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Abstract

We present a probabilistic model where the latent
variable respects both the distances and the topol-
ogy of the modeled data. The model leverages
the Riemannian geometry of the generated mani-
fold to endow the latent space with a well-defined
stochastic distance measure, which is modeled
locally as Nakagami distributions. These stochas-
tic distances are sought to be as similar as possi-
ble to observed distances along a neighborhood
graph through a censoring process. The model
is inferred by variational inference based on ob-
servations of pairwise distances. We demonstrate
how the new model can encode invariances in the
learned manifolds.

1. Introduction

Dimensionality reduction aims to compress data to a lower
dimensional representation while preserving the underly-
ing signal and suppressing noise. Contemporary nonlinear
methods mostly call upon the manifold assumption (Bengio
et al., 2013) stating that the observed data is distributed near
a low-dimensional manifold embedded in the observation
space. Beyond this unifying assumption, methods often
differ by focusing on one of three key properties (Table 1).

Topology preservation. A ropological space is a set of
points whose connectivity is invariant to continuous defor-
mations. For finite data, connectivity is commonly inter-
preted as a clustering structure, such that topology preserv-
ing methods do not form new clusters or break apart exist-
ing ones. For visualization purposes, the uniform manifold
approximation projection (UMAP) (Mclnnes et al., 2018)
appears to be the current state-of-the-art within this domain.
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Probabilistic Topology Distance
PCA ) X )
MDS X X v
IsoMap X X v
t-SNE X ) v
UMAP X v v
GPLVM v X X
Iso-GPLVM (our) v v v

Table 1. A list of common dimensionality reduction methods and
coarse overview of their features.

Distance preservation. Methods designed to find low-
dimensional representation with pairwise distances that are
similar to those of the observed data may generally be
viewed as a variant of multi-dimensional scaling (MDS)
(Ripley, 2007). Usually, this is achieved by a direct mini-
mization of the stress defined as

stress = Z (dij — |lzi — 25])?, (D

i<j<N

where d;; are the dissimilarity (or distance) of two data
points x; and x;, and Z = {z;}¥, denote the low-
dimensional representation in R9.

More advanced methods have been built on top of this idea.
In particular, IsoMap (Tenenbaum et al., 2000) computes
d;; along a neighborhood graph using Dijkstra’s algorithm.
This bears some resemblance to -SNE (Maaten & Hinton,
2008) that uses the Kullback-Leibler divergence to match
distribution in low-dimensional Euclidean spaces with the
data in high dimensions.

Probabilistic models. A common trait for the mentioned
methods is that they learn features in a mapping from high-
dimensions to low, but not the reverse. This makes the
methods mostly useful for visualization. Generative models
(Kingma & Welling, 2014; Rezende et al., 2014; Lawrence,
2005; Goodfellow et al., 2014; Rezende & Mohamed, 2015)
allow us to make new samples in high-dimensional space.
Of particular relevance to us, is the Gaussian process la-
tent variable model (GP-LVM) (Lawrence, 2005; Titsias
& Lawrence, 2010) which learns a stochastic mapping
f : R? — RP jointly with the latent representations z.
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This is achieved by marginalizing the mapping under a
Gaussian process prior (Rasmussen & Williams, 2006). The
generative approach allows the methods to extend beyond
visualization to e.g. missing data imputation, data augmen-
tation and semi-supervised tasks (Mattei & Frellsen, 2019;
Urtasun & Darrell, 2007).

In this paper, we learn a Riemannian manifold using Gaus-
sian processes on which distances on the manifold match
the local distances as is implied by the Riemannian assump-
tion. Assuming the observed data lies on a Riemannian
g-submanifold of R” with infinite injectivity radius, then
our approach can learn a g-dimensional representation that
is isometric to the original manifold. Similar statements
only hold true for traditional manifold learning methods
that embed into R? if the original manifold is flat. We
learn global and local structure through a common tech-
nique from survival analysis, combined with a likelihood
model based on the theory of Gaussian process arc-lengths.
Lastly, we show how the GP approach allow us to marginal-
ize the latent representation and produce a fully Bayesian
non-parametric model. We envision how learning proba-
bilistic models by pairwise dissimilarities easily allow for
encoding invariances.

