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Abstract

Latent variable models are powerful tools for
learning low-dimensional manifolds from high-
dimensional data. However, when dealing
with constrained data such as unit-norm vec-
tors or symmetric positive-definite matrices,
existing approaches ignore the underlying ge-
ometric constraints or fail to provide mean-
ingful metrics in the latent space. To address
these limitations, we propose to learn Rieman-
nian latent representations of such geometric
data. To do so, we estimate the pullback met-
ric induced by a Wrapped Gaussian Process
Latent Variable Model, which explicitly ac-
counts for the data geometry. This enables us
to define geometry-aware notions of distance
and shortest paths in the latent space, while
ensuring that our model only assigns proba-
bility mass to the data manifold. This gener-
alizes previous work and allows us to handle
complex tasks in various domains, including
robot motion synthesis and analysis of brain
connectomes.

1 Introduction

Geometrically-constrained data appears in many appli-
cation domains such as biology (Macaulay et al., 2023),
robotics (Urain et al., 2022; Rozo and Dave, 2022),
motion modeling (Jaquier et al., 2024; He et al., 2024),
and medical imaging (Pennec et al., 2020; Baust and
Weinmann, 2020). For example, the orientation of rigid
bodies is commonly represented by unit quaternions
in the hypersphere S3, or diffusion tensor images are
encoded in the space of symmetric positive-definite ma-
trices Sd

++. One of the main challenges when analyzing
or predicting this type of data arises when finding a
low-dimensional subspace in a high-dimensional setting,
as classical techniques are not tailored to non-Euclidean
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data. However, recent works on Gaussian processes
latent variable models (GPLVM) (Mallasto et al.,
2019) and variational autoencoders (VAE) (Miolane
and Holmes, 2020; Beik-Mohammadi et al., 2021), offer
compelling solutions to this problem by generating
data complying with the given geometric constraints.

A key aspect the aforementioned works still overlook is
the data manifold structure. In other words, the as-
sumption that the latent space is Euclidean often fails
at capturing the underlying data manifold (Shao et al.,
2018; Hauberg, 2019). This problem was recently tack-
led by endowing the latent space of generative models
with a Riemannian metric induced by the non-linear
mapping of the model decoder (Tosi et al., 2014; Arvan-
itidis et al., 2018; Park et al., 2023). Importantly, this
metric encapsulates the data uncertainty into the la-
tent space, and therefore enables downstream tasks that
comply with the data manifold geometry. This proved
useful in reinforcement learning (Tennenholtz and Man-
nor, 2022), protein sequencing (Detlefsen et al., 2022),
and robotics (Chen et al., 2018; Scannell et al., 2021;
Beik-Mohammadi et al., 2021), among other disciplines.

Inspired by the foregoing works on the geometry of
generative models and the need of handling data
with geometric constraints in downstream tasks, we
here tackle the problem of learning low-dimensional
representations of Riemannian data that pull back
the data space metric into the latent space. In other
words, this paper proposes a generative model that
learns Riemannian submanifolds from Riemannian
data, hereinafter referred to as Riemann2 . Formally,
our model learns a stochastic latent variable model
f : Z → M, which maps latent embeddings to Rie-
mannian data lying on M. The latent space Z is
equipped with the pullback metric induced by the
decoder f , similarly to Tosi et al. (2014). This way, we
immerse the latent space, via the nonlinear mapping
f , into an ambient Riemannian manifold. Specifically,
we employ the geometry-aware wrapped GPLVM
(WGPLVM) (Mallasto et al., 2019) to represent f , so
that the decoded latent embeddings are guaranteed
to lie on M. Unlike Tosi et al. (2014) and Mallasto
et al. (2019), Riemann2 builds on multitask Gaussian
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UQ Riemannian Data Pullback metric Output correlation

Arvanitidis et al. (2018) ✗ ✗ ✓ ✗
Beik-Mohammadi et al. (2021) ✗ (✓) ✓ ✗
Tosi et al. (2014) ✓ ✗ ✓ ✗
Mallasto et al. (2019) ✓ ✓ ✗ ✗
Miolane and Holmes (2020) ✓ ✓ ✗ ✗

Riemann2 ✓ ✓ ✓ ✓

Table 1: Comparison of Riemann2 against previous
works. Note that the manifold-aware components of (Beik-
Mohammadi et al., 2021) are specific to the hypersphere S3.

Processes (GPs) (Bonilla et al., 2007), which are crucial
to account for correlated outputs. This is relevant to
account for correlations in products of manifolds, often
found in, e.g., synchronized motion generation.

In summary, our contributions are: (1) We define
latent space geometries for multitask WGPLVMs; (2)
we derive an expression for the distribution of the
Riemannian pullback metric for multitask wrapped
GPs, thus generalizing the work of Tosi et al. (2014);
(3) we define back-constraints for WGPLVMs by
leveraging Riemannian kernels, accounting for the
Riemannian geometry of the observation space; and
(4) we formulate the wrapped GP likelihood to account
for the change of volume of the distribution. Our
experiments confirm the importance of considering
both the data intrinsic geometry and its distribution.

2 Related Work

Latent generative models like GPLVMs (Lawrence,
2003; Titsias and Lawrence, 2010) and VAEs (Kingma
and Welling, 2014) generally assume a Gaussian prior
distribution over the mapping function or the latent
variables. Interestingly, as shown by Tosi et al. (2014);
Shao et al. (2018); Arvanitidis et al. (2018), the
decoding function of these models induces a pullback
Riemannian metric on their latent space, opening the
door to a better understanding on the learned embed-
dings geometry. However, none of these works con-
sidered data lying on Riemannian manifolds. Several
generative models such as GMMs (Jaquier et al., 2021),
normalizing flows (Rezende et al., 2020; Chen and
Lipman, 2024), or diffusion models (Huang et al., 2022)
were formulated to account for the intrinsic geometry
of the data. However, latent generative models with
geometry-aware decoders are still scarce, and few re-
cent works stand out: the Wrapped GPLVM (Mallasto
et al., 2019) and the geometry-aware VAEs (Miolane
and Holmes, 2020; Beik-Mohammadi et al., 2021). We
take inspiration from them in this work.

Table 1 summarizes how our approach contributes to
the state of the art. Tosi et al. (2014) and Arvanitidis
et al. (2018) define latent space geometries using
GPLVMs and VAEs, respectively. However, their
decoders are not manifold-aware, and thus assign
probability mass outside the specified manifold in the
ambient space. Mallasto et al. (2019) defined GPLVMs

on tangent bundles, thus restricting the mass to a given
manifold, but did not pull the data geometry back onto
the latent space. Similarly, Miolane and Holmes (2020)
design a VAE using a Riemannian normal distribution
for the decodings, but do not equip the latent space
with a metric. Beik-Mohammadi et al. (2021) define
latent space geometries of a hypersphere VAE, but
rely on handcrafted uncertainty estimates. Riemann2

is manifold-aware, achieves automatic uncertainty
quantification (UQ) through the use of GPLVMs,
and defines latent space geometries. Furthermore, it
accounts for correlated outputs via multitask kernels.

3 Background

Gaussian Process Latent Variable Model: A
GPLVM defines a generative mapping from latent vari-
ables xi ∈ RQ to data yi ∈ RD by modeling the corre-
sponding non-linear transformation f with a multitask
Gaussian process (GP) (Rasmussen and Williams, 2006;
Lawrence, 2003). The data is assumed to be normally
distributed, i.e., yi,d ∼ N (yi,d; fi,d, σ

2
d) with,

fi,d ∼ GP(md(xi), k
x
d (xi,xi)) and xi ∼ N (0, I), (1)

where yi,d is the d-th dimension of yi, md : RQ → R,
and kxd : RQ×RQ → R are the GP mean and kernel
function, and σ2

d is a hyperparameter. The main design
choice in a GP is the kernel kxd , which encodes the co-
variance between two predictions f(xi), f(xj) as a simi-
larity measure between the corresponding inputs xi,xj .
A common choice is the square exponential (SE) kernel
parametrized by a variance σ2 and a lengthscale θ.

