Multi-Agent Only-Knowing

Gerhard Lakemeyer
Computer Science, RWTH Aachen University Germany

AI, Logic, and Epistemic Planning, Copenhagen October 3, 2013

Joint work with Vaishak Belle

Contents of this talk

- Only-knowing
- The single-agent case
- The multi-agent case

Only-Knowing

Levesque (1990) introduced the logic of only-knowing to capture the beliefs of a knowledge-base.
(Other variants such as Halpern \& Moses, Ben-David \& Gafni, Waaler not discussed here.)

ExAMPLE

If all I know is that the father of George is a teacher, then

- I know that someone is a teacher;
- but not who the teacher is.

Note: Does not work if all I know is replaced by I know

- Need to express that nothing else is known.

The Single-Agent Case

Levesque considered only the single-agent case.

- Compelling (i.e. simple) model-theoretic account
- A possible-worlds framework for a first-order language
- An epistemic state is simply a set of worlds

The Single-Agent Case

Levesque considered only the single-agent case.

- Compelling (i.e. simple) model-theoretic account
- A possible-worlds framework for a first-order language
- An epistemic state is simply a set of worlds
- Compelling proof-theoretic account (for the propositional fragment)
- K45 + 2 extra axioms

Connection with Default Reasoning

Levesque showed only-knowing captures Moore's Autoepistemic Logic:

- beliefs that follow from only-knowing facts and defaults are precisely those contained in all autoepistemic expansions

ExAMPLE

If all I know is that Tweety is a bird and that birds fly unless known otherwise, then I believe that Tweety flies.

The Language $\mathcal{O N} \mathcal{L}$

$\mathcal{O N} \mathcal{L}$ is a first-order language with $=$

- infinitely many standard names n_{1}, n_{2}, \ldots syntactically like constants, serve as the fixed domain of discourse (rigid designators);
- variables x, y, z, \ldots
- predicate symbols of every arity;
- the usual logical connectives and quantifiers: \wedge, \neg, \forall;
- modal operators:
- $\boldsymbol{K} \alpha$ "at least" α is believed.
- $\boldsymbol{N} \alpha$ "at most" α is believed to be false;
- Only-knowing:

$$
\boldsymbol{O} \alpha \doteq \boldsymbol{K} \alpha \wedge \boldsymbol{N} \neg \alpha
$$

Levesque's Semantics

Primitive Formula = predicate with standard names as args.

A world w is set of primitive formulas An epistemic state e is a set of worlds.

- e,w $=P(\vec{n})$ iff $P(\vec{n}) \in w$;
- $\boldsymbol{e}, \boldsymbol{w} \models \forall x$. α iff $e, w \models \alpha_{n}^{x}$ for all n
- $\boldsymbol{e}, \boldsymbol{w} \models \boldsymbol{K} \alpha$ iff for all $\boldsymbol{w}^{\prime} \in \boldsymbol{e}, \boldsymbol{e}, \boldsymbol{w}^{\prime} \models \alpha$;
- $\boldsymbol{e}, \boldsymbol{w} \models \boldsymbol{N} \alpha$ iff for all $w^{\prime} \notin e, e, w^{\prime} \models \alpha$

Levesque's Semantics

Primitive Formula = predicate with standard names as args.

A world w is set of primitive formulas An epistemic state e is a set of worlds.

- e, w $\models P(\vec{n})$ iff $P(\vec{n}) \in w$;
- $\boldsymbol{e}, \boldsymbol{w} \models \forall x$. α iff $\boldsymbol{e}, \boldsymbol{w} \models \alpha_{n}^{x}$ for all n
- $\boldsymbol{e}, \boldsymbol{w} \models \boldsymbol{K} \alpha$ iff for all $\boldsymbol{w}^{\prime} \in \boldsymbol{e}, \boldsymbol{e}, \boldsymbol{w}^{\prime} \models \alpha$;
- $\boldsymbol{e}, \boldsymbol{w} \models \boldsymbol{N} \alpha$ iff for all $w^{\prime} \notin \boldsymbol{e}, \boldsymbol{e}, \boldsymbol{w}^{\prime} \models \alpha$
- $\left(e, w \models \boldsymbol{O} \alpha\right.$ iff for all $w^{\prime}, w^{\prime} \in e$ iff $\left.e, w^{\prime} \models \alpha\right)$

