
M4M 2007

Terminating Tableau Calculi for Hybrid
Logics extending K

Thomas Bolander

Technical University of Denmark
Copenhagen, Denmark

Patrick Blackburn

INRIA Grand-Est
Nancy, France

Abstract

This article builds on work by Bolander and Blackburn [7] on terminating tableau systems for the minimal
hybrid logic K. We provide (for the basic uni-modal hybrid language) terminating tableau systems for a
number of non-transitive hybrid logics extending K, such as the logic of irreflexive frames, antisymmetric
frames, and so on; these systems don’t employ loop-checks. We also provide (for hybrid tense logic enriched
with the universal modality) a terminating tableau calculus for the logic of transitive frames; this system
makes use of loop-checks.

Keywords: Hybrid logic, tense logic, tableau systems, decision procedures, loop-checks.

1 Introduction

Hybrid logicians like to claim that hybrid logic has two proof-theoretical advantages
over orthodox modal logic. The first is that a simple and general completeness result
can be proved: any pure axiom is deductively complete with respect to the class of
frames it defines. The second is that hybrid logic is an ideal setting for a wide range
of proof styles: sequent calculi, tableau systems, resolution, and natural deduction
can all be handled straightforwardly. Moreover, the two advantages are additive:
when pure formulas are used as extra axioms in (say) a tableau or natural deduction
system for the minimal hybrid logic K, extended completeness with respect to the
frames defined by the pure formulas is typically automatic.

But though these advantages are real, at present it is unclear what relevance
(if any) they have for computational logic. While the basic hybrid logic K is de-
cidable, adding pure axioms can easily yield undecidable logics. Moreover, even if
an extension of K is known to be decidable, adding the relevant pure axioms to a
terminating proof method for K will often result in a non-terminating system.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bolander, Blackburn

The purpose of the present paper is to find terminating tableau methods for
hybrid logics richer than K. This turns out to be quite tricky to do. Actually, that
should come as no surprise. Tableau methods for hybrid logics have been around
for almost a decade (Tzakova [12] is the pioneering paper) but the literature is full
of examples of non-terminating tableau systems even for the basic hybrid logic K.
Indeed, it was not until the recent publication of [7] that a terminating tableau
system for hybrid K, that did not resort to loop-checks or extra side conditions on
rules, was presented. The work in [7] was based on the paper [8] which, however,
employed loop-checks to ensure termination.

The present paper is a direct successor to [7]. Now that termination for K has
been dealt with, it is time to look for terminating tableau systems for richer hybrid
logics. For most of this paper we will work in basic (uni-modal) hybrid logic, and
prove termination results that cover a number of (non-transitive) hybrid definable
frame classes (irreflexive frames, antisymmetric frames, intransitive frames, and so
on) together with the modally definable class of reflexive frames. In the last section
of the article we move to a stronger language (full hybrid tense logic enriched with
the universal modality) and prove a termination result that covers transitive frames.

However, as in our previous work, we are also interested in mapping out the
techniques required to guarantee termination for the various logics, and in using
the weakest methods possible. Thus Section 5 is devoted to finding out which logics
have simply terminating tableau systems (that is, systems for which termination
can be established without extra side conditions on rules or loop-checks). Section 6
is devoted to finding logics where extra side conditions (without loop-checks) suffice
to guarantee termination. Only in Section 7, when we deal with transitivity, do we
resort to loop-checks. Along the way we provide a number of counterexamples to
the various types of termination; these are gathered together in the Appendix. In
our view, such counterexamples are almost as important as the termination results,
for they help pinpoint the major shifts involved when computing with richer logics.
Finally, probably the most vivid lesson we learned form writing this paper is how
tricky it is to obtain general termination results, and how much remains to be done;
we conclude the paper with a brief discussion of the issues involved.

2 The basics of hybrid logic

We shall in many cases adopt the terminology of [4] and [1]. The hybrid logic
we consider is obtained by adding a second sort of propositional symbols, called
nominals, to ordinary modal logic. We assume that a set of ordinary propositional
symbols and a countably infinite set of nominals are given; the sets are taken to be
disjoint. The metavariables p, q, r, . . ., and so on, range over ordinary propositional
symbols and a, b, c, d, . . ., and so on, range over nominals. The semantic difference
between ordinary propositional symbols and nominals is that nominals are required
to be true at exactly one world; that is, a nominal points to a unique world. A
nominal can also play the role of an operator, that is, for any nominal a and any
formula φ, the expression aφ is a wellformed formula. The formula aφ asserts that
the formula φ is true at the world pointed to by a. Such a formula is usually called
a satisfaction statement in hybrid logic, and is usually written as @aφ or a : φ, but

2

Bolander, Blackburn

we find the lighter notation aφ more natural for proof-theoretical purposes.
For most of the paper we will work with a modal language containing only

a single unary (diamond) modal operator F , whose dual (box) form is G. This
language will be called L. It is defined by the following grammar:

φ ::= p | a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | aφ | Fφ | Gφ (L)

Here p is an ordinary propositional symbol and a is a nominal. However in Section 7
we will add the diamond and box forms of the standard Priorean converse operators
(namely P and H) together with the diamond and box forms of the universal
modality (namely E and A). So in Section 7 we will be working with what is
sometimes called nominal tense logic enriched with the universal modality [2]. Now
for the semantics. A frame for L is a tuple (W,R) where W is a non-empty set
(the set of worlds) and R is a binary relation on W called the accessibility relation.
A model for L is a tuple (W,R, V) where (W,R) is a frame, and V is a valuation:
for each proposition symbol or nominal s, V (s) is a subset of W . If s is a nominal
then V (s) must be a singleton set. The satisfaction relation M, w |= φ is defined
inductively, where M = (W,R, V) is a model, w is an element of W , and φ is a
formula of L.

M, w |= s iff w ∈ V (s), where s is a propositional symbol or a nominal
M, w |= ¬φ iff not M, w |= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= aφ iff M, v |= φ, where V (a) = {v}
M, w |= Fφ iff for some v ∈W , (w, v) ∈ R and M, v |= φ

M, w |= Gφ iff for all v ∈W with (w, v) ∈ R, M, v |= φ

The four additional operators we employ in Section 7 have the following semantics:

M, w |= Pφ iff for some v ∈W, (v, w) ∈ R and M, v |= φ

M, w |= Hφ iff for all v ∈W with (v, w) ∈ R, M, v |= φ

M, w |= Eφ iff for some v ∈W , M, v |= φ

M, w |= Aφ iff for all v ∈W , M, v |= φ

By convention M |= φ means M, w |= φ for every element w of W , that is, φ is
globally satisfied in M. A formula φ is valid on a frame F = (WF ,RF) if and only
if φ is globally satisfied in all models of the form (WF , RF , V), and in such a case
we write F |= φ.