The data handled in this paper are pairwise distances be-
tween instances. This naturally gives a geometrical flavour
to the approach since distances fall within the geometrical
ontology. Note that this does not exclude tabular data — we
only require a distance can be computed between points.
Further, many modern datasets come in form of pairwise
distances: proteins based on their distance on a phylogenetic
tree, simple GPS data for place recognition, perception data
from psychology, etc.

2. Background material

2.1. Gaussian Processes

A Gaussian process (GP) (Rasmussen & Williams, 2006)
is a distribution over functions, f : R? — R, which satisfy
that for any finite set of points {z;}},, in the domain RY,
the output f = (f(21), ..., f(zn)) have a joint Gaussian
distribution. This Gaussian is fully determined by a mean
function i : R? — R and a covariance function k : RY x
R? — R, such that

p(f) = N(p, K), 2

where g = (p(21),...,1(zy)) and K is the N x N-
matrix with (¢, j)-th entry k(z;, ;).

GPs are well-suited for Bayesian non-parametric regression,
since if we condition on data D = {z, z}, where = denote
the labels, then the posterior of f(z*), at a test location z*,
is given as

p(f(z7)ID) = N(p", K*), 3)

where
p=p(z") + k(z5,2) k(z,2) e, @)
K* =k(z*,2") — k(z*,2) "k(z,2) 'k(z*,2)  (5)

We see that this posterior computation involves inversion
of the N x N-matrix K, which has complexity O(N?3).
To overcome this computational burden in inference we
consider variational sparse GP regression, which introduces
M auxiliary points wu, that approximate the posterior of f
with a variational distribution ¢. For a review of variational
GP methods, we refer to Titsias (2009).

2.2. Riemannian Geometry

A manifold is a topological space, for which each point on
it has a neighborhood that is homeomorphic to Euclidean
space; that is, manifolds are locally linear spaces. Such
manifolds can be embedded into spaces of higher dimension
than the dimensionality of the associated Euclidean space;
the manifold itself has the same dimension as the local
Euclidean space. A g-dimensional manifold M can, for our
purposes thus, be seen as a surface embedded in R”. In
order to make quantitative statements along the manifold
we require it to be Riemannian.

Definition 1. A Riemannian manifold M is a smooth q-
manifold equipped with an inner product

(Ve : TaM X TeM = R, T e M, (6)

that is smooth in . Here Tz M denotes the tangent space
of M evaluated at x.

The length of a curve is easily defined from the Rieman-
nian inner product. If ¢ : [O 1] — M is a smooth curve,
its length is given by s = fo |le(t)||dt. On an embedded

manifold f (M) this becomes
5= [ temeoiar ™

A metric on M can then, for x,y € M, be defined as

dv(z,y) = inf {sle(0

=z and ¢(
ceCH(M) y}

2.3. The Nakagami distribution

We consider random manifolds immersed by a GP. The
length of a curve (7) on such a manifold is necessarily ran-
dom as well. Fortunately, since this manifold is a Gaussian
field, then curve lengths are well-approximated with the
Nakagami m-distribution (Bewsher et al., 2017).

The Nakagami distribution (Nakagami, 1960) describes the
length of an isotropic Gaussian vector, but Bewsher et al.
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(2017) have meticulously demonstrated that this also pro-
vides a good approximation to the arc length of a GP. The
Nakagami has density function

2 m
9(s) = ™ L exp ( - @52),

T (m)m 0 5200

and it is parametrised by m > 1/2 and Q > 0; here " denotes
the Gamma function. The parameters are interpretable by
the equations

Q=E[s?] and m=

, 10
Var(s?) (10)
which can be used to infer the parameters through samples,
although it does involve a fourth moment.

3. Model and variational inference

With prerequisites settled, we now set up a Gaussian process
latent variable model that is locally distance preserving
and globally topology preserving. Notation-wise we let Z
denote the latent representation of a dataset X = {z;} ¥,
x; € RP andlet f : z — a be the generative mapping.

