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Epistemic planning —
automated planning (Al) + epistemic reasoning (epistemic logic)

Aim: To compute plans that can take the mental states of other agents
into account.

Essentially: (Decentralised) multi-agent planning in environments with
(potentially higher-order) information asymmetry.

Goal

Start

Automated planning

Epistemic reasoning about
the mental states of others



Classical automated planning:
state space search and domain descriptions

On(C, table)A
On(B, table)A
On(A, table)

Put(B,table)

On(C, B)A
on(B, A)A
On(A, table)

On(C, table)\
On(B, A)A
On(A, table)

Put(C,table) Put(A,B) On(C, table) A

on(B, C)A
On(A, B)

Action schema describing the Put(x,y) action for put object x on top
of object y:

ACTION : Put(x,y) pre:  On(x,z)A---

PRECONDITION : On(x,z) A --- . On(x,y):=T

EFFECT : On(x,y) A =On(x, z) post: On(x,z):=L1
STRIPS/PDDL Dynamic Epistemic Logic (DEL)

[Ghallab et al., 2004, Baltag et al., 1998, van Ditmarsch and Kooi, 2008]
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Link to movie (clickable):

http://www2.compute.dtu.dk/~tobo/sally_anne_trimmed.mpd
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Link to movie (clickable):

“http://www2.compute.dtu.dk/~ tobo/komdlgltal

er_video.mov

KomDigital: R2DTU — A Pepper robot, 25 November 2020 [?]



http://www2.compute.dtu.dk/~tobo/komdigital_pepper_video.mov
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Percepts

Actions
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But...
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(poor person 2)



Sally-Anne with a twist (in GPT-4 = ChatGPT+)

USER

ASSISTANT

Sally and Anne are playing with a marble. Sally puts the
marble into her basket. Then she goes outside to play.
While she is outside, Anne drinks a coke. Now Sally
comes back. Sally sees Anne taking the marble from the
basket and putting it into her box. Where will Sally look
for her marble?

Sally will look for her marble in her basket. Since that
was where she originally placed it before leaving, and
she did not see Anne move the marble, she would
expect it to still be there.



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander

P

9/22



Multiagent case: States as S5 Kripke models

O[]

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander



Multiagent case: States as S5 Kripke models

5 |
4,
oo

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander



Multiagent case: States as S5 Kripke models

5 |
4, [
o020

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Thomas Bolander



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).



Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).



Multiagent case: States as S5 Kripke models
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Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.

Designated worlds: O (those considered possible by planning agent).
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Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Agent b: "Which letter does the middle block have?”
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Dynamic epistemic logic (DEL) by example:
product update

di, a2
So = ' —locked = locked

wy w2
. . pre:  —locked a2, a3 pre:  locked
aj:open =
post: open:=T post :
€1 success failure €
a
Sp ® aj:open = —locked, open
wy w2

ay:open is an event model (representing an action). In these, nodes are
events, and each event has a precondition (epistemic formula) and
postconditions for all atoms (also epistemic formulas).

[Baltag et al., 1998, van Ditmarsch and Kooi, 2008]
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In(cube;ed, box1)

A, B J:r % AgB
A<B, B<A | A4B, BdA,

Atom In(cy, cz): obj. ¢ is in container c.

Atom a<tb (a sees b): agent a currently
observes the actions of agent b.

Action a:X: X is a list of assignments
(+p and —p where p is an atom).

S4

In(cuberea, boxy) In(cuberea,boxra)  In(cubereq,boxt)

Thomas Bolander — p. 11/22



Second-order false-belief tasks

Full formalisation of second-order chocolate task:
boy:+In(choc, drawer); boy:— boy<igirl, —girl<tboy; boy:+boy<igirl;
girl:—In(choc, drawer); girl:+In(choc, box).

True in resulting state: Bgjbox A Bpoybox A Bgijr Bpoy drawer.



Planning based on DEL: epistemic planning tasks

Definition. An (epistemic) planning task T = (s, A, ¢5) consists of
® A multipointed Kripke model sy called the initial state.
e A finite set of multipointed event models A called actions.
® A goal formula ¢, of epistemic logic.

