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Abstract. In recent years, there has been a surge of interest in spec-
tral manifold learning techniques. Despite the interest, only little work
has focused on the empirical behavior of these techniques. We construct
synthetic data of variable complexity and observe the performance of
the techniques as they are subjected to increasingly difficult problems.
We evaluate performance in terms of both a classification and a regres-
sion task. Our study includes Isomap, LLE, Laplacian eigenmaps, and
diffusion maps. Among others, our results indicate that the techniques
are highly dependent on data density, sensitive to scaling, and greatly
influenced by intrinsic dimensionality.

Key words: Manifold Learning, Evaluation, Synthetic Data.

1 Introduction

In recent years, the development of techniques for nonlinear dimensionality re-
duction has generated much interest. Spectral manifold learning, in which the
data is assumed to lie near an embedded manifold, has emerged as a particularly
prominent approach. These techniques compute a low-dimensional representa-
tion based on the structure of the manifold, while also guaranteeing a globally
optimal solution. During the last decade, a vast number of manifold learning
techniques were proposed [1-7].

Surprisingly, only little work has focused on the empirical behavior and per-
formance of these techniques. To our knowledge, only three such studies exist,
namely (1) the work of Yeh et al. [8], in which LLE, Kernel PCA, and Isomap
are compared in terms of a clustering task; (2) the work of Niskanen & Silven
[9] in which five techniques are evaluated on several low-density data sets; and
(3) the technical report of van der Maaten et al. [10] in which twelve techniques
are compared on a range of both artificial and natural data sets. In the case of
the two latter studies, performance is only evaluated in terms of neighborhood
preservation. All previous studies only consider problems of fixed difficulty.

Our study deviates from the previous work in two critical ways. First of all,
the techniques are evaluated in terms of both a local and a global measure of
structure preservation. Secondly, and more importantly, we construct data sets
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in which the complexity can be controlled by a single parameter, allowing us to
study the performance as a function of the problem difficulty. By systematically
applying this scheme to several types of complexity, we are able to identify sce-
narios under which the techniques break down. Moreover, we are able to highlight
strengths and weaknesses, not only of each technique individually, but also of
the methods in general. Furthermore, we believe that, by visualizing the perfor-
mance as a function of the data complexity, we give an intuitive understanding
of characteristic behavior not found in previous studies.

We have designed 5 data set variants, each of which can be scaled in com-
plexity, in terms of a certain data property. The suite contains data sets in which
(1) the density can be varied, (2) the amount of noise can be varied, (3) the em-
bedded manifold contains a hole of variable size, (4) the scaling can be varied,
(5) the intrinsic dimensionality can be varied. All data sets are modifications
of the classical swiss roll [2], which has traditionally been applied in qualitative
evaluation of manifold learning techniques. Our data sets are synthetic, because
natural data sets would have an unknown or at least poorly estimated manifold
structure, which would render our study impossible. We have confined our anal-
ysis to four canonical manifold learning techniques, namely Isomap [2], LLE [1],
Laplacian eigenmaps [3], and diffusion maps [7]. In order to evaluate the discov-
ered embeddings, we construct quality measures based on two common super-
vised learning tasks—classification and regression. The quality measure based
on regression is sensitive to global deformations in data structure and, to our
knowledge, this measure is novel in the analysis of manifold learning techniques.

2 Techniques

In the following, we provide a brief review of the applied manifold learning
techniques. Due to space constraints, we refer to the original papers for details.
The manifold learning problem is stated as follows. Let {x; € RP : i €
1,...,n} be a collection of data points lying near a possibly nonlinear d-dimen-
sional manifold. The aim is to determine a low-dimensional representation in
the form of a mapping x; € RP — y; € R? which preserves the structure of the
embedded manifold. We let X and Y denote corresponding design matrices.

The evaluated techniques represent each data point as a node in a similarity
graph G. The graph is constructed in one of three ways: i) by an e-neighborhood
approach, in which each point is connected to all points within a ball of radius e;
ii) by connecting each point to its k nearest neighbors; iii) by similarity weight-
ing, in which G is a fully connected, weighted graph and weights are assigned
according to a Gaussian function of width o2.

All techniques compute a low-dimensional representation which retains some
measure of the data structure, based on the similarity graph. The optimization
amounts to an eigendecomposition of a matrix which is quadratic in the number
of data examples.

Isomap [2] estimates the pair-wise geodesic distances by the shortest paths
distances in G. The low-dimensional representation is chosen such that the
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geodesic distances are retained. LLE [1] characterizes the local data structure
using linear models and uncovers an embedding which can be described by the
same model. Laplacian eigenmaps [3] compute a low-dimensional embedding in
which neighboring nodes are proximate, under the weighting of a Gaussian ker-
nel of width 2. Diffusion maps [7] apply similarity weighting and treats the
distances between data points as transition probabilities in a Markov chain. The
similarity between data points is estimated by simulating a Markov random walk
between the nodes for ¢ time steps.

