Only-Knowing G Lakemeyer

MULTI-AGENT ONLY-KNOWING

Gerhard Lakemeyer

Computer Science, RWTH Aachen University Germany

Al, Logic, and Epistemic Planning, Copenhagen October 3, 2013

Joint work with Vaishak Belle

・ロト・西ト・田・・田・ ひゃぐ

Contents of this talk

Only-knowing

- The single-agent case
- The multi-agent case

Only-Knowing

Levesque (1990) introduced the logic of only-knowing to capture the beliefs of a knowledge-base.

(Other variants such as Halpern & Moses, Ben-David & Gafni, Waaler not discussed here.)

EXAMPLE

If all I know is that the father of George is a teacher, then

I know that someone is a teacher;

but not who the teacher is.

Note: Does not work if all I know is replaced by I know

Need to express that nothing else is known.

The Single-Agent Case

Levesque considered only the single-agent case.

- Compelling (i.e. simple) model-theoretic account
 - A possible-worlds framework for a first-order language
 - An epistemic state is simply a set of worlds

The Single-Agent Case

Levesque considered only the single-agent case.

- Compelling (i.e. simple) model-theoretic account
 - A possible-worlds framework for a first-order language
 - An epistemic state is simply a set of worlds
- Compelling proof-theoretic account (for the propositional fragment)
 - K45 + 2 extra axioms

Connection with Default Reasoning

Levesque showed only-knowing captures Moore's Autoepistemic Logic:

 beliefs that follow from only-knowing facts and defaults are precisely those contained in all autoepistemic expansions

EXAMPLE

If *all I know* is that Tweety is a bird and that birds fly unless known otherwise, then I believe that Tweety flies.

 \mathcal{ONL} is a first-order language with =

 infinitely many standard names n₁, n₂,... syntactically like constants, serve as the fixed domain of discourse (rigid designators);

• variables x, y, z, \ldots

- predicate symbols of every arity;
- the usual logical connectives and quantifiers: \land, \neg, \forall ;

modal operators:

- $K\alpha$ "at least" α is believed.
- Nα "at most" α is believed to be false;
- Only-knowing:

 $\boldsymbol{O} \boldsymbol{\alpha} \doteq \boldsymbol{K} \boldsymbol{\alpha} \wedge \boldsymbol{N} \neg \boldsymbol{\alpha}$

Levesque's Semantics

Primitive Formula = predicate with standard names as args.

A world *w* is set of primitive formulas An epistemic state *e* is a set of worlds.

•
$$e, w \models P(\vec{n}) \text{ iff } P(\vec{n}) \in w;$$

• $e, w \models \forall x.\alpha \text{ iff } e, w \models \alpha_n^x \text{ for all } n$
• $e, w \models K\alpha \text{ iff for all } w' \in e, e, w' \models \alpha;$
• $e, w \models N\alpha \text{ iff for all } w' \notin e, e, w' \models \alpha$

Levesque's Semantics

Primitive Formula = predicate with standard names as args.

A world *w* is set of primitive formulas An epistemic state *e* is a set of worlds.

•
$$e, w \models P(\vec{n}) \text{ iff } P(\vec{n}) \in w;$$

• $e, w \models \forall x.\alpha \text{ iff } e, w \models \alpha_n^x \text{ for all } n$
• $e, w \models K\alpha \text{ iff for all } w' \in e, e, w' \models \alpha;$
• $e, w \models N\alpha \text{ iff for all } w' \notin e, e, w' \models \alpha$
• $(e, w \models O\alpha \text{ iff for all } w', w' \in e \text{ iff } e, w' \models \alpha)$

All FP

Axioms (propositional)

objective: non-modal formulas subjective: all predicates within a modal Let L stand for both K and N:

objective: non-modal formulas subjective: all predicates within a modal Let L stand for both K and N:

- 1. Axioms of propositional logic.
- **2.** $L(\alpha \supset \beta) \supset L\alpha \supset L\beta$.
- **3.** $\sigma \supset L\sigma$, where σ is subjective.
- 4. The *N* vs. *K* axiom: $(N\phi \supset \neg K\phi)$, where $\neg \phi$ is consistent and objective;

5.
$$O\alpha \equiv (K\alpha \wedge N \neg \alpha)$$
.

6. Inference rules:

Modus ponens and Necessitation (for K and N)

All FP

Many Agents

Intuitively, only-knowing for many agents seems easy:

EXAMPLE

If Alice believes that all that Bob knows is that birds normally fly and that Tweety is a bird, then Alice believes that Bob believes that Tweety flies.