Definition. A (sequential) plan for a planning task T = (sp, A, pg) is a
sequence of actions ay, ap, ..., a, from A such that for all 1 < < n, «;
is applicable in sp ® @1 ® - -+ ® j_1 and

SOR AL ® R ® @ = Qg

Defining ()¢ := ()T A [a]ep, this can be reformulated as
so = (a1))(@2)) - - (an)) -

Definition. A plan i1:a1, ... ip:a, (using notation i:av for agent i
performing action «) is implicitly coordinated if it furthermore holds
that :

so = Kiy (i1:01))Kiy (2:02)) - - - Ki,, (i cxn)) g
[Bolander and Andersen, 2011, Engesser et al., 2017, Bolander et al., 2020]



Conflicting implicitly coordinated plans:
Move to (nondeterministic) policies

[Bolander et al., 2018]
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Implicit coordination:
multi-agent pathfinding with destination uncertainty
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http://www2.compute.dtu.dk/~tobo/scenario2_double.mp4

Towards forward induction in implicit coordination

L N
e A A o T N
’L O 5% ’L
£ 5
R O
A 2 > A % N
ﬂ 000
Alice Bob
a b
/7P3 /.r.p3 r7p3
wq wo w3

Atomic propositions:
® /. There's a goal in the leftmost position (pos. 1)
® r: There's a goal is the rightmost position (pos. 5)
® p;: The lever is at position i

Goal: @z = (INp1)V(rAps)
Alice (a) can only pull left (a:L), Bob (b) can only pull right (b:R).



Implicit coordination with (simple) forward induction

Each agent plans from their local perspective, i.e., we close the set of designated
worlds under the accessibility relation of that agent. Below the perspective of a.

(p)—o—{r.pa)— b3

Work in progress with Victoria Nunez Romero Thomas Bolande p. 17/22
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From global to local costs

Previous solution concept not strong enough to capture e.g. goal recognition.
Solution: Compute first global costs, and prune indistinguishability edges. Goal
of our solution concept:

® No exponential time complexity in the tree size (no quantification over all
policies).
® Gives a somewhat “realistic” solution concept for multiagent systems.
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Implicit coordination in multi-agent pathfinding
revisited

-



http://www2.compute.dtu.dk/~tobo/scenario2_double.mp4

Towards depth-bounded reasoning in epistemic
planning: k-bisimulation contractions

k-bisimilarity, s <, t: Models s and t satisfy the back and forth
conditions of bisimilarity up to distance k from the designated world(s).

Theorem [Blackburn et al., 2001]. If s < t then s and t are modally
equivalent to modal depth k (agree on all formulas up to modal depth k).

k-bisimulation contraction, |s]|,: Quotient of s wrt. <.

Note: A k-bisimulation contraction is not necessarily minimal among
models preserving modal equivalence to depth k. A recent revised notion
of k-contraction remedies this [Bolander and Burigana, 2024].



Theorem [Bolander and Lequen, 2023]. If s <2 t then
S® a2 _md(a) t ® o, where md(«a) is the maximal modal depth of any
pre- or post-condition of .

P 7

p pre:  Kip 77
-q post: q:=Kjr

Theorem. The plan existence problem in epistemic planning is decidable
when all actions have propositional pre- and postconditions (i.e., m =0).
(Orig. proof by [Yu et al., 2013])



Epistemic planning with depth-bounded reasoning

Paper currently under submission. We present a planning algorithm
BOUNDEDSEARCH( T, b) with bound b (simplified version):
® “Approximate” initial state sy with |sp|p. Define bound b(sp) = b.
® For each computed product update s ® o, let
b(s ® ar) = b(s) — md(a) (cf. theorem on previous slide).
® If b(s) < modal-depth(pg), delete s.

Parameters of planning task T (we study parameterised complexity).

a: # agents p: # propositional variables
o: modal depth of goal formula u: maximal length of plan
c: max. modal depth of action preconditions

Theorem (Soundness and completeness). BOUNDEDSEARCH( T, b)
is sound, and if T is solvable, a solution will be found when b > cu + o.

Theorem (Complexity). BOUNDEDSEARCH( T, b) runs in time
| T|9W exp5™ O(a + p). (So fixed-parameter tractable in {a, c,o0,p,u})

For any proper subset of the parameters {a,c,o, p,u}, even plan
verification is fixed-parameter intractable. [Bolander and Lequen, 2023]
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