3 Synthetic Data Sets

In this study, we construct data sets which vary in complexity as a function of
a single argument, which we will refer to as the data argument. We evaluate the
selected techniques by applying them to data sets of increasing complexity. All
constructed data sets are modifications of the traditional swiss roll [2]. The swiss
roll data set is a natural basis for several reasons: 1) it is visualizable; 2) it has
a simple shape which cannot be modeled by PCA; 3) the chosen techniques are
known to perform well on this data set.

A synthetic data set X is constructed by a mapping f : R* — RP of n data
points {§; € R :i=1,...,n}, where §; = [§i1,-..,9i.a)"- 9i, is sampled from

a uniform distribution with finite support [c;»”m, c}’““”]. We refer to these points

as the true embedding. Letting §;1 € [2F, %] and §;2 € [0,100], each data

point of the embedded swiss roll is calculated by

xi = [(§:) = [§i1 c08(§i1), Fi2s Fiasin(Gia)]"
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Fig. 1. Visualizations of a selection of the applied data sets. (a) 2-dimensional visual-
ization of the noise data set for 2 = 0.5. (b) 2-dimensional visualization of the noise
data set for 02 = 1. (c¢) Visualization of the hole data set for h = 0.5 (50%). (d)
Visualization of the intrinsic dimensionality data set for d = 1.

Below we motivate and describe the five data set variants. We provide visu-
alizations when the structure of the data set is nontrivial.
Density: Machine learning data sets are often of low density and it is unknown
how severely this affects the discovered embeddings. We construct data sets
which vary in density by varying n, the number of data points.
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Noise: Natural data often exhibit irregular structure and contains noisy mea-
surements. We model this by adding Gaussian noise sampled from N(0,0?) to
each component of the swiss roll data points x;. Realizations of this data are
visualized in Fig. 1(a) and 1(b).

Hole: Some concern has been expressed regarding the inability of Isomap to
model nonconvex manifolds [5]. Motivated by this, we apply the techniques to
data where the manifold has a hole. A manifold which contains a square hole,
centered in the true embedding and spanning h percent of each true embedding
axis, is constructed by rejecting all samples within the hole. Fig. 1(c) shows a
realization of this data.

Scaling: Natural data is often a product of a number of measurements; these
measurements are frequently not directly comparable and must be rescaled ap-
propriately for analysis. We investigate the sensitivity of the techniques with
respect to scaling. Rescalings of the swiss roll data set are constructed by ro-
tating the manifold 45 degrees around each coordinate axis and scaling the first
component of the resulting data points by a factor of s.

Intrinsic dimensionality: We investigate the performance of the techniques
when subjected to data of variable intrinsic dimensionality. A data set contain-
ing one intrinsic dimension is defined to be the 2-dimensional swiss roll. Each
additional intrinsic dimension is simply added by including a linear component
sampled from U (0, 100). Note that, under this simple scheme, the empirical per-
formance of the techniques degenerate to that of PCA when d = 3 and higher.
Because of this, we simplify the swiss roll by only sampling ¢, ; from U ( 37“, 77”)
A visualization of this is given in Fig. 1(d).

4 Quality Measures

Motivated by the applicability of spectral manifold learning techniques to data
analysis, we evaluate the embeddings discovered by these techniques in terms of
two common supervised learning tasks—classification and regression. Under this
scheme, we associate to each data point y; a target value ¢; based on its position
in the true embedding. In the classification setting, where tfl‘“ € {0,1}, target
values are assigned in a checkerboard pattern. In the regression setting we have
;Y € R and target values are assigned linearly along the first coordinate axis
in the true embedding, i.e. t;Y = §; 1. Visualizations are given in Fig. 2.

In principle, any classification technique can be applied in the classification
setting. In this study, we employ a Nearest Neighbour (NN) classifier for sim-
plicity. Letting pfl‘” denote the NN prediction of tfl‘” under leave-one-out cross-
validation, we define the quality Qs of Y as the misclassification rate [10,9].
The classification measure determines how well the local structure is preserved
in the discovered embeddings.

Since the target values were chosen as a linear component in the true embed-
ding, it is reasonable to expect that they can approximately be reconstructed
linearly in the embedded coordinate system. Thus, we define the quality Q¢4 of
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Fig. 2. Target value assignment in the classification and regression settings. Color
denotes target value. Left: Classification setting. Right: Regression setting.

the embedding Y wrt. the data X as the root mean squared error

n

Qreg = (|01 Z(p:eg — 17e9)2,

i=1

where p;“? is the predicted target value under a linear least squares regression
model using leave-one-out cross-validation. The regression measure responds to
deformations in both global and local data structure. To our knowledge, this
measure is novel.

5 Experimental Results

Each technique has a number of parameters which must be fixed. We esti-
mate the optimal parameters in a practical manner, by exhaustively search-
ing a fixed range of viable parameters, and retaining the parameters which
maximize quality measures. For Isomap, LLE, and Laplacian eigenmaps, k is
varied in k € {4,...,20}. For diffusion maps, the parameters are varied in
t € {1,2,3,5,10,15,25} and o € {0.75,1,2,3,5}. Note that we avoid fixing
the o2 parameter of Laplacian eigenmaps by letting 02 — oo, as proposed by
Belkin & Niyogi [3].

