1) ∝ pproj(θt|θt−1) UBt
(projim[F (θt)]) . (8)

While the more well-behaved spatial variance of this approach would improve upon the
previous experiment, it would still leave us with a high dimensional rejection sampling
problem. As this has great impact on performance, we suggest an approximation of the
above importance distribution,

qbg(θt|Bt, θt−1) ∝ pproj(θt|θt−1) UBt
(projim[F (θt)]) (9)

= projM

[
N (F (θt)|F (θt−1), Σ)

]
UBt

(projim[F (θt)]) (10)

≈ projM

[
N (F (θt)|F (θt−1), Σ) UBt

(projim[F (θt)])
]
. (11)
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In other words, we suggest imposing the data-driven restriction in the embedding space
before projecting back on manifold. When the covariance Σ is block-diagonal, such
that the position of different joints in embedding space are independent, this importance
distribution can be written as

qbg(θt|Bt, θt−1) ≈ projM

[
L∏
l=1

N (µl,t|µl,t−1, Σl) UBt
(projim[µl,t])

]
, (12)

where µl,t denotes the position of the lth joint at time t and Σl denotes the block of
Σ corresponding to the lth joint. We can sample efficiently from this distribution us-
ing rejection sampling by sampling each joint position independently and ensuring that
they are within the human silhouette. This is L three dimensional rejection sampling
problems, which can be solved much more efficiently than one 3L dimensional prob-
lem. After the joint positions are sampled, they can be projected onto the representation
manifoldM, such that the sampled pose respects the skeleton structure.

A few samples from this distribution can be seen in fig. 4c, where samples from the
angular prior from eq. 3 is available as well for comparative purposes. As can be seen,
the samples from the silhouette-driven importance distribution are much more aligned
with the true pose, which is the general trend.

(a) (b)

(c) (d)

Fig. 4. Samples from various importance distributions. Notice how the data-driven distributions
generate more “focused” samples. (a) The input data with the segmentation superimposed. (b)
Samples from the angular prior (eq. 3). (c) Samples from the importance distribution guided by
silhouette data. (d) Samples from the importance distribution guided by depth information.
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4.2 An Importance Distribution based on Depth

Several authors have also used depth information as the basis of their likelihood model.
Some have used stereo [8, 10, 24] and others have used time-of-flight cameras [25].
When depth information is available it is often fairly easy to segment the data into
background and foreground simply by thresholding the depth. As such, we will extend
the previous model with the depth information. From depth information we can generate
a set of points Z = {z1, . . . , zK} corresponding to the surface of the observed objects.
When sampling a joint position, we will simply ensure that it is not too far away from
any of the points in Z.

To formalise this idea, we first note that the observed surface corresponds to the skin
of the human, whereas we are modelling the skeleton. Hence, the joint positions should
not be directly on the surface, but a bit away depending on the joint. For instance, hand
joints should be closer to the surface than a joint on the spine. To encode this knowledge,
we let Z⊕rl denote the set of three dimensional points where the shortest distance to
any point in Z is less than rl, i.e.

Z⊕rl = {z | min
k

(‖z− zk‖) < rl} . (13)

Here the rl threshold is set to be small for hands, large for joints on the spine and so
forth. When we sample individual joint positions, we ensure they are within this set, i.e.

qdepth(θt|Z, θt−1) ∝ pproj(θt|θt−1) UBt(projim[F (θt)]) UZ⊕
(
F (θt

)
(14)

≈ projM

[
L∏
l=1

N (µl,t|µl,t−1, Σl) UBt(projim[µl,t]) UZ⊕rl (µl,t)

]

where UZ⊕rl is the uniform distribution on Z⊕rl . Again, we can sample from this dis-
tribution using rejection sampling. This requires us to compute the distance from the
predicted position to the nearest point in depth data. We can find this very efficiently
using techniques from kNN classifiers, such as k-d trees [26].

Once all joint positions have been sampled, they are collectively projected onto the
manifoldM of possible poses. A few samples from this distribution is shown in fig. 4d.
As can be seen, the results are visually comparable to the model based on background
subtraction; we shall later, unsurprisingly, see that for out-of-plane motions the depth
model does outperform the one based on background subtraction.

5 A Simple Likelihood Model

In order to complete the tracking system, we need a system for computing the likelihood
of the observed data. To keep the paper focused on prediction, we use a simple vision
system [8] based on a consumer stereo camera1. This camera provides a dense set of
three dimensional points Z = {z1, . . . , zK} in each frame. The objective of the vision
system then becomes to measure how well a pose hypothesis matches the points. We

1 http://www.ptgrey.com/products/bumblebee2/
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assume that points are independent and that the distance between a point and the skin
of the human follows a zero-mean Gaussian distribution, i.e.

p(Z|θt) ∝
K∏
k=1

exp

(
−
min

[
D2(θt, zk), τ

]
2σ2

)
, (15)

where D2(θt, zk) denotes the squared distance between the point zk and the skin of
the pose θt and τ is a constant threshold. The minimum operation is there to make the
system robust with respect to outliers.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, the skin of a bone is defined as a capsule with main
axis corresponding to the bone itself. Since we only have a single view point, we discard
the half of the capsule that is not visible. The skin of the entire pose is then defined as
the union of these half-capsules. The distance between a point and this skin can then be
computed as the smallest distance from the point to any of the half-capsules.