A common approach to model vector-valued functions
f : RQ → RD is to learn each dimension fd indepen-
dently with its own GP (Álvarez et al., 2012, Sec. 3.3).
However, this disregards possible correlations between
the output dimensions. We consider a more general
formulation proposed by Bonilla et al. (2007), in which
such correlations are modeled using a learned positive-
definite matrix kf . The covariance thus becomes,

cov(fi,r, fj,s) = k
(
fr(xi), fs(xj)

)
= kfrsk

x(xi,xj). (2)

In other words, k = kf ⊗ kx, where ⊗ is the Kronecker
product. The GPLVM hyperparameters and latent
variables are often optimized using maximum likelihood
or maximum a posteriori (MAP) estimates. The
task covariance can be parametrized by a low-rank
square root B added to a diagonal variance vector
kf = (BB⊤ + diag(v)) (Daskalakis et al., 2022;
Gardner et al., 2018a). In large-datasets settings, con-
temporary methods use inducing points and variational
approximations of the evidence (Titsias and Lawrence,
2010). Note that, unlike neural-networks, GPLVMs
are data efficient and provide automatic uncertainty
quantification, a relevant aspect when estimating a
stochastic Riemannian metric, as explained in Sec. 4.2.
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fE

RL

Tb(x)M

Expb(x)

(M, g)

g̃x

(dExpb(x))fE(x)(dfE(x))x

x

fE(x) ∼ GP(0, k)

f(x) ∼ WGP(b, k)

Figure 1: Riemann2 : To learn a Riemannian submanifold from Riemannian data, our method pulls back a Riemannian
metric g̃x to a latent space via a Wrapped GPLVM. In this model, each latent code x ∈ RL defines a distribution of
tangent vectors fE(x) ∼ GP(0, k), which is then pushed forward onto the manifoldM via the exponential map Expb(·). Our
framework enables geodesics that, when decoded, comply with the data manifold and are guaranteed to lie onM.

Riemannian Geometry: A smooth manifold M is
a topological space that is locally Euclidean, meaning
that a neighborhood surrounding a point p ∈ M is dif-
feomorphic to RM . We can locally approximate M at
each point p ∈ M with a tangent space TpM ≃ RM ,
defined as the set of derivatives of all smooth curves
that pass through p (Lee, 2012). The collection of all
tangent spaces is called the tangent bundle, and is for-
mally defined as the disjoint union T M = ⊔p∈MTpM.

Given a function h : M → N between two smooth man-
ifolds, the differential at p ∈ M is the linear func-
tion dhp : TpM → Th(p)N that maps tangent vectors
vp ∈ TpM to tangent vectors dhp(vp) ∈ N . When
considering coordinates φ = (x1, . . . , xM ) around p and
ψ = (y1, . . . , yN ) around h(p), the differential dhp is
represented as the Jacobian matrix,1

[dhp] = Jh(φ(p)) =

ñ
∂(yi ◦ h)
∂xj

∣∣∣∣
φ(p)

ôN,M

i,j=1

. (3)

Intuitively, the Jacobian (3) transforms tangent vectors
onM to tangent vectors onN , which allows us to define
latent space geometries as discussed later.

A Riemannian manifold (M, g) is a smooth mani-
fold equipped with a Riemannian metric gp, i.e., a
smoothly-varying inner product over TpM (Lee, 2018).
Given a smooth curve γ : [a, b] → M, its Rieman-

nian length is given by L[γ] =
∫ b

a

»
gγ(t)(γ̇(t), γ̇(t))dt.

Geodesics are defined as curves that locally minimize
this length. Our method deals with Riemannian sub-
manifolds, which are locally-Euclidean topological sub-
spaces S ⊆ M that inherit the metric of M via their
immersion. Specifically, the immersion f : S → (M, g)
induces a pullback metric g̃x on S which, for x ∈ S and
v1,v2 ∈ TxS, is given by (Lee, 2018, Chap. 2),

g̃x(v1,v2) = gf(x)
(
dfx(v1),dfx(v2)

)
. (4)

1We omit the choice of charts from our notation of [dhp],
but we make this choice explicit when necessary.

Intuitively the pullback metric g̃x evaluates on tangent
vectors of TxS by “moving” them to Tf(x)M to com-
pute their inner product. Riemann2 defines pullback
metrics in the latent spaces of manifold-aware latent
variable models by explicitly computing an approxima-
tion of dfx, where f is a GPLVM defined on manifolds.

To operate with data on Riemannian manifolds, we ad-
ditionally leverage the Euclidean tangent spaces. To do
so, we resort to mappings back and forth between TpM
and M. The exponential map Expp(u) : TpM → M
maps a point u ∈ TpM to a point y ∈ M, so that
it lies on the geodesic γ satisfying γ(0) = p and
γ′(0) = u ∈ TpM at time 1. The exponential map
Expp(u) establishes a local diffeomorphism around
p, whose inverse function is the logarithmic map
Logp(y) : M → TxM. Intuitively, the logarithm map
Logp(y) represents the direction and speed at which
we need to “shoot” a geodesic based at p to land at y.

Wrapped GPLVMs: Introduced by Mallasto
et al. (2019), Wrapped GPLVMs (WGPLVM) extend
GPLVMs to data lying on Riemannian manifolds.
WGPLVMs build on a Wrapped GP (WGP) (Mallasto
and Feragen, 2018)) defined on the tangent spaces of
M. To fit a WGP on a dataset {(xi,yi)} ∈ RQ ×M,
we first project the observations onto the tangent
bundle T M, constructing a new tangent space dataset
{(xi,Logb(xi)(yi))}, where b : RQ → M assigns a
basepoint on the manifold M to each latent variable x.
By identifying Tb(x)M with RM , this dataset is now
Euclidean, and we can fit a GP fE ∼ GP(0, k) to it.

To predict over unseen points x∗, we first compute the
Euclidean posterior, and then push it forward onto M
via Expb(x∗). In summary, a WGP is Expb(·)

(
fE(·)

)
,

where fE ∼ GP(0, k) is a Euclidean GP learned on the
tangent spaces Tb(·)M. Analogously, WGPLVMs are
defined as WGPs in which the latent variables xi are
unobserved and thus optimized w.r.t the likelihood of
the data yi alongside the GP hyperparameters.
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4 Riemann2

We here introduce Riemann2 to learn Riemannian sub-
manifolds via WGPLVMs, that is, to learn latent repre-
sentations of Riemannian data alongside a Riemannian
pullback metric in the latent space. From a bird’s eye
view, we first learn a mapping f : RQ → (M, g), which
we then consider as a stochastic immersion, allowing us
to pull back the metric g onto the latent space RQ us-
ing Eq. (4). We define the mapping f as a WGPLVM.
Instead of a WGP that considers each output dimen-
sion independently, like Mallasto and Feragen (2018),
we propose a multitask WGP that explicitly models the
covariance across output dimensions. The Jacobian of
this WGP is then used to approximate a distribution of
the differential dfx and compute the metric g̃x.

Formally, let f = Expb(·) ◦ fE : RQ → (M, g) be a
multitask WGP. The differential dfx is computed by
applying the chain rule as,

dfx = d(Expb(·) ◦ fE)x = (dExpb(x))fE(x)(dfE)x. (5)

Therefore, we need to compute the differential of
the exponential map w.r.t. the tangent GP fE, and
the derivative of fE w.r.t. the latent variable x. In
coordinates, these correspond to Jacobians, as dis-
cussed in Sec. 3. Next, we compute the distribution
of the Euclidean Jacobian JfE(x) = [(dfE)x] under
the correspondence Tb(x)M ≃ RM . In Sec. 4.2 we
then obtain a point estimate of the pullback metric g̃
by approximating (dExpb(x))fE(x) using the posterior
mean of fE. Section 4.3 discusses the problem of
operating with tangent spaces and bundles in practice.
Finally, training and additional priors on the latent
space of Riemann2 are introduced in Sec. 4.4 and 4.5,
respectively. Riemann2 is summarized in Algorithm 1.

4.1 Jacobian of a Multitask Euclidean GP

Following Rasmussen and Williams (2006, Chap. 9.4),
the derivative of a GP is another GP as long as its
covariance function is differentiable. This also holds for
multitask Euclidean GPs fE with covariance k = kf ⊗
kx (see App. A). Given the dataset {xi, fE(xi)}Ni=1 ⊆
RQ×RM , this implies that the joint distribution of the
data and the transpose Jacobian J⊤

fE(x∗)
is of the form,[

vec(F )

vec
Ä
J⊤
fE
(x∗)
ä] ∼ N

Å
0,

ï
K ∂K
∂K⊤ ∂2K

òã
, (6)

where we defined F ∈ RN×M in vector form as vec(F )=
[f1(x1), . . . , f1(xN ), . . . , fm(x1), . . . , fm(xN )]⊤, K is
the NM ×NM matrix representing the covariance be-
tween the elements in vec(F ), and ∂K, ∂2K are the
first and second derivatives of K with respect to the
latent variable x, which we derive next for k = kf ⊗kx.