Axioms (propositional)

objective: non-modal formulas
subjective: all predicates within a modal Let \boldsymbol{L} stand for both \boldsymbol{K} and \boldsymbol{N} :

Axioms (propositional)

objective: non-modal formulas
subjective: all predicates within a modal
Let L stand for both \boldsymbol{K} and \boldsymbol{N} :

1. Axioms of propositional logic.
2. $\boldsymbol{L}(\alpha \supset \beta) \supset \boldsymbol{L} \alpha \supset \boldsymbol{L} \beta$.
3. $\sigma \supset \boldsymbol{L} \sigma$, where σ is subjective.
4. The \boldsymbol{N} vs. \boldsymbol{K} axiom:
$(\boldsymbol{N} \phi \supset \neg \boldsymbol{K} \phi)$, where $\neg \phi$ is consistent and objective;
5. $\boldsymbol{O} \alpha \equiv(\boldsymbol{K} \alpha \wedge \boldsymbol{N} \neg \alpha)$.
6. Inference rules:

Modus ponens and Necessitation (for \boldsymbol{K} and \boldsymbol{N})

Many Agents

Intuitively, only-knowing for many agents seems easy:

ExAMPLE

If Alice believes that all that Bob knows is that birds normally fly and that Tweety is a bird, then Alice believes that Bob believes that Tweety flies.

Many Agents

Intuitively, only-knowing for many agents seems easy:

Example

If Alice believes that all that Bob knows is that birds normally fly and that Tweety is a bird, then Alice believes that Bob believes that Tweety flies.
But technically things were surprisingly cumbersome! The problem lies in the complexity in what agents consider possible:

- For a single agent possibilities are just worlds.
- For many agents possibilities include other agents beliefs.
- The problem is that is not so clear how to come up with models that contain all possibilities.

Some Previous Attempts

- (Lakemeyer 1993) uses the K45 ${ }_{n}$-canonical model
- Yet, certain types of epistemic states cannot be constructed $\neg O_{a} \neg O_{b} p$ is valid
- (Halpern 1993) proposes a tree approach
- Modalities do not interact in an intuitive manner
- In (Halpern and Lakemeyer 2001), a solution is proposed. But
- again uses canonical models
- proof theory needs to axiomatize validity

The Logic $\mathcal{O} \mathcal{N} \mathcal{L}_{n}$

- $\mathcal{O} \mathcal{N} \mathcal{L}_{n} \doteq$ multi-agent version of $\mathcal{O} \mathcal{N} \mathcal{L}$
- Here, only for a and $b\left(\boldsymbol{K}_{a}, \boldsymbol{K}_{b}, \boldsymbol{N}_{a}, \boldsymbol{N}_{b}\right)$
- depth: alternating nesting of modalities
- a notion of a-depth and b-depth

EXAMPLE (a-DEPTH)

- $p: 1$
- $\boldsymbol{K}_{a} p: 1$
- $\boldsymbol{K}_{b} p: 2$
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b} p: 2$
- a-objective: formulas not in scope of K_{a} or N_{a} : $p \wedge K_{b} p$ is a-objective, $p \wedge K_{a} p$ is not.

Beyond Sets of Worlds

- Alice's epistemic state is again a set of states of affairs, but where a state of affairs consists of a world and Bob's epistemic state
- Similarly, Bob's epistemic state is again a set of affairs where a state of affairs consists of a world and Alice's epistemic state (that determines her beliefs at this state)
- To be well-defined, we can do this only to some finite depth
- For formulas of a-depth k and b-depth j, it is sufficient to look at an epistemic state for Alice of depth k and an epistemic state for Bob of depth j.