Many Agents

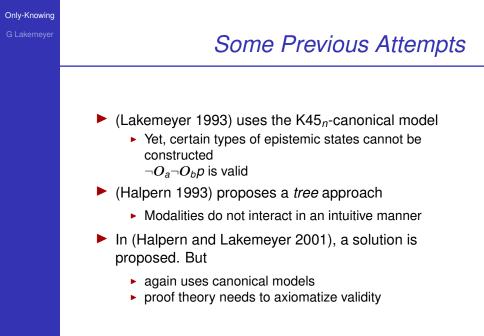
Intuitively, only-knowing for many agents seems easy:

EXAMPLE

If Alice believes that all that Bob knows is that birds normally fly and that Tweety is a bird, then Alice believes that Bob believes that Tweety flies.

But technically things were surprisingly cumbersome! The problem lies in the complexity in what agents consider possible:

- For a single agent possibilities are just worlds.
- For many agents possibilities include other agents beliefs.
- The problem is that is not so clear how to come up with models that contain all possibilities.



All FP

The Logic \mathcal{ONL}_n

- $ONL_n \doteq$ multi-agent version of ONL
 - Here, only for a and $b(K_a, K_b, N_a, N_b)$

depth: alternating nesting of modalities

a notion of a-depth and b-depth

EXAMPLE (*a*-DEPTH)

- ▶ *p*: 1
- K_ap: 1
- K_bp: 2
- ► *K_aK_bp*: 2
- a-objective: formulas not in scope of K_a or N_a : $p \land K_b p$ is a-objective, $p \land K_a p$ is not.

Beyond Sets of Worlds

- Alice's epistemic state is again a set of states of affairs, but where a state of affairs consists of a world and Bob's epistemic state
- Similarly, Bob's epistemic state is again a set of affairs where a state of affairs consists of a world and Alice's epistemic state (that determines her beliefs at this state)
- To be well-defined, we can do this only to some finite depth
- For formulas of *a*-depth *k* and *b*-depth *j*, it is sufficient to look at an epistemic state for Alice of depth *k* and an epistemic state for Bob of depth *j*.

Formal Semantics

Define an epistemic state for Alice as a set of pairs

• $e_a^1 = \{ \langle w, \{\} \rangle, \langle w', \{\} \rangle \dots \}$ (for formulas of *a*-depth 1) • $e_a^k = \{ \langle w, e_b^{k-1} \rangle, \dots \}$

Similarly, an epistemic state for Bob

•
$$e_b^1 = \{ \langle w, \{\} \rangle \dots \}$$

• $e_b^j = \{ \langle w, e_a^{j-1} \rangle, \dots \}$

 $\blacktriangleright (k,j)\text{-model} \doteq \langle e_a^k, e_b^j, w \rangle.$

Given a formula of *a*-depth *k* and *b*-depth *j*

$$\begin{array}{l} \bullet \ \, \boldsymbol{e}_{a}^{k}, \boldsymbol{e}_{b}^{l}, \boldsymbol{w} \models \boldsymbol{K}_{a} \alpha \ \, \text{iff for all} \\ \langle \boldsymbol{w}^{\prime}, \boldsymbol{e}_{b}^{k-1} \rangle \in \boldsymbol{e}_{a}^{k}, \boldsymbol{e}_{a}^{k}, \boldsymbol{e}_{b}^{k-1}, \boldsymbol{w}^{\prime} \models \alpha \end{array}$$

•
$$e_a^k, e_b^l, w \models N_a \alpha$$
 iff for all
 $\langle w', e_b^{k-1} \rangle \notin e_a^k, e_a^k, e_b^{k-1}, w' \models \alpha$
• $O_a \alpha \equiv K_a \alpha \wedge N_a \neg \alpha$.

Some Properties

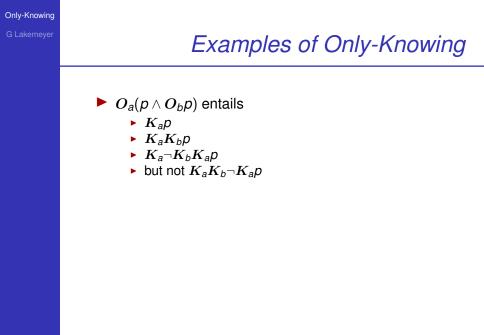
A formula of *a*-depth *k* and *b*-depth *j*. is valid if it is true at all (k', j')-models for $k' \ge k, j' \ge j$.