Algorithm 1 Riemann2

Input: Observations {yn}Nn=1 with yn ∈ M , prior on
hyperparameters p(ψ).
Output: Latent variables {xn}Nn=1, hyperparameters ψ
including the kernel hyperparameters, point estimates
E[G̃] of the Riemannian pullback metric.
Initialization:

Set the prior distribution p(x).
Initialize the latent variables {xn}Nn=1.

Training via MAP:
repeat

Compute the WGP marginal likelihood (11).
X, ψ ← OptStep(log p(y|x)).

until convergence
Pullback metric:

Compute the distribution (8) of JfE .

Compute point estimates E[G̃] using (10).

Intuitively, differentiating a kernel defined as a Kro-
necker product resembles the product rule. Namely, for
K = kf ⊗Kx with Kx = [kx(xn,xa)]

N
n,a=1, we have,

∂K = kf ⊗ ∂Kx, ∂Kx =

ï
∂kx(xn,x∗)

∂x(r)

òN,Q

n,r=1

,

∂2K = kf ⊗ ∂2Kx, ∂2Kx =

ï
∂2kx(x∗,x∗)

∂x(r)∂x(s)

òQ
r,s=1

.

Notice that the task kernel kf is factored out as it does
not depend on x (see App. B for details).

Using the joint distribution (6), the posterior over the
Jacobian is computed as a usual GP posterior as,

vec
(
J⊤
fE(x∗)

)
∼N

(
vec(∂Kx⊤(Kx)−1F ), (7)

kf ⊗ (∂2Kx − ∂Kx⊤(Kx)−1∂Kx)
)
.

The posterior (7) is equivalent to the following matrix
normal distribution (Gupta and Nagar, 1999, Chap. 2.),

J⊤
fE(x∗) ∼MNQ×M (∂Kx⊤(Kx)−1F , (8a)

∂2Kx − ∂Kx⊤(Kx)−1∂Kx, (8b)

kf ). (8c)

where Eqs. (8a), (8b), and (8c) are the posterior mean,
covariance over rows, and covariance over columns,
respectively. A more detailed derivation is provided in
App. A.2. We argue that this result makes intuitive
sense: The usual Jacobian posterior for the dimension-
independent case appears as the posterior mean and
covariance over rows (i.e., over the data), while the
posterior covariance over columns is precisely the task
covariance. In summary, the posterior distribution of
the Jacobian of a multitask GP is the matrix normal
distribution in Eq. (8). Next, we leverage this distri-
bution to compute an estimate of the pullback metric.
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4.2 Pullback Metric of a Wrapped GP

Given the distribution (8) of the differential of the Eu-
clidean part of a WGP, the missing component to com-
pute dfx in Eq. (5) is the differential of the exponen-
tial map. Since computing the posterior distribution
of (dExpb(x))fE(x) is involved and manifold-specific, we
propose a deterministic approximation given by the
mean posterior of the Euclidean GP fE. After evaluat-

ing the exponential map on the mean posterior f̂E(x),
the differential can be computed using autodifferentia-

tion. We denote this approximation as JExpb(x)

(
f̂E(x)

)
.

We also approximate the metric evaluations gf(x) in
Eq. (4) by using the posterior mean of the Wrapped

GP f , whose matrix representation we denote by “G(x).

By applying the foregoing approximations, we derive
the pullback metric g̃x of Eq. (4) in matrix form as,

G̃ = J⊤
fEJ

⊤
Expb(x)

“GJExpb(x)
JfE = J⊤

fEǦJfE . (9)

Finally, we leverage the distribution of the posterior
Jacobian of the Euclidean GP (8) to compute a point
estimate of the Riemannian pullback metric G̃. By us-
ing properties of the matrix normal distribution (Gupta
and Nagar, 1999, Theorem 2.3.5 (ii)), we obtain

E[G̃] = E[J⊤
fE ] ǦE[JfE ] + Tr(Ǧ⊤Kf )Σr(J

⊤
fE), (10)

where Σr is the posterior covariance over rows given
by Eq. (8b) (see also App. A). Importantly, the point
estimate of G̃ in Eq. (10) unlocks the computation of
geodesics in the latent space. It is worth noting that
Eq. (10) generalizes the work of Tosi et al. (2014),
whose approach exclusively considers Euclidean data,
i.e., Ǧ = I, and dimension-independent GPs with no
correlation between output dimensions, i.e., kf = I.

4.3 How to Represent Tangent Spaces

When considering WGPs, the specific representation of
the tangent space TpM is often left aside, although it
is highly relevant when using WGPs in practice. This
relates to the need of constructing smooth frames, i.e.,
collections of smoothly-varying bases over the tangent
bundle TbM = ⊔x∈RQTb(x)M, where b is the basepoint
function (Mallasto and Feragen, 2018; Mallasto et al.,
2019). We here discuss how we implement the concepts
of tangent space and bundle, and how it differs from
alternative implementations.

Current software (Townsend et al., 2016; Miolane et al.,
2020) implements logarithmic maps Logp(u) by con-
sidering their output vectors as elements of the ambi-
ent space, instead of relying on an intrinsic formulation
w.r.t. the coordinates of a basis. For example, with the
sphere S2 ⊆ R3, tangent vectors at p ∈ S2 are con-
sidered as 3-dimensional vectors belonging to the plane

orthogonal to p ∈ R3. There exist two ways to think
about TpS2 when implementing a WGP on S2: (1) as
an abstract vector space, where we place a GP prior on
the coefficients of a chosen basis; (2) as a subspace of R3

whose vectors we regress directly in ambient space (Mi-
olane et al., 2020). We find the latter interpretation po-
tentially problematic, as in practice, current implemen-
tations learn a projected version of WGPs (Myers et al.,
2022), where the learned tangent vectors do not neces-
sarily belong to the tangent space. This problem com-
pounds when considering manifolds such as the space of
symmetric positive-definite matrices Sk

++, where current
implementations treat tangent vectors as k×k symmet-
ric matrices instead of abstract vectors.

We here consider the former alternative: We define
a vectorization for each TpM. Specifically, instead
of considering Logp(q) as a vector in the ambient
space where M is embedded in, we specify a basis
of TpM and define the output of Logp(q) as a linear
combination of this basis. For example, in the case
M = S2, this implies learning a tangent GP on a
2-dimensional space instead of a 3-dimensional one.
In the case of Sk

++, this implies regressing k(k − 1)/2
output dimensions instead of k2. For most manifolds,
such a basis (a.k.a. frame) cannot be built smoothly
and globally. Nevertheless, we found that non-smooth
choices (see App. C) work well in practice.

4.4 A Note on Training Wrapped Models

As mentioned in Sec. 3, the GPLVM latent variables
and hyperparameters are often inferred by maximizing
the marginal log-likelihood log p(y|x) or the MAP esti-
mate log

(
p(y|x)p(x)

)
. In the case of wrapped models,

Mallasto and Feragen (2018); Mallasto et al. (2019) in-
stead maximized the marginal likelihood of the tangent
space vectors vi = Logb(xi)(yi) alongside the GP pa-
rameters. However, as the exponential map pushes for-
ward the Euclidean distribution onto M, the marginal
likelihood of a WGP must consider the change of vol-
ume induced by Expb(·). Dismissing it may lead to ill-
optimized densities. We instead account for this change
in volume using the change of variable formula (see
App. D) and optimize the WGPmarginal log-likelihood,

log p(y|x) = logN
(
v;0,K

)
− log det

Å
∂ Expb(x)

∂v

ã
.

(11)
4.5 Priors and Back Constraints

Priors on the latent space and back con-
straints (Lawrence and Quiñonero Candela, 2006;
Urtasun et al., 2008) are often used to bias the
structure of the latent space. Similarly, the latent
space of Riemann2 can be augmented with priors
p(x). For instance, in Sec. 5, we use the Gaussian
process dynamical model (GPDM) prior (Wang et al.,
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(a) WPGLVM and Riemann2 latent space with one (decoded) geodesic each ( , ).