3 An internalised tableau calculus

We will now present an internalised tableau calculus for the hybrid language L.
The basic notions for tableaus are defined as usual (see, for example, [7]; this paper
also compares in detail internalised and prefixed tableau systems for hybrid logic).
The rules of our tableau calculus are given in Figure 1 in the Appendix. A tableau
branch in this calculus is said to be closed if it contains both aφ and a¬φ for some
nominal a and formula φ. A tableau branch which is not closed is called open.
A tableau branch is said to be saturated if no further rules apply to it. The first

3

Bolander, Blackburn

formula on a tableau branch is called the root formula of the branch. We denote the
root formula of a tableau branch Θ by rootΘ. The nominals occurring in rootΘ are
called root nominals of Θ. Other nominals are called non-root nominals. A formula
aφ is said to be a quasi-subformula of a formula bψ if φ is a subformula of ψ. A
formula aφ occurring on a tableau branch Θ is called a root subformula on Θ if it is a
quasi-subformula of rootΘ. A formula of the form aFb on Θ is called an accessibility
formula if it is the first conclusion of an application of rule (F). The intended
interpretation of an accessibility formula aFb is that b denotes a world accessible
from a. In each of the rules of Figure 1, the leftmost premise is called the principal
premise. If aφ and bψ are formulas on a tableau branch Θ, then bψ is said to be
produced by aφ if bψ is one of the conclusions of a rule application with principal
premise aφ. The formula bψ is said to be indirectly produced by aφ if there exists a
sequence of formulas aφ, a1φ1, a2φ2, . . . , anφn, bψ in which each formula is produced
by its predecessor. All formulas occurring in the tableau rules are expressed in
negation normal form (NNF), that is, all negation symbols are immediately in
front of nominals or propositional symbols (see [11] for the procedure involved).
Thus when constructing a tableau in this calculus, the root formula first needs to
be put in negation normal form. Note that the rule (F) is the only rule that can
introduce new nominals to a tableau branch. We impose two general constraints on
the construction of tableaus:

• The rule (F) is never applied twice to the same premise on the same branch.
• A formula is never added to a tableau branch where it already occurs.

The tableau calculus for L consisting of all the rules of Figure 1 is called L. To
express that a formula aφ occurs on a tableau branch Θ we often simply write
aφ ∈ Θ. In this case we sometimes say that φ is true at a on Θ.

4 Adding axioms

A formula of L is called a pure formula if it doesn’t contain any ordinary proposi-
tional symbols. Pure formulas can be used to define frame properties of hybrid log-
ics. A formula φ is said to define a class of frames F if and only if: F |= φ⇔ F ∈ F.
That is, a formula defines the class of frames it is valid on. When we say a hybrid
formula defines a certain property (for example, transitivity) we mean it defines
the class of all frames with that property. Figure 2 in the Appendix gives a list
of some pure formulas and the frame properties defined by these formulas. It is
well-known that the properties irreflexivity, asymmetry, antisymmetry, intransitiv-
ity, trichotomy and universality are not definable in ordinary modal logic (see [2]).
Note that all pure formulas of Figure 2 are expressed as satisfaction statements in
negation normal form. In the following we will assume pure formulas are always
expressed in this form. This allows us to use pure formulas as axioms in our tableau
calculi. Let H be a tableau calculus, and let Axiom be a set of pure formulas. We
let H + Axiom denote the tableau system that results from H by using the formulas
of Axiom as axioms. That is, on any tableau branch Θ of H we are free to add
formulas on the form (aφ)[b/a, b1/a1, . . . , bn/an], where aφ is a formula in Axiom,
a, a1, . . . , an are the nominals occurring in aφ, and b, b1, . . . , bn are nominals already
occurring on Θ. Let Θ be a tableau branch in the calculus H + Axiom. A formula

4

Bolander, Blackburn

bψ ∈ Θ is called an axiom subformula on Θ if it is a quasi-subformula of a formula
aφ ∈ Axiom, modulo a renaming of the nominals in φ. In [3], Blackburn gives a
tableau calculus H for a hybrid logic similar to L. He proves that for any set of
pure formulas Axiom, the calculus H+ Axiom is sound and complete with respect to
the class of frames defined by Axiom. However, there are no general results stating
whether the calculus H+Axiom will be terminating or not. In the following sections
we will try to investigate which pure formulas can be added as axioms while retain-
ing both termination and completeness with respect to the class of frames defined
by the axioms.

5 Simple termination

In this section we will investigate which pure formulas can be added as axioms
without needing to ensure termination by imposing extra side-conditions on the
rules or by resorting to loop-checks. As we shall see, simple termination can be
proved for combinations of (ref), (irr), (asym), and (intrans). Most of the lemmas
proved in the course of the discussion will be re-used in the following section. We
begin by noting that the following lemma is easily proved by checking the effect of
the rules of L.

Lemma 5.1 (Subformula Property) Let Axiom be a set of pure formulas in L,
and let Θ be a tableau branch of L+Axiom. Any formula aφ occurring on Θ is either
a root subformula, an axiom subformula or an accessibility formula.

Let Θ be a tableau branch in any calculus. If a nominal b has been introduced
to the branch by applying (F) to a premise aφ then we say b is generated by a on
Θ, and we write a ≺Θ b. We use ≺∗

Θ to denote the reflexive and transitive closure
of ≺Θ.

A pure L-formula is called non-existential if in all subformulas of the form Fφ,
φ is a nominal. We choose the term ‘non-existential’ to refer to these formulas,
since if an axiom is non-existential then it cannot introduce new nominals into a
tableau: only the rule (F) can introduce new nominals, but it doesn’t apply to
axiom subformulas of the form aFφ where φ is a nominal. All pure formulas in
Figure 2 except (serial) and (dense) are non-existential. Let Θ be a tableau branch
in any calculus. The set of nominals occurring on Θ is denoted NomΘ.

Lemma 5.2 Let Axiom be a set of non-existential formulas in L, and let Θ be
a tableau branch in L + Axiom. The graph G = (NomΘ,≺Θ) is a finite set of
wellfounded, finitely branching trees.

Proof. That G is wellfounded follows from the observation that if a ≺Θ b, then the
first occurrence of a on Θ is before the first occurrence of b. That the graph is a
finite set of trees follows from the fact that each nominal in NomΘ can be generated
by at most one other nominal, and that each nominal in NomΘ must have one of
the finitely many root nominals as an ancestor. We will now show that G is finitely
branching. Given a nominal a, we need to show that there can only be finitely
many distinct nominals b satisfying a ≺Θ b. Each nominal b satisfying a ≺Θ b is by
definition generated by applying (F) to a premise of the form aFφ, where either

5

Bolander, Blackburn

φ is not a nominal or aFφ is a root subformula. Since only non-existential axioms
have been introduced on Θ, all formulas of the form aFφ where φ is not a nominal
must be root subformulas, according to Lemma 5.1. Since there can only be finitely
many root subformulas of the form aFφ for any nominal a, only finitely many new
nominals can have been generated from a. This shows that G is finitely branching.2

Lemma 5.3 Let Axiom be a set of non-existential formulas in L. A tableau branch
Θ in L + Axiom is infinite if and only if there exists an infinite chain of nominals
a1 ≺Θ a2 ≺Θ a3 ≺Θ · · · .