Formal Semantics

- Define an epistemic state for Alice as a set of pairs
- $e_{a}^{1}=\left\{\langle w,\{ \}\rangle,\left\langle w^{\prime},\{ \}\right\rangle \ldots\right\}$ (for formulas of a-depth 1)
- $e_{a}^{k}=\left\{\left\langle w, e_{b}^{k-1}\right\rangle, \ldots\right\}$
- Similarly, an epistemic state for Bob
- $e_{b}^{1}=\{\langle w,\{ \}\rangle \ldots\}$
- $e_{b}^{j}=\left\{\left\langle w, e_{a}^{j-1}\right\rangle, \ldots\right\}$
- (k, j)-model $\doteq\left\langle e_{a}^{k}, e_{b}^{j}, w\right\rangle$.

Given a formula of a-depth k and b-depth j

- $e_{a}^{k}, e_{b}^{j}, w \models \boldsymbol{K}_{a} \alpha$ iff for all
$\left\langle w^{\prime}, e_{b}^{k-1}\right\rangle \in e_{a}^{k}, e_{a}^{k}, e_{b}^{k-1}, w^{\prime} \models \alpha$
- $e_{a}^{k}, e_{b}^{j}, w \models N_{a} \alpha$ iff for all
$\left\langle w^{\prime}, e_{b}^{k-1}\right\rangle \notin e_{a}^{k}, e_{a}^{k}, e_{b}^{k-1}, w^{\prime} \models \alpha$
- $\boldsymbol{O}_{\mathrm{a}} \alpha \equiv \boldsymbol{K}_{\mathrm{a}} \alpha \wedge \boldsymbol{N}_{\mathrm{a}} \neg \alpha$.

Some Properties

A formula of a-depth k and b-depth j. is valid if it is true at all $\left(k^{\prime}, j^{\prime}\right)$-models for $k^{\prime} \geq k, j^{\prime} \geq j$.

- K45n $\left(\right.$ for \boldsymbol{K}_{i} and \boldsymbol{N}_{i})
- $\boldsymbol{K}_{a}(\alpha \supset \beta) \supset \boldsymbol{K}_{a} \alpha \supset \boldsymbol{K}_{a} \beta$
- $\boldsymbol{K}_{\boldsymbol{a}} \alpha \supset \boldsymbol{K}_{a} \boldsymbol{K}_{a} \alpha$
- $\neg \boldsymbol{K}_{\mathrm{a}} \alpha \supset \boldsymbol{K}_{\mathrm{a}} \neg \boldsymbol{K}_{\mathrm{a}} \alpha$
- Mutual introspection:
- $\boldsymbol{K}_{a} \alpha \supset \boldsymbol{N}_{a} \boldsymbol{K}_{a} \alpha$
- Barcan formula
- $\forall \boldsymbol{x} \boldsymbol{K}_{\boldsymbol{a}} \alpha \supset \boldsymbol{K}_{\mathbf{a}} \forall \boldsymbol{x} \alpha$

Examples of Only-Knowing

- $O_{a}\left(p \wedge O_{b} p\right)$ entails
- $\boldsymbol{K}_{a} p$
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b} p$
- $\boldsymbol{K}_{a} \neg \boldsymbol{K}_{b} \boldsymbol{K}_{a} p$
- but not $\boldsymbol{K}_{a} \boldsymbol{K}_{b} \neg \boldsymbol{K}_{a} p$

Examples of Only-Knowing

- $O_{a}\left(p \wedge O_{b} p\right)$ entails
- $\boldsymbol{K}_{a} p$
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b} p$
- $\boldsymbol{K}_{a} \neg \boldsymbol{K}_{b} \boldsymbol{K}_{a} p$
- but not $\boldsymbol{K}_{a} \boldsymbol{K}_{b} \neg \boldsymbol{K}_{a} p$
- $\boldsymbol{K}_{a} \boldsymbol{O}_{b} \exists x T(x)$ entails
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b}\left(\exists x T(x) \wedge \neg \boldsymbol{K}_{b} T(x)\right)$