3.1. Distance and topology preservation

The manifold assumption hypothesizes that high-
dimensional data in R” lie near a manifold with small
intrinsic dimension. A manifold suggests that, a neighbor-
hood around any point is approximately homeomorphic to a
linear space. So nearby points are approximately linear, but
non-nearby points have distances greater than the linear
approximation suggests.

We build a Gaussian process latent variable model (GP-
LVM) (Lawrence, 2005) that is explicitly designed for dis-
tance and topology preservation. The vanilla GP-LVM takes
on the Gaussian likelihood where observations &A™ are as-
sumed i.i.d. when conditioned on a Gaussian process f.
That is, p(X|f) = [[;L; p(m:|f(2:)) and p(a;|f(z:)) =
N (z;|f(2),0?%). In contrast, we consider a likelihood over
pairwise distances between observations.

Neighborhood graph. To model locality, we condition
our model on a graph embedding of the observed data X'.
The graph is the e-nearest neighbor embedded graph; that is,
the undirected graph with vertices V' = X and edges E =
{ei;}, where e;; is in E, only if d(x;, x;) < €, for some
metric d. Equivalently, G = (V, E') can be represented by
its adjacency matrix A with entries

a’l_] = 1d(a!7',:l:j)<€' (11)

In Sec. 3.4 we discuss how to choose € informedly, but for
now we view it as a hyperparameter.

Manifold distances. To arrive at a likelihood over pair-
wise distances, we first recall that the linear interpolation
between z; and z; in the latent space has curve length

1
8ij =/ [T (c@)e®)l|dt, c(t) = zi(1 —t) + 25,
0
12)
where J denotes the Jacobian of f, which is our generative
manifold approximation.

As the manifold distance d o4 is the length of the shortest
connecting curve, then s;; is by definition an upper bound
on d (. However, as the manifold is locally homeomorphic
to a Euclidean space, then we can expect s;; to be a good
approximation of the distance to nearby points, i.e.

for |lx; — ;|| <e  (13)
otherwise. (14)

dm(zis zj) = sij
dm(zi, z5) < sij

The behavior we seek is that local interpolation in latent
space should mimic local interpolation in data space only
if the points are close in data space. If they are far apart,
they should repel each other in the sense that the linear
interpolation in latent space should have large curve length.

Censoring. To encode this behavior in the likelihood, we
introduce censoring (Lee & Wang, 2003) into our objective
function. This method is usually applied to missing data in
survival analysis, when the event of something happening is
known to occur later than some time point.

We may think of censoring as modeling inequalities in data.
The censored likelihood function for i.i.d. data ¢; following
distribution function GGy, with density function gy, is defined

L({t:3 410, 7) = ] 9ets) TT (1 = Go(T)), (19

ti<T t:>T

where 6 are the parameters of the distribution G and T is
some ‘time point’, where the experiment ended. Carreira-
Perpifan (2010) remark that most neighborhood-embedding
methods have loss functions with two terms: one attracting
close point and one scattering term for far away connections.
Censoring provides a likelihood with similar such terms.
It may be viewed as a probabilistic version of the ideas in
maximum variance unfolding (Weinberger & Saul, 2006).

Local distance likelihood. From earlier, we know that if
the manifold f (M) is a Gaussian field, then distances (12)
are approximately Nakagami distributed. Thus, we write
our likelihood as

L({{eij}ics iy 10,00 = T go(es) J] (1 — Gole)

e;j<e€ ei]ZE

where Gy is the distribution function of a Nakagami with
parameters § = {m,Q}. The resulting log-likelihood is
given in Eq. 16 within Fig. 2.
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Figure 1. Left: A graphical representation of the model: @ is the observational input, J is the Gaussian process manifold and 6 are
the parameters it yields based on latent embedding z. € is a hyperparameter for the neighbor-graph embedding and w are variational
parameters. Right: Illustration of the task: the dashed lines are Euclidean distances in three dimensions. The black ones are neighbors
and their distance along the two-dimensional manifold should match the 3d-Euclidean distance. The red is not a neighbor-pair and the

manifold distance should not match it.