Proof. The ‘if’ direction is trivial. To prove the ‘only if’ direction, let Θ be any
infinite tableau branch. Note that according to our tableau conventions all formulas
occurring on the infinite branch Θ are distinct. We will first prove that NomΘ is
infinite. Assume to obtain a contradiction that it is finite. According to Lemma 5.1,
all formulas on Θ are either root subformulas, axiom subformulas or accessibility
formulas. Since NomΘ is finite, there can only be finitely many distinct root sub-
formulas and accessibility formulas on Θ. Since Axiom is finite, there can only be
finitely many distinct axiom subformulas on Θ. Thus, the number of distinct for-
mulas on Θ must be finite, contradicting our assumption. Thus we have proven
NomΘ to be infinite. According to Lemma 5.2, the graph G = (NomΘ,≺Θ) is a
finite set of wellfounded, finitely branching trees. Since G has now been shown to
be infinite, it must—by König’s Lemma—contain an infinite path. An infinite path
in G is an infinite chain of prefixes a1 ≺Θ a2 ≺Θ a3 ≺Θ · · · . 2

An occurrence of a nominal in a formula is called negative if the nominal is
immediately preceded by a negation symbol. A pure formula in negation normal
form is called negative if all nominal occurrences are negative.

Lemma 5.4 Let Axiom denote a set of negative, non-existential formulas, and let
Θ be a tableau branch in L + Axiom. If ab ∈ Θ for a pair of nominals a, b then b is
a root nominal.

Proof. Assume ab ∈ Θ. Lemma 5.1 implies that ab is either a root subformula or an
axiom subformula. Assume first ab is an axiom subformula. Then by assumption on
the set of axioms, ab have been indirectly produced by an axiom subformula of the
form cFd or c¬d. However, as no rule of L accepts an axiom subformula of the form
cFd as principal premise, ab can not have been indirectly produced by cFd. Assume
instead ab was indirectly produced by c¬d. The only rules that possibly apply to
c¬d are (Id), (¬1) and (¬2). However, if (Id) is applied to a principal premise of
the form c¬d it produces a conclusion of the same form; and the rules (¬1) and
(¬2) produce no conclusions. Thus ab can not have been indirectly produced by
c¬d either. This means ab can not be an axiom subformula. It must therefore be a
root subformula, and we immediately get that b is a root nominal. 2

A pure formula is called F -free if it doesn’t contain any occurrences of the F -
operator. Every F -free formula is obviously non-existential. The F -free formulas of
Figure 2 are (irr), (asym), (antisym), (intrans), (uniq) and (tree).

Lemma 5.5 Let Axiom be a set of F -free formulas plus possibly the axiom (ref).
Let Θ a tableau branch in L+ Axiom. If aFb ∈ Θ and b is a non-root nominal then

6

Bolander, Blackburn

a ≺Θ b or a = b.

Proof. Suppose aFb ∈ Θ where b is non-root. We need to prove that a ≺Θ b or
a = b. First note that aFb can not be a root subformula as b is assumed to be
non-root. According to Lemma 5.1, aFb is thus either an accessibility formula or
an axiom subformula. If it is an accessibility formula it is the first conclusion of an
application of (F), and thus a ≺Θ b, by definition. If it is an axiom subformula,
it is indirectly produced by an instance of one of the axioms. By assumption on
Axiom, the only axioms that can contain subformulas of the form Fc for a nominal
c are instances of (ref). Thus aFb must be indirectly produced by an instance of
this axiom. As none of the rules of L accepts an axiom subformula of the form aFb

as a principal premise, aFb must itself be an instance of (ref). Hence a = b, as
required. 2

Let Θ be a tableau branch in any calculus, and let a be a nominal occurring on
Θ. We define mΘ(a) by

mΘ(a) = max{|aφ| : aφ ∈ Θ and aφ is a root subformula},

where |aφ| is the length of the formula aφ. If there are no root subformulas aφ on
Θ we let mΘ(a) = −∞. Let Θ be a branch of a tableau, and let a be a nominal
occurring on Θ. The depth of a wrt. Θ, denoted dΘ(a), is the length of the unique
path in (NomΘ,≺Θ) connecting a root nominal with a. The uniqueness of such a
path is guaranteed by Lemma 5.2.

Lemma 5.6 (Decreasing length) Let Axiom be a finite set of negative, F -free
formulas plus possibly the axiom (ref). Let Θ be a tableau branch in L+Axiom. For
any nominal a on Θ, mΘ(a) ≤ |rootΘ| − dΘ(a).

Proof. The proof is by induction on the depth of the nominal a. The base case
where a has depth 0 is trivial, as mΘ(a) ≤ |rootΘ| is satisfied for any nominal a.
For the induction step let b be a nominal of depth > 0, that is, a non-root nominal.
We need to prove mΘ(b) ≤ |rootΘ|−dΘ(b) under the assumption that the inequality
holds for all nominals of lower depth. If there are no root subformulas true at b
on Θ then mΘ(b) = −∞ and there is nothing to prove. Otherwise, let φ be a
formula of maximal length for which bφ is a root subformula on Θ. Then bφ has
been introduced on Θ by applying one of the rules of L to a root subformula. The
formula bφ can not have been introduced on Θ by applying either (∧) or (∨), since
this contradicts the maximality of φ. We can furthermore assume that bφ has not
been introduced by an application of (Nom), since in this case |bφ| = 2, and there
must be another formula bψ of the same length that has been introduced by an
application of (F) (the application of (F) generating the nominal b). Assume bφ
has been introduced by applying (@) to some root subformula cbφ. Then b must be
a root nominal, contradicting our assumption. Thus (@) can not have been the rule
producing bφ. Now assume bφ has been introduced by applying (Id) to premises aφ
and ab. Then according to Lemma 5.4, b must be a root nominal, which is again a
contradiction. Thus bφ can not have been produced by (Id) either. Therefore bφ
has been introduced by one of the rules (F) or (G). In the case of (F), bφ must have
been introduced together with a formula of the form aFb from a premise aFφ. By

7

Bolander, Blackburn

definition of ≺Θ we then have a ≺Θ b, and thus dΘ(b) = dΘ(a) + 1. The induction
hypothesis then gives us mΘ(a) ≤ |rootΘ| − dΘ(a). Hence we get

mΘ(b) = |bφ| = |aFφ|−1 ≤ mΘ(a)−1 ≤ |rootΘ|−dΘ(a)−1 = |rootΘ|−dΘ(b). (1)

This is the required conclusion. Now consider the case where bφ is introduced by
an application of (G). Then bφ must be introduced by applying (G) to a pair of
premises on Θ of the form aGφ, aFb. Since bφ is assumed to be of maximal length,
we must have a 6= b. Consider the premise aFb on Θ. The nominal b is non-root, so
we can apply Lemma 5.5 to conclude a ≺Θ b. Thus again we get dΘ(b) = dΘ(a) + 1
and by induction hypothesis, mΘ(a) ≤ |rootΘ|−dΘ(a). This implies the same series
of inequalities as in (1), except aFφ is replaced by aGφ. 2

Lemma 5.7 Let Axiom denote a set of non-existential formulas, and let Θ be a
tableau branch in the calculus L+ Axiom. Assume Θ satisfies ∀a ∈ NomΘ(mΘ(a) ≤
|rootΘ| − dΘ(a)). Then Θ is finite.