(b) GPLVM and pGPLVM latent space with one (decoded) geodesic each ( , ).

Figure 2: Illustrative example on R2×S2: From left to right : Latent variables ( ) with model uncertainty and magnification
factor of the pullback metrics, demonstrations ( ) and decoded geodesics ( , ) on R2 and S2.

2008) to account for the temporal structure of the
data. Riemann2 can also be augmented with back
constraints that define the latent variables as function
of the data via the mapping,

xi,q =

N∑
j=1

wq,jk
M(yi,yj). (12)

Importantly, the mapping (12) must be manifold-aware,
which we achieve by expressing data similarities via
a Riemannian kernel kM, following the formulations
in (Borovitskiy et al., 2020; Azangulov et al., 2023).

5 Experiments

We test Riemann2 on the following experiments: (1)
an illustrative example with synthetic data on R2 × S2,
(2) a robot end-effector motion synthesis experiment
on R3 × S3, (3) a manipulability learning scenario
in R2 × S2

++, and (4) brain connectomes in S15
++. We

compare Riemann2 against three GP-based baselines:
(1) a vanilla GPLVM, which is manifold-unaware and
does not equip the latent space with a metric; (2)
the pullback GPLVM (pGPLVM) from Tosi et al.
(2014), which assumes Euclidean data but endows
the latent space with a pullback metric through
a dimension-independent GP; and (3) a multitask
variant of the WGPLVM proposed in (Mallasto et al.,
2019), which is manifold-aware but does not pullback
the data manifold geometry in the latent space. All
models are trained and tested under the same settings.
The latent spaces of WPGLVM and Riemann2 differ
from the latent spaces of GPLVM and pGPLVM due
to the intrinsic differences between the Euclidean and

wrapped GP models. Note that we do not compare
against VAE-based approaches (Miolane and Holmes,
2020; Beik-Mohammadi et al., 2021) as these models
are structurally different from GPLVMs. For example,
as discussed in Sec. 1, they rely on handcrafted
uncertainty quantification. Experimental settings,
geodesics optimization, and training parameters for
all models are detailed in App. E. A supplemen-
tary video and open source code can be found in
https://sites.google.com/view/riemann2.

5.1 Illustrative Example on R2 × S2

To illustrate the main differences between Riemann2

and the baselines, we first learn 2-dimensional latent
spaces out of trajectories on R2 × S2. As in (Beik-
Mohammadi et al., 2021), we consider a J shape in
R2 and a C shape projected on S2. All approaches are
augmented with a GPDM latent prior to account for
the temporal structure of the trajectories. Figure 2
shows the learned latent spaces as well as a geodesic in
each latent space and the resulting decoded trajectory.
Note that the GPLVM and pGPLVM share the same
latent space as the pullback metric of the pGPLVM is
obtained after training the GPLVM. This also applies
to WGPLVM and Riemann2 . The background colors
in the first and second columns represent the model

uncertainty and the magnification factor
»

det(G̃) of
Riemann2 and pGPLVM pullback metrics.

We observe that the magnification factor is low in the
data manifold and high on its boundary, for both pull-
back approaches. This induces the Riemannian geodesic
to travel along the data manifold, while Euclidean

https://sites.google.com/view/riemann2
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Table 2: Percentage of geodesics on manifold (%) and aver-
age dynamic time warping distance (DTWD) between the
geodesic of each model and the demonstrations.

GPLVM pGPLVM WGPLVM Riemann2

R2×S2 % 0.01 0.0 1.0 1.0
DTWD 13.2± 0.98 3.4± 0.77 11.9± 0.91 3.8± 0.91

R3×S3 % 0.02 0.04 1.0 1.0
DTWD 1.08± 0.06 0.63± 0.11 0.94± 0.09 0.57± 0.18

S15
++ % 0.76 1.0 1.0 1.0

geodesics, i.e., straight lines, cross empty regions in
the latent space. Consequently, the decoded Rieman-
nian geodesics of pGPLVM and Riemann2 resemble
the training trajectories unlike the decoded Euclidean
geodesics of GPLVM and WGPLVM. However, only the
decoded trajectories obtained from the manifold-aware
WGPLVM and Riemann2 intrinsically stay on R2×S2.
These observations are quantitatively supported by
the metrics reported in Table 2, which reports the
percentage of each geodesic belonging to R2 × S2, and
their dynamic time warping distance (DTWD) indicat-
ing their resemblance with the training data. Overall,
Riemann2 is the only model that is manifold-aware
and captures the underlying data manifold.

5.2 Robot Motion Synthesis on R3 × S3

Learning from demonstrations (LfD) consists of mod-
eling and generating robot motions from a set of hu-
man examples. In this context, Beik-Mohammadi et al.
(2021) proposed to learn a latent Riemannian manifold
from demonstrations and to leverage the corresponding
geodesics to synthesize robot motions. They considered
a common LfD downstream task, namely a reach-and-
pick-up task performed by a 7-DoF robotic arm. The
data was collected from real-world human demonstra-
tions and consisted of end-effector positions and rota-
tions encoded as points in R3 × S3. We evaluate Rie-
mann2 in a subset of this dataset, consisting of one
starting and one target point. We here employ back-
constrained models, where kM is defined as the product
kR× kS of an Euclidean SE and sphere SE (Borovitskiy
et al., 2020), for the wrapped models. For Euclidean
models, we use only an Euclidean SE kernel.

Figure 3-left shows the latent spaces learned by the
pullback models along with the corresponding magni-
fication factors, as well as one geodesic for each model.
The corresponding decoded trajectories are represented
as frames on the right panels. The pullback metrics
of pGPLVM and Riemann2 encode the data manifold
in the latent space and generate geodesics that follow
the data distribution (see also the DTWD in Table 2).
However, pGPLVM, as the GPLVM, fail to generate
valid orientations in S3, as shown in Fig. 3b-right and
Table 2. In contrast, Riemann2 generates valid trajec-
tories resembling the training data in R3 × S3. We use
the decoded trajectories of WGPLVM and Riemann2

as reference positions and orientations to be tracked

(a) WPGLVM ( ) and Riemann2 ( ).

(b) GPLVM ( ) and pGPLVM ( ).

Figure 3: R3×S3: Left : Latent variables ( ) with magnifica-
tion factor of the pullback metrics. One geodesic is depicted
per model in the corresponding latent space. Right : Demon-
strations ( ) and reconstructions represented as positions
and rotation frames. Rotations are not depicted for GPLVM
and pGPLVM as their reconstructions do not lie on S3.

(a) Riemann2.

(b) WGPLVM.

Figure 4: R3 × S3: Robot motions generated from the de-
coded WGPLVM and Riemann2 geodesics. End-effector
trajectories are represented as position and rotation frames.

by the robot to execute the reach-and-pick task. The
resulting robot motions are shown in Fig. 4. Note that
GPLVM and pGPLVM cannot be used to generate
robot motions as they do not lead to valid orientations.

5.3 Manipulability Learning in R2 × S2
++

Next, we testRiemann2 on a challenging robot learning
downstream task: Manipulability learning on a highly-
redundant planar robot. Manipulability ellipsoids are
defined as functions of the robot joint configuration q as
M(q) = J(q)⊤J(q), with J(q) being the robot Jaco-
bian2. They indicate the preferred directions of velocity
control. The considered task involves learning jointly a
robot end-effector trajectory and a manipulability pro-
file. Robot motions are then generated by following the

2J(q) is computed from the robot kinematics and should
not be confused with the Jacobian introduced in Sec. 3.
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(a) WPGLVM and Riemann2 latent space with one (decoded) geodesic each ( , ).

(b) GPLVM and pGPLVM latent space with one (decoded) geodesic each ( , ).

Figure 5: R2×S2
++: From left to right : Latent variables ( ) with magnification factor of the pullback metrics, demonstrations

( , ) and reconstructions depicted as curves and ellipsoids in R2, on the manifold S2
++, and as ellipsoids over time.

Table 3: Percentage of geodesics on manifold (%) and average dynamic time warping distance (DTWD) between the geodesic
and the demonstrations for the manipulability learning experiment on R2 × S2

++.