L(Teuhia bl

ejj <€

Q;
9,6) = —Z <logI‘ (myj)+my; log (m

J

2
> —(2mi; —1) log (ei;)+ m;;,élj >

ij j

_Z (logF (mi;)—log (F (mij)—~(mij, 7;;?6%))) , (16)

EUZE

)

Figure 2. The likelihood of our model. Here I" and ~ denotes the Gamma function and lower incomplete gamma function respectively and

m;; and §2;; are the Nakagami-parameters of Eq. 12.

Until now, we have introduced the log-likelihood based on
an e-NN graph, that preserves geometric features. Next we

marginalize all other parameters to make a Bayesian model.

3.2. Marginalizing the representation

We have a loss function (16) that matches distances e;; with
parameters 0;; = {m;;, ;; }. We now seek to first fit these
parameters and marginalize them to obtain a full Bayesian
approach. First, we will assume that conditioned on 6, we
get the independent observations, i.e.

p(&l0.€) = H p(eijlbij.€) A7)

1<i<j<N

L({{endic} ) 0.€). a®)

as known from Eq. 3.1. We infer these parameters of the
Nakagami by introducing a latent Gaussian field J and
a latent representation z. This allows us to define curve

length (12), which we assume is also Nakagami distributed.

In practice, we draw' m samples of s;; from Eq. 12, and

estimate the mean and variance of their second moment.

This gives estimates of m;; and §2;; via Eq. 10.
Essentially, we match distances on the manifold J with the

"We can approximate s by finely discretizing ¢ and sum over
the integrand.

observed distances £. We marginalize this manifold

m&@:i/mammsznmnw¢L (19)
where

mmmzw:/¢WMMﬂmzm& 20)

Ogs2 (2)

(21)
8o pnc2y (M),

and p(f|s) = {

and ¢ denotes the Dirac probability measure and p(s|J, z)
is the approximate Nakagami distribution (12). This means
that s;; and e;; are both Nakagami variables that share the
same parameters, which interpretively means the manifold
distances s;; match the embedding distances e;;.

Further, we can pose a prior on z and marginalize this in
Eq. 19. We infer everything variationally (Blei et al., 2017),
and choose a variational distribution over the marginalized
variables. We approximate the posterior p(6,J,z,u|E) with

q(0,J, z,u) == q(0|J,z)q(J,u)q(z),  (22)
where w is an inducing variable (Titsias, 2009), and

q(01J,z) = p(0ld, 2), q(J,u) =p(Ju)q(u) (23)

and Q(z):N(NwAZ)’ (24)
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where ., is a vector of size N and A, is a diagonal
N x N-matrix. Further ¢(u) = MN(w,,S) is a full
M -dimensional Gaussian.

This allow us to bound the log-likelihood (16), with the
evidence lower bound (ELBO)

log p(€) = log / ’mq(a, J, z,u)d0dJdudz
(25)
> Eo[l(£]6)] — KL(g(u)||p(w)) 26)

—KL(q(2)|lp(2)),

where both KL-terms are analytically tractable, but the first
term has to be approximated using Monte Carlo. The right
hand side here is readily optimized with gradient descent
type algorithms.

In summary, we have a latent representation Z and a Rie-
mannian manifold immersed as a GP J. This implies that
between any two points z; and z;, we can compute s;;,
which is approximately Nakagami. With censoring we can
match s;; with observation e;;, if e;; < ¢; else we push s;;
to have all its mass on [¢, 00). It is optimized with varia-
tional inference by maximizing Eq. 26.