Proof. Assume to obtain a contradiction that Θ is infinite. Since Axiom is a finite
set of non-existential formulas, Lemma 5.3 then implies there is an infinite chain
a0 ≺Θ a1 ≺Θ a2 ≺Θ · · · . For all i we get dΘ(ai+1) = dΘ(ai) + 1, and thus, for all i,
dΘ(ai) ≥ i. Using the assumption on Θ this implies

∀i ∈ N(mΘ(ai) ≤ |rootΘ| − i). (2)

Since ai ≺Θ ai+1 for all i, there must for each i exist a formula φi such that Θ
contains aiFφi and such that ai+1 has been introduced to Θ by applying (F) to
this formula. By assumption on Axiom, all φi must be root subformulas. Hence for
all i we get mΘ(ai) > 0. However, this is in direct contradiction to (2). 2

Combining Lemma 5.6 with Lemma 5.7 immediately gives us the following ter-
mination result.

Lemma 5.8 Let Axiom denote a finite set of negative, F -free formulas plus possibly
the axiom (ref). Any tableau in the calculus L + Axiom is finite.

The negative, F -free formulas of Figure 2 are (irr), (asym) and (intrans). The
termination theorem above does therefore not give us termination for the following
axioms: (sym), (antisym), (trans), (trich), (univ), (serial), (uniq), (tree), (euc) and
(dense). In fact, if we add just a single of these axioms to the calculus, it will no
longer terminate. For the axioms that are not non-existential, (serial) and (dense),
this is simply because the axioms contain a subformula of the form Fφ where φ is not
a nominal, and from such a formula a new nominal can always be generated. For the
axioms (sym), (antisym), (trans), (trich), (univ) and (uniq), counter-examples to
termination is given in the Figures 3–8. Non-termination of the remaining axioms,
(tree) and (euc), is left as a simple exercise for the reader.

5.1 Completeness

In the following we will assume that we have fixed a function σ that to each tableau
branch Θ and each non-empty set N ⊆ NomΘ picks out an element of N . The

8

Bolander, Blackburn

function value σ(Θ, N) will most often be written σΘ(N) or simply σΘN .

Definition 5.9 (Urfathers) Let Θ be a tableau branch in any calculus, and let a
be a nominal occurring on Θ. The urfather of a on Θ, denoted uΘ(a), is defined by

uΘ(a) =

{
σΘ{b | ab ∈ Θ} if {b | ab ∈ Θ} 6= ∅
a otherwise.

A nominal a is called an urfather on Θ if a = uΘ(b) for some nominal b.

Lemma 5.10 Let Θ be a saturated tableau branch in a calculus containing (Id) and
(Nom). Then we have the following properties:

(i) If aφ is a root subformula or an axiom subformula not on the form aFc then
uΘ(a)φ ∈ Θ.

(ii) If ab ∈ Θ then uΘ(a) = uΘ(b).
(iii) If a is an urfather on Θ then uΘ(a) = a.

Proof. First we prove (i). Assume aφ is a root subformula or an axiom subformula
not on the form aFc. If uΘ(a) = a then there is nothing to prove. So assume
uΘ(a) = σΘ{b | ab ∈ Θ}. Then auΘ(a) ∈ Θ, and by applying (Id) to premises aφ
and auΘ(a) we get uΘ(a)φ as needed. We now prove (ii). Assume ab ∈ Θ. To prove
uΘ(a) = uΘ(b) it suffices to prove that for all nominals c, ac ∈ Θ ⇔ bc ∈ Θ. So
let c be an arbitrary nominal. If ac ∈ Θ then we can apply (Id) to premises ac
and ab to obtain the conclusion bc, as required. If conversely bc ∈ Θ then we can
apply (Nom) to premises bc and ab to obtain the conclusion ac, as required. We
finally prove (iii). Assume a is an urfather. Then a = uΘ(b) for some b. If b = a we
are done. Otherwise we have a = uΘ(b) = σΘ{c | bc ∈ Θ} and thus ba ∈ Θ. This
implies a = uΘ(b) = uΘ(a), using item (ii). 2

Let Θ be an open, saturated tableau branch in any calculus. We can now define
a model MΘ = (WΘ, RΘ, V Θ) by

WΘ = {uΘ(a) | a is a nominal occurring on Θ}
RΘ = {(a, uΘ(b)) ∈W 2 | aFb ∈ Θ}

V Θ(p) = {a ∈W | ap ∈ Θ}
V Θ(a) = {uΘ(a)}.

Lemma 5.11 Let Axiom denote a finite set of F -free formulas plus possibly the
axiom (ref). Let Θ be an open, saturated tableau branch in L + Axiom. If a is
an urfather and aφ is a root subformula or axiom subformula occurring on Θ then
MΘ, a |= φ.

Proof. The proof is by induction on the syntactic structure of φ, where φ is as-
sumed to be on negation normal form. The base cases are φ = p and φ = ¬p
for propositional symbols p and φ = b and φ = ¬b for nominals b. The cases
φ = p and φ = ¬p are trivial. For the case φ = b assume ab ∈ Θ, where a is an
urfather and b is a nominal. Then by item (ii) of Lemma 5.10, uΘ(a) = uΘ(b).
Since a is an urfather, item (iii) of Lemma 5.10 implies uΘ(a) = a. Hence we get