6 Experimental Results

We now have two efficient data-driven importance distributions and a likelihood model.
This gives us two systems for articulated tracking that we now validate by comparison
with one using the standard activity independent prior that assumes normally distributed
joint angles (eq. 3) as importance distribution. We use this motion prior as reference as
it is the most commonly used model. As ground truth we will be using data acquired
with an optical marker-based motion capture system.

We first illustrate the different priors on a sequence where a person is standing in
place while waving a stick. This motion utilises the shoulders a lot; something that
often causes problems for articulated trackers. As the person is standing in place, we
only track the upper body motions.

In fig. 5 we show attained results for the different importance distributions; a film
with the results are available as part of the supplementary material. Visually, we see that
the data-driven distributions improve the attained results substantially. Next, we set out
to measure this gain.

To evaluate the quality of the attained results we position motion capture markers
on the arms of the test subject. We then measure the average distance between the
motion capture markers and the capsule skin of the attained results. This measure is
then averaged across frames, such that the error measure becomes

E =
1

TM

T∑
t=1

M∑
m=1

D(θ̂t,vm) , (16)

where D(θ̂t,vm) is the orthogonal Euclidean distance between the mth motion capture
marker and the skin at time t. The error measure is shown in fig. 6a using between
25 and 500 particles. As can be seen, both data-driven importance distributions perform
substantially better than the model not utilising the data. For a small number of samples,
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(a) (b) (c)

Fig. 5. Results from trackers using 150 particles with the different importance distributions. The
general trend is that the data-driven distributions improve the results. (a) The angular prior from
eq. 3. (b) The importance distribution guided by background subtraction. (c) The importance
distribution guided by depth information.
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Fig. 6. Various performance measures for the tracking systems using different importance dis-
tributions on the first sequence. Errorbars denote one standard deviation of the attained results
over several trials. (a) The tracking error E . (b) The effective number of samples Neff . (c) The
running time per frame.
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the model based on depth outperforms the one based on background subtraction, but for
150 particles and more, the two models perform similarly.

In the particle filtering literature the quality of the Monte Carlo approximation is
sometimes measured by computing the effective number of samples [12]. This measure
can be approximated by

Neff =

(
N∑
n=1

w
(n)
t

)−1
, (17)

where w(n)
t denotes the weight of the nth sample in the particle filter. Most often this

measure is used to determine when resampling should be performed; here we will use
it to compare the different importance distributions. We compute the effective number
of samples in each frame and compute the temporal average. This provides us with a
measure of how many of the samples are actually contributing to the filter. In fig. 6b
we show this for the different importance distributions as a function of the number of
particles. As can be seen, the data-driven importance distributions gives rise to more
effective samples than the one not using the data. The importance distribution based on
background subtraction gives between 1.6 and 2.2 times more effective samples than
the model not using data, while the model using depth gives between 2.3 and 3.3 times
more effective samples.

We have seen that the data-driven importance distributions improve the tracking
substantially as they increase the effective number of samples. This benefit, however,
comes at the cost of an increased running time. An obvious question is then whether
this extra cost outweigh the gains. To answer this, we plot the running times per frame
for the tracker using the different distributions in fig. 6c. As can be seen, the two data-
driven models require the same amount of computational resources; both requiring ap-
proximately 10% more resources than the importance distribution not using the data. In
other words, we can triple the effective number of samples at 10% extra cost.

We repeat the above experiments for a different sequence, where a person is moving
his arms in a quite arbitrary fashion; a type of motion that is hard to predict and as
such also hard to track. Example results are shown in fig. 7, with a film again being
available as part of the supplementary material. Once more, we see that the data-driven
importance distributions improve results. The tracking error is shown in fig. 8a; we see
that the importance distribution based on depth consistently outperforms the one based
on background subtraction, which, in turn, outperforms the one not using the data. The
effective number of samples is shown in fig. 8b. The importance distribution based on
background subtraction gives between 1.8 and 2.2 times more effective samples than
the model not using data, while the model using depth gives between 2.8 and 3.6 times
more effective samples. Again a substantial improvement at little extra cost.

7 Conclusion

We have suggested two efficient importance distributions for use in articulated tracking
systems based on particle filters. They gain their efficiency by an approximation that
allows us to sample joint positions independently. A valid pose is then constructed by a
projection onto the manifoldM of possible joint positions. While this projection might
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(a) (b) (c)

Fig. 7. Results from trackers using 150 particles with the different importance distributions. The
general trend is that the data-driven distributions improve the results. (a) The angular prior from
eq. 3. (b) The importance distribution guided by silhouette data. (c) The importance distribution
guided by depth information.
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Fig. 8. Various performance measures for the tracking systems using different importance distri-
butions on the second sequence. Errorbars denote one standard deviation of the attained results
over several trials. (a) The tracking error E . (b) The effective number of samples Neff . (c) The
running time per frame.
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seem complicated it merely correspond to a least-squares fit of a kinematic skeleton to
the sampled joint positions. As such, the suggested importance distributions are quite
simple, which consequently means that the algorithms are efficient and that they actu-
ally work. In fact, our importance distributions triple the effective number of samples
in the particle filter, at little extra computational cost. The simplicity of the suggested
distributions also makes them quite general and easy to implement. Hence, they can be
used to improve many existing tracking systems with little effort.
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