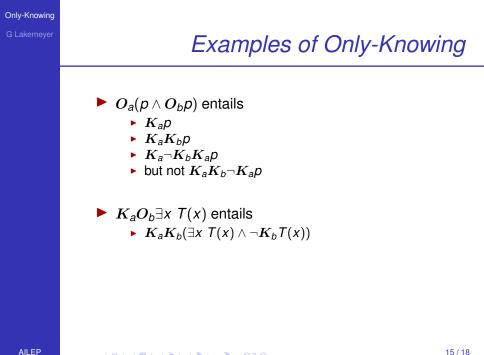
 \blacktriangleright K45_n (for K_i and N_i)

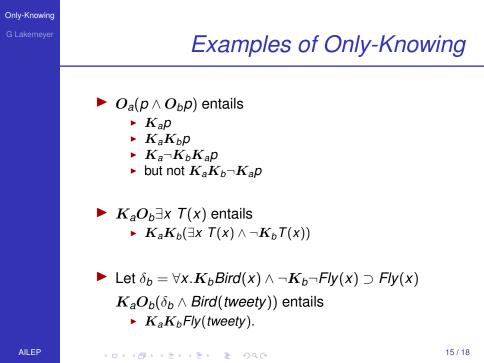
- $K_a(\alpha \supset \beta) \supset K_a \alpha \supset K_a \beta$
- $K_a \alpha \supset K_a K_a \alpha$
- $\neg K_a \alpha \supset K_a \neg K_a \alpha$

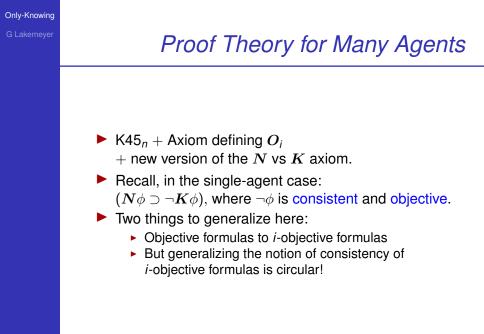
Mutual introspection:

- $K_a \alpha \supset N_a K_a \alpha$
- Barcan formula
 - $\blacktriangleright \forall x \ K_a \alpha \supset K_a \forall x \ \alpha$









AILEP

N_i vs. K_i Axioms

Idea: break the circularity by considering a hierarchy of sub-languages based on the nesting of N_i .

- Define a family of languages
 - Let $\mathcal{ONL}_n^1 \doteq$ no N_j in the scope of K_i , N_i $(i \neq j)$
 - Let \mathcal{ONL}_n^{t+1} formed from \mathcal{ONL}_n^t , $K_i \alpha$ and $N_i \alpha$ for all $\alpha \in \mathcal{ONL}_n^t$

 N_i vs. K_i Axioms

Idea: break the circularity by considering a hierarchy of sub-languages based on the nesting of N_i .

- Define a family of languages
 - Let $\mathcal{ONL}_n^1 \doteq$ no N_j in the scope of K_i , N_i $(i \neq j)$
 - Let \mathcal{ONL}_n^{t+1} formed from \mathcal{ONL}_n^t , $K_i \alpha$ and $N_i \alpha$ for all $\alpha \in \mathcal{ONL}_n^t$
- Proof theory is K45_n + Def. of O_i +
 - $\mathbf{A}_n^1 \ \mathbf{N}_i \alpha \supset \neg \mathbf{K}_i \alpha$ if $\neg \alpha$ is a K45_n-consistent *i*-objective formula
 - $\begin{array}{ll} \mathbf{A}_n^{t+1} & \mathbf{N}_i \alpha \supset \neg \mathbf{K}_i \alpha, \, \text{if } \neg \alpha \in \mathcal{ONL}_n^t, \, \text{is } i\text{-objective and} \\ & \text{consistent } wrt. \, \text{K45}_n, \, \mathbf{A}_n^1 \mathbf{A}_n^t \end{array}$

THEOREM For all $\alpha \in ONL_n^t$, $\models \alpha$ iff $Axioms^t \vdash \alpha$

Conclusions

- First-order modal logic for multi-agent only-knowing
- Faithfully generalizes intuitions of Levesque's logic
- Semantics not based on Kripke structures or canonical models, and thus avoids some problems of previous approaches
- In other work, we incorporated this notion of only-knowing into a mult-agent variant of the situation calculus for reasoning about knowledge and action.