9

Bolander, Blackburn

V Θ(b) = {uΘ(b)} = {uΘ(a)} = {a}, and therefore MΘ, a |= b, as needed. Now
assume a¬b ∈ Θ, where a is an urfather and b is a nominal. By closure under
the rule (¬1) we must have a 6= b. By closure under the rule (¬2) we must have
ba 6∈ Θ. This implies uΘ(b) 6= a. Therefore we get V Θ(b) = {uΘ(b)} 6= {a}, and
hence MΘ, a |= ¬b, as required. This concludes the base cases. We now turn to
the induction step. The cases where the formula has the form ψ ∨ χ or ψ ∧ χ are
trivial. Assume now aFφ ∈ Θ where a is an urfather. By assumption on Axiom,
aFφ can only be an axiom subformula if it is an instance of (ref). If it is an instance
of (ref) then φ = a, and aFa ∈ Θ. Thus we get (a, uΘ(a)) ∈ RΘ, and since a is an
urfather, uΘ(a) = a. In other words we have (a, a) ∈ RΘ implying MΘ, a |= Fa, as
required. If aFφ is a root subformula, closure under (F) implies the existence of a
nominal b such that aFb, bφ ∈ Θ. Since aFφ is a root subformula, bφ is as well, and
we can thus apply item (i) of Lemma 5.10 to conclude uΘ(b)φ ∈ Θ. The induction
hypothesis applied to uΘ(b)φ ∈ Θ gives MΘ, uΘ(b) |= φ. Since aFb ∈ Θ we also
get (a, uΘ(b)) ∈ RΘ. Combining these two facts immediately gives us MΘ, a |= Fφ,
as required. Now assume aGφ ∈ Θ where a is an urfather. If aGφ is an axiom
subformula then φ doesn’t contain any occurrences of F , by assumption on Axiom.
We need to prove MΘ, a |= Gφ. If there is no nominal b such that (a, b) ∈ RΘ,
then this holds trivially. Otherwise, let such a b be chosen arbitrarily. We then
need to prove MΘ, b |= φ. By definition of RΘ there must be a nominal b′ such
that b = uΘ(b′) and such that aFb′ ∈ Θ. Closure under (G) gives that Θ contains
b′φ. Since b′φ is either a root subformula or an axiom subformula not containing
F , we can apply item (i) of Lemma 5.10 to conclude bφ ∈ Θ. Thus by induction
hypothesis, MΘ, b |= φ, as required. Finally, assume abφ ∈ Θ where a is an urfa-
ther. If abφ is an axiom subformula then φ doesn’t contain F , by assumption on
Axiom. We need to prove MΘ, a |= bφ. By definition, V Θ(b) = {uΘ(b)}, so what
we need to prove is MΘ, uΘ(b) |= φ. Closure under (@) gives us bφ ∈ Θ. Since bφ
is either a root subformula or an axiom subformula not containing F , we can apply
item (i) of Lemma 5.10 to conclude uΘ(b)φ ∈ Θ. From this we immediately get
MΘ, uΘ(b) |= φ, as required. 2

Lemma 5.12 (Gargov, Goranko [9]) Let S be a non-empty set of nominals and
let Axiom be a set of pure formulas closed under uniform substitution of nominals
in S for nominals. Let M = (W,R, V) be a model based on a frame F = (W,R)
such that Axiom is globally satisfied in M and such that every world in W is the
denotation of some nominal in S under V . Then F |= Axiom.

Theorem 5.13 (Completeness and termination) Let Axiom denote a finite set
of negative, F -free formulas plus possibly the axiom (ref). The calculus L + Axiom

is terminating and complete with respect to the frames defined by the formulas in
Axiom.

Proof. Termination has already been proved (Lemma 5.8). Assume Θ is an open,
saturated branch in the calculus L + Axiom. By Lemma 5.12 it suffices to prove
that MΘ is a model satisfying the root formula of Θ and globally satisfying all
substitution instances of the formulas in Axiom. The fact that MΘ satisfies the
root formula follows from the fact that if the root of Θ is aφ then Θ also contains
uΘ(a)φ, and thus by Lemma 5.11 we get MΘ, uΘ(a) |= φ. That all substitution

10

Bolander, Blackburn

instances of the formulas in Axiom are globally satisfied in MΘ follows directly from
Lemma 5.11. Note that the set of worlds WΘ of MΘ is the set of urfathers, which
is also the image set of the valuation V Θ of MΘ. 2

Corollary 5.14 Let Axiom denote any subset of the following pure formulas: (ref),
(irr), (asym) and (intrans). The calculus L + Axiom is terminating and complete
with respect to the frames defined by the formulas in Axiom.

6 Termination with extra side conditions

Let Axiom be a finite set of F -free formulas plus possibly the axiom (ref). We will
now prove that by introducing an additional side condition to the (Id) rule, the
calculus L + Axiom becomes both terminating and complete with respect to the
frame properties defined by Axiom. That is, we get a termination and completeness
result that in addition to the axioms covered by the result above also covers the
non-negative, F -free formulas. Of the axioms in Figure 2 these are (antisym), (uniq)
and (tree).

Let (Id−) denote the following version of the (Id) rule, carrying an extra side
condition:

aφ, ab
(Id−) 1. If aφ is of the form aFc then it is a root subformula.

2. Either φ is a nominal or the depth of b is less than or equal to the depth of a.bφ

By L− we denote the calculus obtained from L by replacing (Id) with (Id−). Note
that Lemmas 5.1, 5.2, 5.3, 5.5 and 5.7 also hold for L− + Axiom when Axiom is a
set of F -free formulas. Furthermore, we have the following result, corresponding to
Lemma 5.6. Note, however, that here we need to do induction on the length of Θ;
in Lemma 5.6 induction on the depth of nominals sufficed. This makes the proof
below slightly more complicated than the corresponding proof of Lemma 5.6. On
the other hand, we no longer need an equivalent of Lemma 5.4 for the proof to go
through.

Lemma 6.1 (Decreasing length) Let Axiom be a finite set of F -free formulas,
and let Θ be a tableau branch in L− + Axiom. For all nominals a in Θ, mΘ(a) ≤
|rootΘ| − dΘ(a).

Proof. The proof is by induction on the length of Θ. The base case where Θ has
length 0 is trivial, as Θ then only consists of the root formula. For the induction
step assume ∀a ∈ NomΘ(mΘ(a) ≤ |rootΘ| − dΘ(a)), and let Γ be Θ extended by
either one rule application or the introduction of one new axiom. We need to prove
that for all a in NomΓ:

mΓ(a) ≤ |rootΓ| − dΓ(a). (3)

Assume first that Γ differs from Θ by an application of (F). Then Γ is obtained by
adding formulas bFc and cφ where bFφ belongs to Θ. For all nominals a distinct
from c we immediately get (3), using the induction hypothesis. So we only need to
prove mΓ(c) ≤ |rootΓ| − dΓ(c). If cφ is not a root subformula then mΓ(c) = −∞,
and there’s nothing to prove. If cφ is a root subformula then mΓ(c) = |cφ|. Since

11

Bolander, Blackburn

cφ was introduced by an application of (F) to bFφ we get b ≺Γ c. This implies
dΓ(c) = dΓ(b) + 1. We then get, using the induction hypothesis,

mΓ(c) = |cφ| = |bFφ| − 1 ≤ mΘ(b)− 1 ≤ |rootΘ| − dΘ(b)− 1
= |rootΓ| − dΓ(b)− 1 = |rootΓ| − dΓ(c),