3.3. Invariances and geometric constraints

Why is it worth learning the manifold in a coordinate-free
way? Invariances are easily encoded via dissimilarity pairs
by introducing equivalence classes in saying d(;, ;) = 0
if x; and x; are in the same equivalence class. Popular
choices of such equivalence classes are rotations, trans-
lations and scaling. Many constraints one could wish to
impose on models can be formulated as geometric con-
straints. It holds true also for GPLVM-based models as
seen in Urtasun et al. (2008), who wish to encode topolog-
ical information, and Zhang et al. (2010), who highlight
invariant models’ usefulness in causal inference. Geometric
constraints can alternatively be encoded with GPs that take
their output directly on a Riemannian manifold (Mallasto
et al., 2018). Kato et al. (2020) try to enforce geometric
constraints in Euclidean autoencoders by changing the opti-
misation, and Miolane & Holmes (2020) build Riemannian
VAEs.

The geometry of latent variable models in general is an ac-
tive field of study (Arvanitidis et al., 2018; Tosi et al., 2014),
and Simard et al. (2012) and Kumar et al. (2017) argues
that the tangent (Jacobian) space serves a convenient way
to encode invariances. Recently, Borovitskiy et al. (2020)
developed a framework for GPs defined on Riemannian
manifold. Contrary to their method, we learn the manifold
where they a priori determine it.

3.4. Topological Data Analysis and the influence of ¢

The model is naturally affected by the hyperparameter .
We argue that it can be chosen in a geometrically founded
way using Topological Data Analysis (Carlsson, 2009). By
constructing a Rips diagram (Fasy et al., 2014) one can find
€ such that the e-NN graph captures the right topology of
data. It is beyond this paper to summarize the techniques;
we refer readers to Chazal & Michel (2017).

To understand what € means in broader terms we can
study corner cases. If e=00 we would match all observed
distances, which resembles MDS. If the covariance function
of the marginalized .J is constant’ the latent space is also
preserved (scaled) Euclidean, hence iso-GPLVM may in
this setting be viewed as a probabilistic MDS. This links
well with how the GPLVM generalized the probabilistic
PCA (Lawrence, 2005).

Although we shall not further discuss it in this paper, the
Bayesian setup also suggests € could potentially be marginal-
ized. The argument why this is not as straightforward as
one could hope is that the model has a pathological solution
in the corner case € =0. In this case, all points would repel
each other, and a high likelihood can be obtained without a
meaningful representation.

4. Experiments

We perform experiments first on a classical toy dataset and
on the image datasets COIL20 and MNIST. We refer to
the presented model as Isometric Gaussian Process Latent
Variable Model (Iso-GPLVM). For comparisons we evaluate
other models also based on dissimilarity data. In all cases we
initialize Iso-GPLVM with IsoMap, as it is known GP-based
methods are sensitive to initialization (Bitzer & Williams,
2010). We use the Adam-optimizer (Kingma & Ba, 2014)
with a learning rate of 3 - 10~ and optimize sequentially
q(z) and g(u) separately. We use m = 100 inducing points
for g(u) and an ARD-kernel as covariance function.

4.1. Swiss roll

The ‘swiss roll” was introduced by Tenenbaum et al. (2000)
to highlight the difficulties of non-linear manifold learning.
The point cloud resides on a 2-dimensional manifold em-
bedded in R? and can be thought as a paper rolled around
itself (see Fig 3A).

We find a 2-dimensional latent embedding by four methods:
MDS, t-SNE, IsoMap and Iso-GPLVM. From Fig. 3 we
observe the linear MDS is unable to capture the highly
non-linear manifold. t-SNE captures some local structure,
but the global outlook is far from the ground truth. We tried

’In this case the generating function f has a linear kernel.
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Figure 3. Data (A) and embeddings (B-E). All embeddings are shown with a unit aspect ratio to highlight that only IsoMap (D) and
Iso-GPLVM (E) recover the elongated structure of the swiss roll. (F) shows some geodesics on the learned 2-dimensional manifold.

several tunings of the perplexity hyperparameter (60 in the
plot), none successfully captured the structure. It is known
that t-SNE is prone to create clusters, even if clusters are
not a natural part of a dataset (Amid & Warmuth, 2018).