Examples of Only-Knowing

- $O_{a}\left(p \wedge O_{b} p\right)$ entails
- $K_{a} p$
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b} p$
- $\boldsymbol{K}_{a} \neg \boldsymbol{K}_{b} \boldsymbol{K}_{a} p$
- but not $\boldsymbol{K}_{a} \boldsymbol{K}_{b} \neg \boldsymbol{K}_{a} p$
- $\boldsymbol{K}_{a} \boldsymbol{O}_{b} \exists x T(x)$ entails
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b}\left(\exists x T(x) \wedge \neg \boldsymbol{K}_{b} T(x)\right)$
- Let $\delta_{b}=\forall x . K_{b} \operatorname{Bird}(x) \wedge \neg \boldsymbol{K}_{b} \neg$ Fly $(x) \supset \operatorname{Fly}(x)$
$\boldsymbol{K}_{a} \boldsymbol{O}_{b}\left(\delta_{b} \wedge \operatorname{Bird}(\right.$ tweety $\left.)\right)$ entails
- $\boldsymbol{K}_{a} \boldsymbol{K}_{b}$ Fly(tweety).

Proof Theory for Many Agents

- $\mathrm{K} 45_{n}+$ Axiom defining \boldsymbol{O}_{i} + new version of the \boldsymbol{N} vs \boldsymbol{K} axiom.
- Recall, in the single-agent case:
$(\boldsymbol{N} \phi \supset \neg \boldsymbol{K} \phi)$, where $\neg \phi$ is consistent and objective.
- Two things to generalize here:
- Objective formulas to i-objective formulas
- But generalizing the notion of consistency of i-objective formulas is circular!

\boldsymbol{N}_{i} vs. \boldsymbol{K}_{i} Axioms

Idea: break the circularity by considering a hierarchy of sub-languages based on the nesting of N_{i}.

- Define a family of languages
- Let $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{1} \doteq$ no \boldsymbol{N}_{j} in the scope of $\boldsymbol{K}_{i}, \boldsymbol{N}_{i}(i \neq j)$
- Let $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t+1}$ formed from $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}, \boldsymbol{K}_{i} \alpha$ and $N_{i} \alpha$ for all $\alpha \in \mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}$

\boldsymbol{N}_{i} vs. \boldsymbol{K}_{i} Axioms

Idea: break the circularity by considering a hierarchy of sub-languages based on the nesting of N_{i}.

- Define a family of languages
- Let $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{1} \doteq$ no \boldsymbol{N}_{j} in the scope of $\boldsymbol{K}_{i}, \boldsymbol{N}_{i}(i \neq j)$
- Let $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t+1}$ formed from $\mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}, \boldsymbol{K}_{i} \alpha$ and $N_{i} \alpha$ for all $\alpha \in \mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}$
- Proof theory is $\mathrm{K} 45_{n}$ + Def. of $\boldsymbol{O}_{i}+$
$\mathbf{A}_{n}^{1} \boldsymbol{N}_{i} \alpha \supset \neg \boldsymbol{K}_{i} \alpha$ if $\neg \alpha$ is a $\mathrm{K} 45_{n}$-consistent i-objective formula
$\mathbf{A}_{n}^{t+1} \quad \boldsymbol{N}_{i} \alpha \supset \neg \boldsymbol{K}_{i} \alpha$, if $\neg \alpha \in \mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}$, is i-objective and consistent wrt. K45 ${ }_{n}, \mathbf{A}_{n}^{1}-\mathbf{A}_{n}^{t}$

Theorem

For all $\alpha \in \mathcal{O} \mathcal{N} \mathcal{L}_{n}^{t}, \models \alpha$ iff Axioms $^{t} \vdash \alpha$

Conclusions

- First-order modal logic for multi-agent only-knowing
- Faithfully generalizes intuitions of Levesque's logic
- Semantics not based on Kripke structures or canonical models, and thus avoids some problems of previous approaches
- In other work, we incorporated this notion of only-knowing into a mult-agent variant of the situation calculus for reasoning about knowledge and action.