Independent output dimensions Correlated output dimensions
GPLVM pGPLVM WGPLVM Riemann2 GPLVM pGPLVM WGPLVM Riemann2

% 0.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DTWD 18.3± 1.8 6.1± 1.9 18.3± 1.8 3.5± 0.8 17.0± 1.9 4.9± 1.7 16.3± 1.9 3.5± 0.3

desired end-effector trajectory as the main control task,
and the desired manipulability profile as a secondary
objective, as proposed by (Jaquier et al., 2021). In this
setting, we learn a Riemannian submanifold from data
in R2 × S2

++. Specifically, we consider training data
consisting of the position trajectories and manipulabil-
ity profiles recorded from a simulated highly-redundant
planar robot following a G-shape trajectory on a 2D
plane. In the demonstrations, the robot velocity manip-
ulability is aligned with the direction of motion, thereby
allowing it to follow a given trajectory at a higher speed.
Note that this is a desired feature in robotic tasks, as
this allows a robot to shape its posture according to
the task requirements (Jaquier et al., 2021). All models
are augmented with a GPDM prior and with back
constraints. The kernel kM is defined as the product
kR × kS++ of a Euclidean SE and SPD SE (Azangulov
et al., 2023) kernels, and as a Euclidean SE kernel, for
the wrapped and Euclidean models, respectively.

Figure 5 shows the learned latent spaces, alongside mag-
nification factors for the pullback metrics, geodesic tra-
jectories, and decoded position and manipulability pro-
files. As for the previous experiments, the decoded
geodesics generated by pGPLVM andRiemann2 resem-
ble the data distribution due to the pullback metric.
Unlike the experiments with data on the hypersphere
manifold, the trajectories generated by pGPLVM fulfill
the SPD manifold constraints (see also Table 3). This

is due to the geometry of the SPD manifold (see third
panels of Fig. 5), for which linear interpolation between
nearby SPD matrices remains in the SPD cone. How-
ever, the trajectories generated by Riemann2 match
the training data more closely than those obtained
by pGPLVM, as shown by the DTWD values in Ta-
ble 3. Moreover, crossing empty regions, e.g., with the
GPLVM geodesic, still results in invalid trajectories.

Next, we analyse the importance of considering cor-
related output dimensions within the multitask mod-
els. Table 3 shows that models incorporating corre-
lated output dimensions consistently generate trajec-
tories that more closely align with the training data
patterns than those assuming independent dimensions.
Riemann2 with correlated outputs achieves the best re-
sults over all, showing the relevance of accounting for
the data and latent space geometries, as well as the
correlations between position and manipulability. Note
that Riemann2 with independent outputs achieves a
similar DTWD mean, but higher variance. In contrast,
the manipulability profiles are better reconstructed with
correlated outputs, as illustrated in Fig. 8 of App. F.

5.4 Brain Connectomes in S15
++

Finally, we test the ability of Riemann2 to learn a sub-
manifold of high-dimensional data. Similarly as (Mi-
olane and Holmes, 2020), we consider resting-state func-
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(a) WPGLVM ( ) and
Riemann2 ( ).

(b) GPLVM ( ) and
pGPLVM ( ).

Figure 6: S15
++: Latent variables ( ) with magnification fac-

tor of the pullback metrics. One Euclidean ( ) and one
Riemannian ( ) geodesic are depicted for each model.

tional brain connectome data from the “1200 Subjects
release” of the Human Connectome Project (Van Essen
et al., 2013). We learn a submanifold from brain con-
nectomes from 200 subjects out of the 812 release. Each
connectome is represented as a point in S15

++.

Figure 6 shows the latent spaces learned with GPLVM,
pGPLVM, WGPLVM, and Riemann2 , alongside mag-
nification factors for the pullback metrics and geodesic
trajectories. We observe that most of the latent vari-
ables are cluttered in the middle-right part of the
GPLVM and pGPLVM latent space, while they are
more evenly distributed in the case of Riemann2 and
WPGLVM. Moreover, the pGPLVM magnification fac-
tor does not draw a clear boundary around the data
manifold in this case. As for previous experiments, the
Euclidean models do not guarantee that the decoded
geodesics belong to the given manifold (see Table 2).

5.5 Comparison with Metric Learning

We compare Riemann2 with metric learning in the la-
tent space of a trained WGPLVM. Following (Lebanon,
2002), we use a metric (detG(x))−1/2 ∝ p(x), where
p(x) is a density estimated from data. As the density
is a scalar measure, we chose the metric to be isotropic,
i.e., G(x) = λ(x)I with λ−Q/2(x) ∝ p(x). We define
p(x) as a kernel density estimate of the latent variables,

i.e., p(x) =
∑N

n=1
1

(2π)Q/2σD exp(−d(x,xn)
2σ2 ), where xn

are the training latent variables and σ is a hyperparam-
eter defining the density variance. We compute Rie-
mannian metrics G(x) derived from the kernel density
estimate on the illustrative example of Sec. 5.1 for differ-
ent values of σ, as well as corresponding geodesics for
each metric with the same start and end points as in
Fig. 2. The corresponding results are reported in Fig. 7
and Table 4. We observe that the WGPLVM ensures
that all decoded geodesics stay on R2×S2. However, the
aforementioned metric learning approach is sensitive to
the hyperparameter σ: Its DTWD is similar to that of
Riemann2 for σ = 0.25, indicating the similarity of the
generated geodesic with the training data. However, the

Figure 7: Metric learning in R2×S2: From left to right : La-
tent variables ( ) with model uncertainty and magnification
factor of the pullback metrics with one WGPLVM ( ), one
Riemann2 ( ), and several metric-learning ( ) geodesics
for different parameters σ.

Table 4: Percentage of geodesics on manifold (%) and av-
erage DTWD between the geodesic of each metric-learning
model and the demonstrations.

σ 0.1 0.25 0.5 1.0 2.0
% 1.0 1.0 1.0 1.0 1.0
DTWD 7.3± 0.49 3.6± 0.80 11.6± 0.65 13.1± 0.71 12.3± 0.81

DTWD drastically increases for other hyperparameter
values, leading to trajectories that strongly differ from
the training data, similar to the WGPLVM geodesic.

Compared to metric learning on the latent space, pull-
back metrics offer several advantages: They avoid in-
troducing additional parameters, thus simplifying the
model,and they eliminate the need for a separate learn-
ing step after training the latent variables, streamlining
the overall training process. Furthermore, metric learn-
ing is very sensitive to parameter choices.

6 Conclusions

Our goal of learning a Riemannian submanifold from
Riemannian data was twofold: (1) When learning
latent representations, any operation on the latent
space such distances or geodesics between two em-
beddings, must comply with the underlying data
manifold; (2) We must guarantee that the decoded
latent variables lie on the Riemannian manifold of in-
terest. Both objectives proved to be notably important
when geodesics were employed as a motion generation
mechanism, which may unlock applications on avatars
animation or humanoid robots control. However, as
Riemann2 generalizes previous works, its features can
also be separately employed to learn geometry-aware
GP generative models, or to analyze the geometry of
GPLVMs, for single or multitask GPs. For instance, if
adhering to the ambient geometry is not critical, then
learning a Riemannian pullback metric may suffice for
data manifold estimation and sample generation. Sim-
ilarly as GPLVMs, it is often relevant to incorporate
additional smoothness constraints on the latent spaces
of Riemann2 through priors and back constraints. The
latter increases the computational cost of the model
due to the use of Riemannian kernels. However, they
are necessary to account for the data geometry.
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A Distribution of the pullback metric of Riemann2

This section details the derivation of the pullback Riemannian metric of the latent space of Riemann2 , presented
in Section 4 of the main paper.

A.1 The pullback metric

In this paper, we model manifold-valued functions f = Expb(·) ◦ fE : RQ → (M, g) using WGPs. We then use this

mapping to pull back the metric g, defining a custom geometry in the latent space Rd. Given two tangent vectors
v1,v2 ∈ TxRd, the pullback metric g̃ = f∗g, with ∗ denoting the pullback operator, is defined as in Eq. (4) (Lee,
2018, Chap. 2) by,

g̃x(v1,v2) = gf(x)

(
dfx(v1),dfx(v2)

)
.

