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APPENDIX A
We do not have explicit energy expressions for all the
different variants of RGA, but in this appendix we consider
the energy optimized by TGA(50%, 1) with unit weights.
As this algorithm relies on trimmed spherical averages, we
first consider these.

A.1 Trimmed Averages on SD−1

In Euclidean spaces, the per-pixel trimmed average can
be written as the solution to the following minimization
problem

µTrim,RD (x1:N ) = arg min
µ∈RD

N∑
n=1

D∑
d=1

tnd(xnd − µd)2, (33)

where the trimming weights tnd ∈ {0, 1} denote which
elements are “trimmed away” and which are kept. For P%
trimming we have

t̄ =

N∑
n=1

tnd = N − 2NP

100
∀d = 1, . . . , D. (34)

Note that t̄ is the same for all dimensions. The well-known
solution to this problem is

µTrim,RD (x1:N ) =
1

t̄
x̄, (35)

where x̄ ∈ RD has elements

x̄d =

N∑
n=1

tndxnd. (36)
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In the main paper, we consider extrinsic trimmed averages
on the unit sphere. These can be similarly defined as

µTrim,SD−1(u1:N )

= arg min
µ∈SD−1

N∑
n=1

D∑
d=1

tnd(und − µd)2.
(37)

This constrained optimization problem has a simple closed-
form solution:

Lemma 2. Let un ∈ SD−1 and let the trimming weights
tnd be fixed, then Eq. 37 has solution

µTrim,SD−1(u1:N ) =
1

‖ū‖
ū, (38)

where ūd =
∑N
n=1 tndund is the Euclidean trimmed average

of the und..

Proof: The results follows by straight-forward compu-
tations: We seek the minima of

f(µ) =

N∑
n=1

D∑
d=1

tnd(und − µd)2 (39)

subject to the constraint ‖µ‖ = 1. We write the constraints
using a Lagrange-multiplier

f̂(µ, λ) = f(µ) + λg(µ), where (40)

g(µ) = 1− µᵀµ = 1−
D∑
d=1

µ2
d. (41)

We evaluate derivatives as

∂f

∂µd
= −2

N∑
n=1

tnd(und − µd) (42)

= −2

N∑
n=1

tndund + 2

N∑
n=1

tndµd (43)

= −2 (ūd − t̄µd) . (44)
∂g

∂µd
= −2µd (45)

∂f̂

∂µd
= −2 (ūd − t̄µd)− 2λµd (46)

= −2 (ūd − (t̄− λ)µd) . (47)
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Setting ∂f̂/∂µd = 0 gives

µd =
ūd
t̄− λ

. (48)

We evaluate λ by setting ∂f̂/∂λ = 0:

∂f̂

∂λ
= 1−

D∑
d=1

µ2
d = 1−

D∑
d=1

ū2d
(t̄− λ)2

(49)

= 1− (t̄− λ)−2‖ū‖2 = 0⇒ (50)
t̄− λ = ±‖ū‖. (51)

Combining Eq. 48 and 51 gives

µd = ± 1

‖ū‖
ūd. (52)

The unknown sign is determined by evaluating f at both
choices and picking the smaller option.

The per-pixel trimmed spherical average, thus, has the
closed-form solution given by the per-pixel trimmed Eu-
clidean average projected onto the sphere. In the case of
50% trimming, the per-pixel trimmed average coincides
with the per-pixel median, and it follows that

µMedian,SD−1(u1:N ) = arg min
µ∈SD−1

N∑
n=1

D∑
d=1

|und − µd| (53)

can be solved by the per-pixel median projected onto the
unit-sphere.

A.2 The Energy Optimized by TGA(50%, 1)

Intuitively, TGA(50%, 1) should find the “median subspace”
spanned by the data. Indeed it optimizes the energy

µMedian(u1:N ) = arg min
µ∈[µ]

{
N∑
n=1

D∑
d=1

|und − µd|

}
, (54)

which can be intepreted as a pixel-wise median subspace.
At every step, the TGA algorithm updates the representa-

tives un of the equivalence class [un], to αnun for some
element of the antipodal group αn ∈ {±1}. To obtain a
convergence guarantee, we assume that the selection of the
signs αn are made to optimize the chordal L1 distance to
the current mean estimate, that is1

αn = arg min
an=±1

D∑
d=1

|anund − µd| . (55)

Lemma 3. Then, with probability 1, TGA(50%, 1) con-
verges to a local minimum of Eq. 54 in finite time.

Proof: We shall show that, with probability 1, there
exists M ∈ N0 such that αn = 1 for all n in every iteration
after the M th iteration of the algorithm. Moreover, the value
of the energy function

N∑
n=1

D∑
d=1

|und − µd| (56)

1. In practical implementations we pick αn to optimize the L2 distance
rather than the L1 as this can be done highly efficiently.

decreases strictly for steps 1 to (M − 1), that is

N∑
n=1

D∑
d=1

|αnund − µd| <
N∑
n=1

D∑
d=1

|und − µd| (57)

for every iteration up to M .
In the ith iteration, with probability 1, we have

D∑
d=1

|−1 · und − µd| 6=
D∑
d=1

|und − µd| (58)

for every n = 1 . . . N , because the set on which∑D
d=1 |−1 · und − µd| =

∑N
n=1

∑D
d=1 |und − µd| has mea-

sure 0.
Now, we could have αn = 1 for all n, in which case

the algorithm has converged and i ≥M . Otherwise, there
exists some n for which αn = −1 gives

D∑
d=1

|αn · und − µd| <
D∑
d=1

|und − µd| , (59)

in which case the energy in Eq. 56 will decrease strictly in
the ith iteration.

The fact that M exists and the TGA algorithm converges
in a finite number of steps follows from the fact that there
are only finitely many ways to change the sign of u1:N ,
each giving a fixed value of the energy function (56), so
there cannot be an infinite sequence of strictly decreasing
values.

As a very small perturbation of the data points will
not lead to a change in the signs αn, the algorithm must
moreover converge to a local optimum.