Having fixed the parameters for each data set, we estimate the mean perfor-
mance over a series of 10 trials; each trial uses a new realization of the data set.
The results are plotted along with the standard error. We report the performance
of PCA as a baseline measure. Except for the density experiment, each data set
is constructed with a density of 3500 data points. We remind the reader that,
for both quality measures, a lower score is indicative of better performance.

The experimental results are given in Fig. 3-7. For clarity, the markers have
been slighty displaced. Before inspecting each experiment in turn, we make two
general observations. First, we note that the two quality measures are highly
correlated; when the measures disagree, it is an indication that a global defor-
mation of the embedded manifold has occurred. Secondly, we observe that LLE
tends to perform less stable than the remaining techniques, especially in the re-
gression setting. We do, however, not believe that this is an effect of attempting
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to uncover global manifold structure from models of local geometry; our results
show that Laplacian eigenmaps is capable of this with considerable stability.
Rather, we speculate that this is a weakness of modeling the local geometry by
reconstruction weights.

PCA
57— Isomap
A LLE
—O— Laplacian|

—O- Diffusion

PCA 2
—5/— Isomap
~A-LLE €15
—{— Laplacian|
— Diffusion

Fig. 3. Results of the density experiment. Left: Classification measure. Right: Regres-
sion measure.

Density (Fig. 3): We make two key observations. First, the performance
of the techniques does not converge until n > 2500; note that this is a fairly
densely sampled manifold. Additionally, we observe that diffusion maps, in the
low-density cases, outperform the remaining techniques with significant stability,
according to the classification measure. Since this is not the case in the regression
setting, we conclude that only the local manifold structure is preserved.

Noise (Fig. 4): We note that the performance of the techniques deteriorates
as the noise is increased beyond o2 = 0.5. Surprisingly, the sensitivity of Isomap
with respect to short-circuiting does not result in more rapid deterioration than
the remaining techniques. Diffusion maps and Laplacian eigenmaps tend to be
especially robust when subjected to low noise data. We also observe that diffusion
maps are capable of preserving the local structure, even noise levels increase.
Hole (Fig. 5): We observe that holes on the manifold, regardless of the size,
does not significantly affect the performance of the applied techniques. Note
that this is not necessarily an indication that the applied techniques accurately
determine the structure of the true embedding, but rather that the discovered
embeddings are satisfactory in terms of the classification and regression tasks.
Scaling (Fig. 6): We observe that, generally, the techniques more easily recon-
struct an embedding which is satisfactory in terms of the classification measure
than the regression measure. Again, this gives an indication that the local struc-
ture is more easily retained than the global structure. Additionally, we observe
that the techniques struggle to recover the global manifold structure when the
data is scaled beyond s € [0.5;2].This effect is most pronounced for LLE, Lapla-
cian eigenmaps, and diffusion maps.

Intrinsic Dimensionality (Fig. 7): We observe that the performance of the
techniques begins to deteriorate when d > 3 and that the techniques do not have
a significant advantage over PCA when d > 4.
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Fig. 4. Results of the noise experiment. Left: Classification measure. Right: Regression
measure.
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Fig. 5. Results of the hole experiment. Left: Classification measure. Right: Regression
measure.
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Fig. 6. Results of the scaling experiment. Left: Classification measure. Right: Regres-
sion measure.
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Fig. 7. Results of the intrinsic dimensionality experiment. Left: Classification measure.
Right: Regression measure.
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6 Discussion

In summary, our experiments indicate that the evaluated techniques are 1) highly
dependent on data density, 2) invariant to holes on the manifold with respect
to the classification and regression tasks, 3) sensitive to scaling, and 4) highly
dependent on intrinsic dimensionality. Clearly, 1) and 4) are tightly related.

Although it is expected that high intrinsic dimensionality and low data den-
sity have a negative impact on the discovered embeddings, the severity of these
effects is nevertheless surprising. As limited amounts of data is the rule rather
than the exception, we consider this a severe problem. Note that these techniques
require quadratic memory in the amount of data examples, making problems of
more than 10.000 examples virtually infeasible on modern computers.

The experiments showed that the methods were sensitive to scaling of the
original data. This is a problem of practical concern as it questions the use of
e.g. whitening as a pre-processing step. Such pre-processing does not take the
manifold structure into account, which is why we see performance drops when
data is scaled.

We believe that our study provides four important contributions to the com-
munity: 1) we have presented a novel quality measure which is sensitive to global
deformations in data structure; 2) we exemplify how to view performance as a
function of complexity; 3) we facilitate an intuitive understanding of manifold
learning performance; 4) our study can help practitioners evaluate whether spec-
tral manifold learning is applicable for a certain data set.
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