(4)

as required. Assume now Γ is not obtained from Θ by an application of (F). Then
Γ differs from Θ by the addition of a single formula cφ where c already occurs on
Θ. For all a distinct from c we immediately get that (3) holds, using the induction
hypothesis. Thus we only need to prove mΓ(c) ≤ |rootΓ| − dΓ(c). If mΓ(c) = mΘ(c)
this follows immediately from the induction hypothesis. So assume mΓ(c) 6= mΘ(c).
Then cφ is a root subformula and mΓ(c) = |cφ|. Thus cφ is of maximal length
among the root subformulas of the form cψ on Γ. The formula cφ can not have been
introduced by an application of either (∨) or (∧), since this contradicts maximality.
The formula cφ can not have been introduced by (Nom) either, since in that case
|cφ| = 2, and we get mΓ(c) = mΘ(c), contradicting the assumption. Thus cφ
must have been introduced by an application of either (@), (G) or (Id−) to a root
subformula. If cφ is introduced by an application of (@) to a root subformula
of the form bcφ then c is a root nominal, and thus dΓ(c) = 0. In this case we
trivially get mΓ(c) ≤ |rootΓ| − dΓ(c). Assume cφ is introduced by an application
of (G) to premises bGφ and bFc. We can assume that c is a non-root nominal,
since otherwise the required conclusion will again follow trivially. Since cφ is of
maximal length we must have b 6= c. Lemma 5.5 thus implies b ≺Γ c, and therefore
dΓ(c) = dΓ(b) + 1. We therefore get the same series of inequalities as in (4), except
bFφ is replaced by bGφ. Assume finally that cφ is produced by applying (Id−) to
premises bφ and bc. The formula φ can not be a nominal, since then |cφ| = 2 and
thus mΓ(c) = mΘ(c), contradicting the assumption. Since φ is not a nominal we
must have dΘ(c) ≤ dΘ(b), by side condition 2 of (Id−). Hence we get, as required,
mΓ(c) = |cφ| = |bφ| ≤ mΘ(b) ≤ |rootΘ|−dΘ(b) ≤ |rootΓ|−dΘ(c) = |rootΓ|−dΓ(c).2

Combining Lemma 6.1 with Lemma 5.7 immediately gives us the following ter-
mination result.

Theorem 6.2 (Termination) Let Axiom be a finite set of F -free formulas plus
possibly the axiom (ref). Any tableau in the calculus L− + Axiom is finite.

6.1 Completeness

To ensure completeness of the calculus L− we need to choose the function σ used in
the definition of urfathers, Definition 5.9, in a special way. Given a tableau branch Θ
and a non-empty set N ⊆ NomΘ we require that dΘ(σΘ(N)) = min{dΘ(a) | a ∈ N}.
It is obviously possible to choose σ such that this holds. Note that then Lemma 5.10
will still hold with L replaced by L−. This implies that Lemma 5.11 will also hold
with L replaced by L−. Since we have already proven termination, Theorem 6.2, we
then get the following results.

Theorem 6.3 (Completeness and termination) Let Axiom denote a finite set
of F -free formulas plus possibly the axiom (ref). The calculus L− + Axiom is termi-
nating and complete with respect to the frames defined by the formulas in Axiom.

12

Bolander, Blackburn

Corollary 6.4 Let Axiom denote any subset of the following pure formulas: (ref),
(irr), (asym), (antisym), (intrans), (uniq) and (tree). The calculus L− + Axiom

is terminating and complete with respect to the frames defined by the formulas in
Axiom.

This result has some interesting applications. For example, it provides a ter-
minating tableau algorithm for simple logics of trees (like those proposed in [5])
for describing the grammatical structure of sentences of ordinary human languages
such as English and French. On the other hand, it doesn’t cover the more complex
logics proposed for this purpose in [6], for the simple reason that we still don’t know
how to handle transitivity. This is the problem to which we now turn.

7 Termination with loop-checks

The axioms of Figure 2 we still haven’t been able to deal with are (sym), (trans),
(trich), (univ), (serial), (euc) and (dense). The non-termination of the first 4 of these
is demonstrated in the Figures 3, 5, 7 and 6. The termination problem demonstrated
by these 4 examples is more profound than the one involved in the axioms (antisym),
(uniq) and (tree). In the following we will explain why.

Given a tableau branch Θ, define ∼Θ to be the reflexive, symmetric and transi-
tive closure of the relation {(a, b) ∈ NomΘ | ab ∈ Θ}. This relation is an equivalence
relation by definition. We say that two nominals a and b are equivalent on a branch
Θ if a ∼Θ b. The termination problem arising with the axioms (antisym), (uniq)
and (tree) is that they allow us to repeatedly introduce new nominals to a branch
that are equivalent to already existing nominals on the branch. This can be done
ad infinitum as shown by the examples in Figures 4 and 8. However, since it is easy
to check whether two nominals are equivalent, it is also easy to avoid this kind of
non-termination problem. All that is required is to put an extra constraint on the
ability to copy formulas between equivalent prefixes. This is the extra constraint
we have on the (Id−) rule compared to the (Id) rule.

In the case of the axioms (sym), (trans), (trich) and (univ) the non-termination
problem is less simple. Consider the infinite tableau branches including these axioms
in Figures 3, 5, 7 and 6. None of these tableau branches contain pairs of distinct
and equivalent nominals, so the source of non-termination can not be equivalence
between nominals. Let us define a pair of nominals a, b on a tableau branch Θ
to be twins if they make the same root subformulas true on Θ, that is, if {φ |
aφ is a root subformula on Θ} = {φ | bφ is a root subformula on Θ}. The source
of non-termination in the case of the axioms (sym), (trans), (trich) and (univ) is
that we are allowed to repeatedly introduce new nominals to a branch that are
twins of already existing nominals on the branch. This is illustrated by the fact
that in all of the tableau branches of Figures 3, 5, 7 and 6, the nominals a1 and a2

are twins—and thus all further introduced nominals will be twins of a1 as well. To
ensure termination we can put a constraint on the generation of twin nominals of
existing nominals. This is done in [7] by introducing the following general constraint
on the construction of tableaus:

(D) The rule (F) is only allowed to be applied to a formula aφ on a branch Θ if

13

Bolander, Blackburn

there is no pair of distinct twins b, c ≺∗
Θ a.

This constraint is sufficient to ensure termination, as we will see below. However,
now completeness is at stake. In fact, the calculus L+{(trans)} is not complete under
the constraint (D) as shown by the tableau branch in Figure 9 in the Appendix.
Lines 1–32 in this figure constitute a saturated tableau branch generated under
restriction (D). Under restriction (D) the rule (F) can not be applied to the formula
a3F (Fp ∨ Gp) in line 24, since a1 and a3 are twins and a1 ≺∗

Θ a3. However, if we
drop restriction (D), we can continue the branch as in lines 33-40, and the branch
closes. This proves that when restriction (D) is applied, the calculus L + {(trans)}
is not complete.