In other words, we carry the tangent vectors from TxRd to Tf(x)M using the differential of f , and compute their
inner product there. Given a choice of coordinates, the pullback metric g̃ can be represented in matrix form.
Specifically, considering the matrix representation of (f∗g)x, gf(x) and (df)x, we get,

v⊤
1 [g̃x]v2 = v⊤

1 G̃(x)v2 = v⊤
1 J

⊤
f(x)G(f(x))Jf(x)v2 = v⊤

1 J
⊤
f(x)[gf(x)]Jf(x)v2.

This implies that, in coordinates, G̃ = J⊤
f GJf . When the mapping is a WGP, all the components of this product

are stochastic and induce a distribution over the metric G̃. As Tosi et al. (2014), we consider the expected pullback
metric E[G̃] as a point estimate of the pullback metric distribution, as explained in Section 4.2. To obtain the
expected pullback metric, we need to compute the Jacobian Jf = JExpb(·)JfE . The computation of the first Jacobian
JExpb(·) is explained in Section 4.2. The computation of the second Jacobian is briefly presented in Section 4.1 and
further elaborated next.

A.2 The distribution of the Jacobian of a multitask Gaussian Process

Here, we focus on computing the distribution of the Jacobian JfE of a multitask GP fE at a new test point x∗
and elaborate the derivation presented in Section 4.1. First, we derive the joint distribution of the data and the
transpose Jacobian given by Eq. (6). Due to the linearity of the differentiation operator, the derivative of a GP
fE ∼ GP(µ(x), k(x,x)) is given by another GP (Rasmussen and Williams, 2006, Ch. 9),

JfE(x) =
∂fE(x)

∂x
∼ GP

Å
∂µ(x)

∂x
,
∂2k(x,x)

∂x2

ã
. (13)

Therefore, the distribution of the Jacobian of fE is governed by the partial derivatives of the kernel,

cov

Å
fj(xi),

∂fm(x∗)

∂xr

ã
=
∂kjm(xi,x∗)

∂x(r)
, (14)

cov

Å
∂fj(x∗)

∂x(r)
,
∂fm(x∗)

∂x(s)

ã
=
∂2kjm(xi,x∗)

∂x(r)∂x(s)
, (15)

where fj(xi) is the j-th component of f(xi), and x
(r) is the r-th component of a latent variable x.

To compute the posterior distribution of the Jacobian JfE at a test point x∗, we consider the matrix Y containing
our training outputs and the transpose Jacobian of fE denoted J⊤

fE
,

Y =


y1(x1) y2(x1) · · · yM (x1)
y1(x2) y2(x2) · · · yM (x2)

...
...

. . .
...

y1(xN ) y2(xN ) · · · yM (xN )


N×M

, and J⊤
fE(x∗)

=


∂y1(x∗)
∂x(1)

∂y2(x∗)
∂x(1) · · · ∂yM (x∗)

∂x(1)

∂y1(x∗)
∂x(2)

∂y2(x∗)
∂x(2) · · · ∂yM (x∗)

∂x(2)

...
...

. . .
...

∂y1(x∗)
∂x(Q)

∂y2(x∗)
∂x(Q) · · · ∂yM (x∗)

∂x(Q)


Q×M

.

Using Eqs. (14) and (15)), we first obtain the joint distribution of the data Y and transpose Jacobian J⊤
fE(x∗)

given
by, ñ

vec(Y )
vec(J⊤

fE(x∗)
)

ô
∼ N

Å
0,

ï
K ∂K
∂K⊤ ∂2K

òã
, (16)
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where K is a block of size NM ×MN which contains the covariances between the elements in vec(Y ), ∂K is a
block of size NM×QM of partial derivatives w.r.t one latent dimension (14), and ∂2K is a block of size QM×QM
of second partial derivatives (15).

Previous literature on latent geometries in GPLVMs (Tosi et al., 2014) modelled multivariate outputs using an
independent GP for each dimension, or in other words, considered the output dimensions to be uncorrelated. In
contrast, we model multivariate outputs using multitask GPs (Bonilla et al., 2007) via the multitask covariance
of Eq. (2). This covariance is written succinctly as k = kf ⊗ kx, where kf is a symmetric positive-definite task
covariance parametrized as kf = BB⊤ + diag(v) with a (low-rank) matrix B and a diagonal vector of variances
v, and ⊗ denotes the Kronecker product. For a multitask GP with covariance k, the kernel and partial derivatives
of the joint distributions (16) are given by,

K = kf ⊗Kx, with Kx = [kx(xn,xa)]
N
n,a=1 , (17)

∂K = kf ⊗ ∂Kx, with ∂Kx =

ï
∂kx(xn,x∗)

∂xr

òN,d

n,r=1

, (18)

∂2K = kf ⊗ ∂2Kx, with ∂2Kx =

ï
∂2kx(x∗,x∗)

∂xr∂xs

òd
r,s=1

. (19)

The explicit computation of Eqs. (17)-(19) is provided in App. B. We argue that these equations are intuitive as
the derivative of a Kronecker product follows the product rule, and the tasks kernel does not depend on x.

Second, we compute the posterior over vec(J⊤
fE(x∗)

) by conditioning the joint distribution (16) on vec(Y ). Using

the multitask kernel expressions (17)-(19), we have,

vec(J⊤
fE(x∗)

) ∼ N (∂K⊤K−1 vec(Y ), ∂2K − ∂K⊤K−1∂K) (20)

= N
(
(kf⊤ ⊗ ∂Kx⊤)((kf )−1 ⊗ (Kx)−1) vec(Y ), (21)

(kf ⊗ ∂2Kx)− (kf⊤ ⊗ ∂Kx⊤)((kf )−1 ⊗ (Kx)−1)(kf ⊗ ∂Kx)
)

= N
(
(IM ⊗ ∂Kx⊤(Kx)−1) vec(Y ), kf ⊗ (∂2Kx − ∂Kx⊤(Kx)−1∂Kx)

)
(22)

= N
(
vec(∂Kx⊤(Kx)−1Y ), kf ⊗ (∂2Kx − ∂Kx⊤(Kx)−1∂Kx)

)
, (23)

with (23) corresponding to the posterior (7) of the main text. Note that we used properties of matrix vectoriza-
tion, and the fact that the Kronecker product behaves well with respect to matrix multiplication and inversion.
Equivalently, we can formulate this distribution as a matrix-valued normal (Gupta and Nagar, 1999, Chap. 2.) as
in Eqs. (8a)-(8c).

B Explicit computations for multitask kernels’ Jacobians

In this section, we explicitly compute the expressions (17)-(19). To do so, we consider the joint distribution of the
vectors vec(Y ) and vec(J⊤

fE(x∗)
) in Eq. (16). As previously mentioned, the block K is given by the covariances

among the data, where we denoted ymn = ym(xn),

K =



cov(y11, y11) · · · cov(y11, yN1) · · · cov(y11, y1M ) · · · cov(y11, yNM )

...
. . .

... · · ·
...

. . .
...

cov(yN1, y11) · · · cov(yN1, yN1) · · · cov(yN1, y1M ) · · · cov(yN1, yNM )

...
...

... · · ·
...

...
...

cov(y1M , y11) · · · cov(y1M , yN1) · · · cov(y1M , y1M ) · · · cov(y1M , yNM )

...
. . .

... · · ·
...

. . .
...

cov(yNM , y11) · · · cov(yNM , yN1) · · · cov(yNM , y1M ) · · · cov(yNM , yNM )


.
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For our multitask GP with multitask kernel k = kf ⊗ kx, this covariance is explicitly given by,

K =



kf11k
x(x1,x1) · · · kf11k

x(x1,xN ) · · · kf1Mk
x(x1,x1) · · · kf1Mk

x(x1,xN )

...
. . .

... · · ·
...

. . .
...

kf11k
x(xN ,x1) · · · kf11k

x(xN ,xN ) · · · kf1Mk
x(xN ,x1) · · · kf1Mk

x(xN ,xN )

...
...

... · · ·
...

...
...

kfM1k
x(x1,x1) · · · kfM1k

x(x1,xN ) · · · kfMMk
x(x1,x1) · · · kfMMk

x(x1,xN )

...
. . .

... · · ·
...

. . .
...

kfM1k
x(xN ,x1) · · · kfM1k

x(xN ,xN ) · · · kfMMk
x(xN ,x1) · · · kfMMk

x(xN ,xN )


.