Naturally, as the dataset was constructed for the ‘geodesic’
approach of IsoMap, this captures both global and local
structure. On closer inspection, we see the linear interpo-
lations, stemming from Dijkstra’s algorithm, leaves some
artificial ‘holes’ in the manifold. Hence, on a smaller scale
it can be argued the topology of the manifold is captured
imperfectly. The plot suggests Iso-GPLVM closes these
holes and approximates the topology of an unfolded paper.

Figure 3F visualizes some geodesics and they appear
roughly linear. There is some ’gathering* fix points which
are due to the sparsity of the GP. These geodesics inform us
that not only is the representation good, but the learned ge-
ometry is correct since the geodesics match those we know
from Fig. 3A. We used € = 0.4.

4.2. COIL20

COIL20 (Nene et al., 1996) consists of greyscale images of
20 objects photographed from 72 different angles spanning a
full rotation (see Figure 4 for some examples). This implies
in total 1440 images — the version we use is of size 128 X
128 pixels, thus the original data resides in R16384,

First, we focus on only one object — a rotated rubber duck
— to highlight the geodesic behaviour. Figure 4 shows the
2-dimensional embeddings and the geodesic curves on the
learned manifold in latent space. We clearly observe the
circular structure we expect from the rotated duck. On top

Figure 4. The 2-dimensional embeddings of the 72 images of a
rubber duck. We observe from the geodesics (grey curves) how
the latent manifold has learned the circular nature of the data.

of this the geodesics show the Riemannian geometry of
the latent space: they move along the data manifold and
avoid the space where no data is observed. The background
color is the measure E[,/det(s7)|, which provide a view of
the Riemannian geometry of the latent space. Bishop et al.
(1997) call this measure the magnification factor. Large
values (light color) imply trajectories moving in this area
are longer and likely also more uncertain (Hauberg, 2018).

IsoMap, t-SNE, UMAP and others, are also able to infer
the circular embedding, but Iso-GPLVM is the only model
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Figure 5. Embeddings of COIL20 objects. Left: IsoMap and right: Iso-GPLVM. We see that globally Iso-GPLVM can separate the objects

(color- and shape coded), but is not able to find to all local structures.

to infer a geometry on latent space. For [soMap the latent
geometry is implicitly Euclidean through it’s loss (1), and
t-SNE and UMAP do not allow for geodesic computations.

When considering all 20 objects at once a global element
of separating the distinct objects is a key task to infer the
topological structure. The embeddings for IsoMap and Iso-
GPLVM are visible in Fig. 5. Here IsoMap struggle to
clearly separate objects due to it’s implicit assumption of
one connected manifold. Iso-GPLVM finds the global topo-
logical structure, but in no instances finds the local structure.
So why is it unsuccessful here when successful in Fig. 4?
When considering all 1440 images we only use 100 inducing
points, and in this view it is unsurprising that the model has
to use most capacity on the global structure. In Fig. 4 there
is no sparsity required since there is only 72 images, and
there is enough capacity to detect the hole in the manifold.
This is a common problem for GP-based methods.

4.3. MNIST

Metrics. We evaluate our model on 5000 images from
MNIST, and we foremost wish to highlight how invariances
can be encoded with dissimilarity data. We consider fitting
our model to data under three different distance measures.
We consider the classical Euclidean distance measure

A, z5) = ||z — x;]]. 27)

Further, we consider a metric that is invariant under image

rotations

dhon(ei ) =,

{dRo(@)2) ). @®)

where Ry rotates an image by 6 radians. We note
dror(x;, ;) < d(x;,x;) always. Finally, we introduce

a lexicographic metric (Rodriguez-Velazquez, 2018)

€, ify; # y;
Lex (%i, ;) {min{2r7 d(zi, xj)}, if yi = y; =

which in the censoring phase enforce images carrying differ-
ent labels to repel each other. This is a handy way to encode
a topology or clustering based on discrete variables, when
such are available. For all metrics, we have normalized the
data and have set e = 7.