The situation we are facing can be summed up as follows: to obtain termination
when adding (trans) we need to apply a loop-check condition like (D), but when this
is done we loose completeness. Does this mean that we can’t deal with transitivity
in the present framework? Fortunately it doesn’t, but to do it we need to resort to
a trick used for standard modal logics, cf. [10]. Instead of using the axiom (trans)
we replace the rule (G) by the following rule:

aGφ, aFb
(Gtrans)

bφ

bGφ

Using this rule instead of (G) and doing loop-check by restriction (D) gives us
a terminating calculus with respect to the transitive frames, as we will see below.
Since we are anyway forced to do loop-checks we can just as well extend our language
to incorporate both the global modality and inverse modalities. Thus, let L+ be
the calculus consisting of the rules (¬1), (¬2), (∧), (∨), (F), (Gtrans), (@), (Nom), (Id)
and the following additional rules for the global and inverse modalities:

aEφ
(E)1

bφ

aAφ
(A)2

cφ

aPφ
(P)1

bFa

bφ

aHφ, bFa
(H)

bφ

1 The nominal b is new to the tableau.
2 The nominal c is already on the branch.

We have to take care of the additional rules in our loop-check, so we replace restric-
tion (D) by the following:

(D+) The rules (F), (E) and (P) are only allowed to be applied to a formula aφ
on a branch Θ if there is no pair of distinct twins b, c ≺∗

Θ a.

Theorem 7.1 (Completeness and termination) The calculus L+ with restric-
tion (D+) is terminating and complete with respect to transitive frames.

Proof. We only give a sketch of the proof. Termination is already proven in [7] with

14

Bolander, Blackburn

(G) instead of (Gtrans). Replacing (G) by (Gtrans) doesn’t affect termination, as the
termination argument is only based on the fact that the number of root subformulas
is finite whenever the number of nominals is finite. To prove completeness we need
to construct a model from an open, saturated tableau branch Θ. In [7] it is shown
how to construct such a model MΘ = (WΘ,RΘ,VΘ). We can use the same model
in the present case, except we replace RΘ by its transitive closure. In this way
transitivity of the model is automatically ensured. The proof that the formulas of
Θ hold in the constructed model now follows the same lines as the proof given in
[7]. The only non-trivial difference is the case of formulas of the form Gφ. This case
follows the lines of the proof of completeness for transitive logics in [10]. 2

8 Conclusion

In this paper we presented the first systematic results we know of concerning termi-
nation of hybrid tableaus for modal and hybrid logics richer than K. Much, however,
remains to be done—and the work that now faces us seems to vary widely in diffi-
culty. Perhaps the easiest task is to extend the results of the previous section for
full nominal tense logic with the universal modality. In this paper we only treated
the case of transitivity, but our preliminary investigations suggest that it should
be reasonably straightforward to extend the loop-checking approach to cover such
conditions as (sym), (trich), (ref) and (trans) in various combinations.

But then we are faced with the task of combining such conditions as (irr), (sym),
(asym), (antisym), (intrans), (uniq) and (tree) with (trans), and here matters are
likely to be much trickier. Certainly loop-checks will usually be required, but it
is unclear to us at present what kinds of general results we can hope for here, or
what languages we can prove them for. To give an idea of the difficulties involved,
note that even such a simple looking combination as (trans)+(irr) does not have
the finite frame property (consider the formula F>∧GF>, for example). There are
some natural ways around such difficulties. For example, as is noted in [2], hybrid
logics lacking the finite frame property often have the finite model property with
respect to non-standard but relatively simple classes of models. But speculation
before detailed investigations have been carried out is probably fruitless here: in
termination proofs, the devil is in the details.

References

[1] Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Characterization, interpolation
and complexity. Journal of Symbolic Logic, 66:977–1010, 2001.

[2] Patrick Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic, 34(1):56–83, 1993.

[3] Patrick Blackburn. Internalizing labelled deduction. Journal of Logic and Computation, 10:137–168,
2000.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 2001.

[5] Patrick Blackburn, Claire Gardent, and Wilfried Meyer-Viol. Talking about trees. In Proceedings of
the 6th Conference of the European Chapter of the Association for Computational Linguistics, pages
21–29, 1993.

[6] Patrick Blackburn and Wilfried Meyer-Viol. Linguistics, logic, and finite trees. Logic Journal of the
IGPL, 2:3–29, 1994.

15

Bolander, Blackburn

[7] Thomas Bolander and Patrick Blackburn. Termination for hybrid tableaus. Journal of Logic and
Computation, 17(3):517–554, 2007.

[8] Thomas Bolander and Torben Braüner. Tableau-based decision procedures for hybrid logic. Journal
of Logic and Computation, 16:737–763, 2006.

[9] George Gargov and Valentin Goranko. Modal logic with names. Journal of Philosophical Logic,
22(6):607–636, 1993.

[10] Rajeev Goré. Tableau methods for modal and temporal logics. In Handbook of Tableau Methods, pages
297–396. Kluwer Academic Publishers, 1995.

[11] Balder ten Cate and Massimo Franceschet. On the complexity of hybrid logics with binders. In
Proceedings of Computer Science Logic 2005, volume 3634 of Lecture Notes in Computer Science,
pages 339–354. Springer Verlag, 2005.

[12] Miroslava Tzakova. Tableau calculi for hybrid logics. Lecture Notes in Computer Science, 1617:278–
292, 1999.

Appendix: figures referred to in the text

a,¬a
(¬1)1

⊥
a¬b, ba

(¬2)1
⊥

a(φ ∧ ψ)
(∧)

aφ

aψ

a(φ ∨ ψ)
(∨)

aφ | aψ

aFφ
(F)2

aFb

bφ

aGφ, aFb
(G)

bφ

abφ
(@)

bφ

bc, ab
(Nom)

ac

aφ, ab
(Id)3

bφ

1 ⊥ denotes a closing tableau.
2 If φ is a nominal then aFφ is a root subformula. The nominal b is new to the tableau.
3 If aφ is of the form aFc then it is a root subformula.

Fig. 1. Tableau calculus for the hybrid language L.

16

Bolander, Blackburn

(ref) aFa reflexivity ∀x(x < x)

(irr) aG¬a irreflexivity ∀x¬(x < x)

(sym) aGFa symmetry ∀x, y(x < y → y < x)

(asym) aGG¬a asymmetry ∀x, y(x < y → ¬y < x)

(antisym) aG(a ∨G¬a) antisymmetry ∀x, y(x < y ∧ y < x→ x = y)

(trans) a(GG¬b ∨ Fb) transitivity ∀x, y, z(x < y ∧ y < z → x < z)

(intrans) a(GG¬b ∨G¬b) intransitivity ∀x, y, z(x < y ∧ y < z → ¬x < z)

(trich) a(b ∨ Fb ∨ bFa) trichotomy ∀x, y(x < y ∨ y < x ∨ x = y)

(univ) aFb universality ∀x, y(x < y)

(serial) aF> seriality ∀x∃y(x < y)

(uniq) a(G¬b ∨Gb) uniqueness ∀x, y, z(x < y ∧ x < z → y = z)

(tree) a(bG¬a ∨ cG¬a ∨ bc) tree-like ∀x, y, z(x < z ∧ y < z → x = y)

(euc) a(G¬b ∨G¬c ∨ bFc) euclidean ∀x, y, z(x < y ∧ x < z → x < z)

(dense) a(G¬b ∨ FFb) density ∀x, y(x < y → ∃z(x < z ∧ z < y))

Fig. 2. A collection of pure formulas in L and their defining frame properties.