Notice that this matrix is composed of blocks kfij [k
x(xa,xb)]

N
a,b=1. In other words, K can equivalently be written

as K = kf ⊗Kx.

Next, we focus on ∂K. Denoting the partial derivatives ∂ym(x∗)/∂x
(r) as ∂rym∗, we obtain,

∂K =



cov(y11, ∂1y1∗) · · · cov(y11, ∂dy1∗) · · · cov(y11, ∂1yM∗) · · · cov(y11, ∂dyM∗)

...
. . .

... · · ·
...

. . .
...

cov(yN1, ∂1y1∗) · · · cov(yN1, ∂dy1∗) · · · cov(yN1, ∂1yM∗) · · · cov(yN1, ∂dyM∗)

...
...

... · · ·
...

...
...

cov(y1M , ∂1y1∗) · · · cov(y1M , ∂dy1∗) · · · cov(y1M , ∂1yM∗) · · · cov(y1M , ∂dyM∗)

...
. . .

... · · ·
...

. . .
...

cov(yNM , ∂1y1∗) · · · cov(yNM , ∂dy1∗) · · · cov(yNM , ∂1yM∗) · · · cov(yNM , ∂dyM∗)



=



∂k11(x1,x∗)
∂x(1) · · · ∂k11(x1,x∗)

∂x(d) · · · ∂k1M (x1,x∗)
∂x(1) · · · ∂k1M (x1,x∗)

∂x(d)

...
. . .

... · · ·
...

. . .
...

∂k11(xN ,x∗)
∂x(1) · · · ∂k11(xN ,x∗)

∂x(d) · · · ∂k1M (xN ,x∗)
∂x(1) · · · ∂k1M (xN ,x∗)

∂x(d)

...
...

... · · ·
...

...
...

∂kM1(x1,x∗)
∂x(1) · · · ∂kM1(x1,x∗)

∂x(d) · · · ∂kMM (x1,x∗)
∂x(1) · · · ∂kMM (x1,x∗)

∂x(d)

...
. . .

... · · ·
...

. . .
...

∂kM1(xN ,x∗)
∂x(1) · · · ∂kM1(xN ,x∗)

∂x(d) · · · ∂kMM (xN ,x∗)
∂x(1) · · · ∂kMM (xN ,x∗)

∂x(d)



=



kf11
∂kx(x1,x∗)

∂x(1) · · · kf11
∂kx(x1,x∗)

∂x(d) · · · kf1M
∂kx(x1,x∗)

∂x(1) · · · kf1M
∂kx(x1,x∗)

∂x(d)

...
. . .

... · · ·
...

. . .
...

kf11
∂kx(xN ,x∗)

∂x(1) · · · kf11
∂kx(xN ,x∗)

∂x(d) · · · kf1M
∂kx(xN ,x∗)

∂x(1) · · · kf1M
∂kx(xN ,x∗)

∂x(d)

...
...

... · · ·
...

...
...

kfM1
∂kx(x1,x∗)

∂x(1) · · · kfM1
∂kx(x1,x∗)

∂x(d) · · · kfMM
∂kx(x1,x∗)

∂x(1) · · · kfMM
∂kx(x1,x∗)

∂x(d)

...
. . .

... · · ·
...

. . .
...

kfM1
∂kx(xN ,x∗)

∂x(1) · · · kfM1
∂kx(xN ,x∗)

∂x(d) · · · kfMM
∂kx(xN ,x∗)

∂x(1) · · · kfMM
∂kx(xN ,x∗)

∂x(d)


.

As previously shown, we can equivalently write ∂K = kf ⊗ ∂Kx, with ∂Kx = [∂kx(xn,x∗)/∂x
(r)]N,d

n,r=1. The

computations for ∂2K are analogous, and are left to the reader.
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C Tangent space representations

This section elaborates on the choice of tangent space representations for the manifolds considered in our exper-
iments. As discussed in Section 4.3, instead of considering tangent vectors in the ambient space in which M is
embedded, we specify them with respect to a basis of the tangent space itself. This process can be viewed as a
change of basis, as explained next.

C.1 Sphere

The sphere SM is embedded in the Euclidean space RM+1. Each point p ∈ SM is described, in coordinates, as a
(M+1)-dimensional unit-norm vector. Each tangent vector v ∈ TpSM is expressed as a (M+1)-dimensional vector
orthogonal to p, i.e., ⟨p, v

||v|| ⟩ = 0. Principal operations on the sphere are given by Table 5-left. When considering

WGPs, we express tangent vectors in a M -dimensional local basis of the tangent space TxSM . To do so, we define
a basis Bp = [b1p . . . b

M
p ] composed of M orthonormal tangent vectors bip ∈ RM+1. Tangent vectors vp in the local

basis and their counterparts v in the ambient basis are consequently related as,

vp = B⊤
p v and v = Bpvp. (24)

In the WGPs, we use the former change of basis to define the output of Logb(x)(q) locally in the tangent space

Tb(x)SM . The latter is then used to express the posterior mean of the Euclidean GP, computed in the local basis,
in the ambient basis before projecting it onto the manifold with the exponential map Expb(x)(q). Next, we discuss

the choice of basis Bp for S2 and S3.

Tangent basis for S2: Denoting each point p ∈ S2 in coordinates as p = (x y z)⊤, we define the orthonormal
basis Bx via the reduced QR decomposition,

Ax = BxRx with Ax =

Ñ
−z 0
0 z
x y

é
. (25)

Tangent basis for S3: Denoting each point p ∈ S3 in coordinates as p = (w x y z)⊤, we define the orthonormal
basis for each tangent space Tb(x)S3 as,

Bx =

Ü
−x −y −z
w z −y
−z w x
y −x w

ê
. (26)

C.2 SPD manifold

The SPD manifold SM
++ is embedded in the space of symmetric matrices SymM , which is itself embedded in the

Euclidean space. Each point P ∈ SM
++ is a M × M symmetric positive-define matrix and each tangent vector

V ∈ TPSM
++ is expressed as a M ×M symmetric matrix. Principal operations on the SPD manifold are given

by Table 5-right. When considering WGPs, we express tangent vectors in a M(M + 1)/2-dimensional local basis
of the tangent space TPSM

++. This is simply achieved by defining tangent vectors vP in the local basis as vectors
composed of the diagonal and upper triangular elements of V .

D Likelihood of Wrapped Gaussian Processes

A WGP is Expb(·)(fE(·)), where fE ∼ GP(0, k) is a Euclidean GP learned on the tangent spaces Tb(·)M. In other
words, the exponential map pushes forward the Euclidean distribution onto the manifold. Therefore, the WGP
marginal likelihood must account for the change of volume induced by the exponential map. This is achieved by
leveraging the change of variable formula. Specifically, the change of variable formula states that, given a random
variable V endowed with the probability function p(v), the log-likelihood of Y = g(V ) at y is expressed as,

log p(y) = log p(v)− log det
∂g

∂v
. (27)
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Operation Formula on SM

⟨u,v⟩x ⟨u,v⟩
dSM (x,y) arccos(xTy)

Expx(u) x cos(∥u∥) + u
∥u∥ sin(∥u∥)

Logx(u) dSM (x,y) y−xTy x
∥y−xTy x∥

Operation Formula on SM
++

⟨U ,V ⟩X tr
Ä
X− 1

2UX−1V X− 1
2

ä
dSM

++
(X,Y ) ∥ log(X− 1

2Y X− 1
2 )∥F

ExpX(U) X
1
2 exp(X− 1

2UX− 1
2 )X

1
2

LogX(Y ) X
1
2 log(X− 1

2Y X− 1
2 )X

1
2

Table 5: Left: Principal operations on Sd, see (Absil et al., 2007) or (Boumal, 2023) for details. Right: Principal operations
on SM

++ when endowed with the affine-invariant metric, see (Pennec et al., 2006) for details.

In the case of a WGP, p(x) is equal to the probability function of the Euclidean GP fE and the function g is the
exponential map Expb(·). Therefore, as discussed in Section 4.4, the WGP marginal likelihood is,

log p(y|x) = logN
(
v;0,K

)
− log det

Å
∂ Expb(x)

∂v

ã
,

with tangent vectors v. Next, we provide the expression of the term log det
(

∂ Expb(x)

∂v

)
induced by the change of

variable for the manifolds used in our experiments.