Results. Figure 6(A—C) show the latent embeddings of
the three metrics. The background color again indicates
the magnification factor ]E[ dct(JTJ)]. Panels A, D and E
base their latent embedding on the Euclidean metric. We ob-
serve that IsoMap (D) and Iso-GPLVM (A) appear similar in
shape, unsurprisingly as we initialize with IsoMap, but Iso-
GPLVM finds a cleaner separation of the digits. Particularly,
this is evident for the six, three and eight digits. The fives
seem to group into several tighter cluster, and this behavior
is found for t-SNE as well. Overall, from a clustering per-
spective, t-SNE visually is superior; but distances between
clusters in (A) can be larger than the straight lines that con-
nect them. This is evident from the lighter background color
between cluster, say, zeros and threes. We note that IsoMap
and t-SNE has no associated Riemannian metric and as such
distances between any input cannot be computed.

The rotation invariant metric results in a latent embedding
where different classes significantly overlap. Upon closer
inspection we, however, note several interesting properties
of the embedding. Zero digits are well separated from other
classes as a rotated 0 does not resemble any other digits; the
one digits form a cluster that is significantly more compact
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Figure 6. Embeddings of MNIST attained with our method under different metrics (A—C) and for baselines IsoMap (D) and t-SNE
(E). The background color show the expected volume measure associated with the Riemannian metric IE[ det(JTJ)] . A large measure
generally indicate high uncertainty of the manifold. Panel F shows Riemannian geodesics under the lexicographic metric.

than other digits as there is limited variation left after rota-
tions have been factored out; two and five digits significantly
overlap, which is most likely due to 5 digits resembling 2
digits when rotated 180°; similar observations hold for the
four, nine and six digits; and a partial overlap between three
and eight digits as is often observed. The overall darker
background is due to the rotational invariant metric being
shorter than the Euclidean counterpart.

In terms of clustering the lexicographic approach outshines
the other metrics. This is expected as the metric use label in-
formation, but neatly illustrate how domain-specific metrics
can be developed from weak or partial information. Most
classes are well-separated except for a region in the middle
of the plot. Note how this region has high uncertainty.

The Riemannian geometry of the latent space implies that
geodesics (shortest paths) can be computed in our model.
Figure 6F shows example geodesics under the lexicographic
metric. Their highly non-linear appearance emphasizes the
curvature of the learned manifold. The green geodesics has
one endpoint in a cluster of nine digits and move along this
cluster avoiding the uncertain area of eights and fives, as
opposed to linearly interpolating through them.

5. Discussion

We introduced a model for non-linear dimensionality
reduction from dissimilarity data. It is the first of its
kind based on Gaussian processes. The non-linearity
of the method stems both from the Gaussian processes,
but also from the censoring in the likelihood. It unifies
ideas from Gaussian processes, Riemannian geometry
and neighborhood graph embeddings. Unlike traditional
manifold learning methods that embed into RY, we embed
into a g-dimensional Riemannian manifold through the
learned metric. This allows us to learn latent representations
that are isometric to the true underlying manifold.

The model does have limitations. Aesthetically the visu-
alizations are not as satisfactory as e.g. t-SNE. However,
the access to a geometrically founded GPLVM is of in-
terest to many practitioners, since GPs are ubiquitous in
many sub-disciplines of machine learning such as Bayesian
optimization and reinforcement learning. Here, GPs are
fundamental parts of decision-making pipelines, whereas
t-SNE is a valuable visualization technique. The Nakagami
distribution that approximates the arc lengths of Gaussian
processes is prone to overestimate the variance (Bewsher
et al., 2017) and better approximations would improve our
method. Further, the model inherits problems of optimiz-
ing the latent variables and it has previously been noted
that good performance in this regime is linked with good
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initialization (Bitzer & Williams, 2010).

Our experiments highlight that Iso-GPLVM can learn the ge-
ometry of data and geometric constraints are easier encoded
by learning a manifold contra doing GP regression. The un-
certainty quantification associated with GPs follow through
and further highlights the connection between uncertainty,
geometry and topology. To the best of our knowledge, our
model is the first of its kind that, locally, can asses the qual-
ity of the manifold approximation through the associated
Riemannian measure.
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