1 a0FFb

2 bGFFb

X

8>>>>><>>>>>:

3 a0Fa1 (F) on 1

4 a1Fb (F) on 1

5 a1GFa1 (sym)

6 bFa1 (G) on 5,4

7 a1FFb (G) on 2,6

X[a1/a0, a2/a1]

8>>>>><>>>>>:

8 a1Fa2 (F) on 7

9 a2Fb (F) on 7

10 a2GFa2 (sym)

11 bFa2 (G) on 10,9

12 a2FFb (G) on 2,11

..

.
.
..

Fig. 3. Non-termination with (sym).

1 a0FFa0

2 a0Fa1 (F) on 1

3 a1Fa0 (F) on 1

X

8>>>>>>>><>>>>>>>>:

4 a1G(a1 ∨G¬a1) (antisym)

5 a0(a1 ∨G¬a1) (G) on 4,3

6 a0a1 (∨) on 5

7 a1FFa0 (Id) on 1,6

8 a1Fa2 (F) on 7

9 a2Fa0 (F) on 7

X[a2/a1, a3/a2]

8>>>>>>>><>>>>>>>>:

10 a2G(a2 ∨G¬a2) (antisym)

11 a0(a2 ∨G¬a2) (G) on 10,9

12 a0a2 (∨) on 11

13 a2FFa0 (Id) on 1,12

14 a2Fa3 (F) on 13

15 a3Fa0 (F) on 13

..

.
..
.

Fig. 4. Non-termination with (antisym).

17

Bolander, Blackburn

1 a0(Fp ∧GFp)

2 a0Fp (∧) on 1

3 a0GFp (∧) on 1

4 a0Fa1 (F) on 2

X

8>>><>>>:
5 a1Fp (G) on 3,4

6 a1Fa2 (F) on 5

7 a0(GG¬a2∨Fa2) (trans)

8 a0Fa2 (∨) on 7

X[a2/a1, a3/a2]

8>>><>>>:
9 a2Fp (G) on 3,8

10 a2Fa3 (F) on 9

11 a0(GG¬a3∨Fa3) (trans)

12 a0Fa3 (∨) on 11

.

..
.
..

Fig. 5. Non-termination with (trans).

1 a0GFp

2 a0Fa0 (univ)

3 a0Fp (G) on 1,2

4 a0Fa1 (F) on 3

X

8><>:
5 a1Fp (G) on 1,4

6 a1Fa2 (F) on 5

7 a0Fa2 (univ)

X[a2/a1, a3/a2]

8><>:
8 a2Fp (G) on 1,7

9 a2Fa3 (F) on 8

10 a0Fa3 (univ)

..

.
..
.

Fig. 6. Non-termination with (univ).

1 a0(Fp ∧GFp)

2 a0Fp (∧) on 1

3 a0GFp (∧) on 1

4 a0Fa1 (F) on 2

X

8>>><>>>:
5 a1Fp (G) on 3,4

6 a1Fa2 (F) on 5

7 a0(a2∨Fa2∨a2Fa0) (trich)

8 a0Fa2 (∨) on 7

X[a2/a1, a3/a2]

8>>><>>>:
9 a2Fp (G) on 3,8

10 a2Fa3 (F) on 9

11 a0(a3∨Fa3∨a3Fa0) (trich)

12 a0Fa3 (∨) on 11

.

..
.
..

Fig. 7. Non-termination with (trich).

1 a0FFp

2 a0Fa1 (F) on 1

3 a1Fp (F) on 1

X

8>>>>><>>>>>:

4 a1Fa2 (F) on 3

5 a0(G¬a2 ∨Ga2) (uniq)

6 a0Ga2 (∨) on 5

7 a1a2 (G) on 6,2

8 a2Fp (Id) 3,7

X[ai+1/ai]

8>>>>><>>>>>:

9 a2Fa3 (F) on 8

10 a1(G¬a3 ∨Ga3) (uniq)

11 a1Ga3 (∨) on 10

12 a2a3 (G) on 11,4

13 a3Fp (Id) on 8,12

.

..
.
..

Fig. 8. Non-termination with (uniq).

18

Bolander, Blackburn

1 a0Fp

2 a0G(¬p∨F (Fp∧Gp))

3 a0G(q ∨ ¬p)

4 a0Fa1 (F) on 1

5 a1p (F) on 1

6 a1(¬p ∨ F (Fp ∧Gp)) (G) on 2,4

7 a1(q ∨ ¬p) (G) on 3,4

8 a1F (Fp ∧Gp) (∨) on 6

9 a1q (∨) on 7

10 a1Fa2 (F) on 8

11 a2(Fp ∧Gp) (F) on 8

12 a2Fp (∧) on 11

13 a2Gp (∧) on 11

14 a2Fa3 (F) on 12

15 a3p (F) on 12

16 a0(GG¬a2 ∨ Fa2) (trans)

17 a0Fa2 (∨) on 16

18 a2(¬p ∨ F (Fp ∧Gp)) (G) on 2,17

19 a2¬p (∨) on 18

20 a2(q ∨ ¬p) (G) on 3,17

21 a0(GG¬a3 ∨ Fa3) (trans)

22 a0Fa3 (∨) on 21

23 a3(¬p ∨ F (Fp ∧Gp)) (G) on 2,22

24 a3F (Fp ∧Gp) (∨) on 23

25 a3(q ∨ ¬p) (G) on 3,22

26 a3q (∨) on 25

27 a1(GG¬a3 ∨ Fa3) (trans)

28 a1Fa3 (∨) on 27

29 ai(GG¬aj ∨ Faj) (trans) for j ≤ i + 1

30 aiGG¬aj (∨) on 29 for j ≤ i + 1

31 aiG¬aj (G) on 30, · for j ≤ i

32 ai¬aj (G) on 31, · for j < i

no (D)

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

33 a3Fa4 (F) on 24

34 a0(GG¬a4 ∨ Fa4) (trans)

35 a0Fa4 (∨) on 34

36 a4(q ∨ ¬p) (G) on 3,35

37 a4¬p (∨) on 36

38 a2(GG¬a4 ∨ Fa4) (trans)

39 a2Fa4 (∨) on 38

40 a4p (G) on 13,39

×

Fig. 9. Incompleteness of L + {(trans)} under the constraint (D).

19

	Introduction
	The basics of hybrid logic
	An internalised tableau calculus
	Adding axioms
	Simple termination
	Completeness

	Termination with extra side conditions
	Completeness

	Termination with loop-checks
	Conclusion
	References