D.1 Sphere

The exponential map for the sphere manifold SM is given by,

Expp(v) = p cos(∥v∥) + v

∥v∥
sin(∥v∥), (28)

leading to the change of variable correction

log det

Å
∂ Expx(v)

∂v

ã
= (M − 1) log

Ç
sin2(||v||)

||v||2

å
. (29)

D.2 SPD manifold

The exponential map for the SPD manifold SM
++ endowed with the affine-invariant Riemannian metric (Pennec

et al., 2006) is given by,

ExpP (V ) = X
1
2 exp(X− 1

2V X− 1
2 )X

1
2 , (30)

where exp denotes the matrix exponential. In our experiments, we consider the basepoints of the WGP to be
multiples of the identity matrix, i.e., P = b(X) = aI. In this case, the exponential map simplifies as,

ExpaI(V ) = a exp(a−1V ), (31)

leading to the change of variable correction

log det

Å
∂ ExpaI(V )

∂V

ã
= exp(a−1V ). (32)

E Experimental Details

We implemented all approaches using GPyTorch (Gardner et al., 2018b). We used the Geomstats implementation
of the exponential and logarithmic maps (Miolane et al., 2020), with minor modifications for the vectorization
process discussed in Sec. 4.3. To compute geodesics in latent spaces we used StochMan (Detlefsen et al., 2021),
and the robotic simulations rely on the Python Robotics Toolbox (Corke and Haviland, 2021). When back-
constrained models are necessary, the Riemannian kernels are implemented using the GeometricKernels Python
package (Mostowsky et al., 2024).



Leonel Rozo, Miguel González-Duque, Noémie Jaquier, Søren Hauberg

We used SE kernels kx for all models and constant basepoint functions b(x) = p for WGPLVM and Riemann2 ,
with p = (1, 0, . . . , 0)T for SM and p = I for SM

++. The tangent space vectors vi = Logb(xi)(yi) were centered in
order to build a zero-mean Euclidean GP fE. The latent variables were initialized using PCA. The latent variables
and GP parameters were optimized by minimizing the marginal likelihood for 1000 iterations using Adam (Kingma
and Ba, 2015). Data and experiment-specific parameters are detailed next.

E.1 Illustrative example on R2 × S2

The dataset of this experiment is composed of 6 trajectories of 200 datapoints. Each trajectory traces a J shape in
R2 and a C shape on the S2. All models are augmented with a GPDM latent prior with dynamic kernel defined as a
SE kernel with learnable lengthscale and variance. The learning rate of all models is fixed at 0.025. The geodesics
are computed by discretizing the 2D latent manifold into a 50× 50 graph and computing the shortest path on the
obtained graph via classical algorithms using StochMan (Detlefsen et al., 2021).

E.2 Robot motion synthesis on R3 × S3

The dataset of this experiment is composed of 6 trajectories of varying length (60 to 85 datapoints) for a total of
607 datapoints. We use a Gamma prior with concentration α = 2 and rate β = 2 for the GP kernel lengthscale
of all models. We augment the models with back constraints. For GPLVM and pGPLVM, we use a Euclidean SE
back-constraints kernel kM = kR

7

with lengthscale θ = 0.2 and variance σ2 = 1. For WGPLVM and Riemann2 ,
we use a back-constraints kernel defined as the product kM = kR

3

kS
3

. The Euclidean kernel kR
3

is a SE kernel with
lengthscale θ = 0.2 and variance σ2 = 1. The sphere kernel kS

3

is a sphere SE kernel formulated as in (Borovitskiy
et al., 2020) with lengthscale θ = 0.2 and variance σ2 = 1. The learning rate of all models is fixed at 0.05. For all
models, geodesics are parametrized by cubic splines, whose parameters are optimized to minimize the curve energy
using StochMan (Detlefsen et al., 2021). Specifically, we approximate the geodesics by cubic splines c ≈ ωλ(zc),
with zc = {zc0 , . . . ,zcN }, where zcn ∈ RQ is a vector defining a control point of the spline over the latent space.
Given N control points, N − 1 cubic polynomials ωλi

with coefficients λi,0, λi,1, λi,2, λi,3 have to be estimated to
minimize the curve energy.

E.3 Manipulability learning in R2 × S2
++

The dataset of this experiment is composed of 6 trajectories of 100 datapoints. Each trajectory traces a C shape
in R2. The manipulability profiles correspond to the manipulability of a planar robot whose end-effector follows
this C shape. We use a Gamma prior with concentration α = 2 and rate β = 2 for the WGP kernel lengthscale of
WGPLVM and Riemann2 . All models are augmented with a GPDM latent prior and with back constraints. The
GPDM dynamic kernel is defined as a SE kernel with learnable lengthscale and variance for all models. For GPLVM
and pGPLVM, we use a Euclidean SE back-constraints kernel kM = kR

7

with lengthscale θ = 0.2 and variance

σ2 = 1. For WGPLVM and Riemann2 , we use a back-constraints kernel defined as the product kM = kR
2

kS
2
++ .

The Euclidean kernel kR
2

is a SE kernel with lengthscale θ = 0.5 and variance σ2 = 1. The SPD kernel kS
2
++ is

a SPD SE kernel formulated as in (Azangulov et al., 2023) with lengthscale θ = 0.5 and variance σ2 = 1. The
learning rate of all models is fixed at 0.025. For all models, geodesics are parametrized by cubic splines, whose
parameters are optimized to minimize the curve energy using StochMan (Detlefsen et al., 2021), similar to the
previous experiment.

E.4 Brain connectomes in S15
++

We consider resting-state functional brain connectome data from the “1200 Subjects release” of the Human Con-
nectome Project (Van Essen et al., 2013). Specifically, we consider the 200 first subjects out of the sub-dataset
“R 812”, which includes rs-fMRI data. We choose the parcellation of the brain with N = 15 regions and use
the nodetime series provided in the dataset. Specifically, for each subject, we use 15 time series corresponding
to the activation of each of the 15 brain regions over time. We build the parcellated connectome for each sub-
ject as the 15 × 15 covariance matrix corresponding to the correlations between nodes over the time serie. Each
connectome is represented as a point in S15

++. The learning rate of all models is fixed at 0.03. For all models,
geodesics are parametrized by cubic splines, whose parameters are optimized to minimize the curve energy using
StochMan (Detlefsen et al., 2021).
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E.5 Dynamic time warping distance

We use dynamic time warping distance (DTWD) as the established quantitative measure of reconstruction accuracy
of a decoded geodesic w.r.t. a demonstrated trajectory, assuming equal initial conditions. The DTWD is defined
as,

DTWD(τx, τx′) =
∑

j∈l(τx′ )

min
i∈l(τx)

Ä
d(τxi , τx′

j
)
ä
+

∑
i∈l(τx)

min
j∈l(τx′ )

Ä
d(τxi , τx′

j
)
ä
,

where τx and τx′ are two trajectories (e.g. the decoded geodesic and a demonstration trajectory), d is a distance
function (e.g. Euclidean distance), and l(τ) is the length of trajectory τ .

F Additional Results

Figure 8 complements the results of Section 5.3 by showing the latent spaces learned with GPLVM, pGPLVM,
WGPLVM, and Riemann2 with both independent and correlated output dimensions. As discussed in Section 5.3
and shown in Table 3, Riemann2 with correlated output dimensions achieve the best results overall as it accounts for
the correlations between positions and manipulability along the trajectories. This is particularly visible in the right-
most panel of Figures 8a and 8b, where the decoded manipulability profile of Riemann2 with correlated output
matches the demonstrations more than the manipulability profile obtained via independent output dimensions.
We observe similar patterns for the pGPLVM of Figures 8c and 8d, even if these models do not account for the
geometry of SPD data.
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(a) WPGLVM and Riemann2 with correlated output dimensions.

(b) WPGLVM and Riemann2 with independent output dimensions.

(c) GPLVM and pGPLVM with correlated output dimensions.

(d) GPLVM and pGPLVM with independent output dimensions.

Figure 8: R2×S2
++: From left to right : Latent variables ( ) with magnification factor of the pullback metrics, demonstrations

( , ) and reconstructions depicted as curves and ellipsoids in R2, on the manifold S2
++, and as ellipsoids over time. One

Euclidean ( ) and one Riemannian ( ) geodesic are depicted for each model.
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