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Abstract In this paper we show how to formalise false-belief tasks like the Sally-
Anne task and the second-order chocolate task in Dynamic Epistemic Logic (DEL).
False-belief tasks are used to test the strength of the Theory of Mind (ToM) of hu-
mans, that is, a human’s ability to attribute mental states to other agents. Having
a ToM is known to be essential to human social intelligence, and hence likely to
be essential to social intelligence of artificial agents as well. It is therefore impor-
tant to find ways of implementing a ToM in artificial agents, and to show that such
agents can then solve false-belief tasks. In this paper, the approach is to use DEL as
a formal framework for representing ToM, and use reasoning in DEL to solve false-
belief tasks. In addition to formalising several false-belief tasks in DEL, the paper
introduces some extensions of DEL itself: edge-conditioned event models and ob-
servability propositions. These extensions are introduced to provide better formali-
sations of the false-belief tasks, but expected to have independent future interest.

1 Introduction

Social intelligence is the ability to understand others and the social context effec-
tively and thus to interact with other agents successfully. Research has suggested
that Theory of Mind (ToM) may play an important role in explaining social intel-
ligence. ToM is the ability to attribute mental states—beliefs, intentions, etc.—to
oneself and others and to understand that others might have mental states that are
different from one’s own (Premack and Woodruff 1978). The strength of a human
child’s ToM is often tested with a false-belief task such as the Sally-Anne task (Wim-
mer and Perner 1983).
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Fig. 1 An illustration of the Sally-Anne false belief task. The illustration is by Axel Scheffler and
is borrowed from the autism book by Frith (1989).

Example 1 (The Sally-Anne task). The Sally-Anne task is illustrated in Figure 1. It
is based on a story with two agents, Sally and Anne, that has the following 5 steps,
corresponding to the 5 pictures of Figure 1:

0. Sally and Anne are in a room. Sally is holding a marble. There is a basket and a
box in the room.

1. Sally puts the marble into the basket.
2. Sally leaves the room.
3. Anne transfers the marble to the box.
4. Sally re-enters.
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When used as a cognitive test for children, the child is told or shown the story in
the figure. At the end, the child is asked “where does Sally believe the marble to
be?” Passing the test means answering “in the basket”, since Sally didn’t see Anne
transfer the marble from the basket to the box, and hence Sally has the false belief
that it is still in the basket. If the child answers “in the box”, where in fact the marble
is, the child has failed the test.1 Children under the age of 4, and autistic children in
general, are generally unable to pass the Sally-Anne test (Wimmer and Perner 1983;
Baron-Cohen et al. 1985).

To create AI agents with social intelligence, it seems relevant to consider the possi-
bility of equipping such agents with a ToM, and to test them using false-belief tasks.
The idea here is that for an AI agent, e.g. a robot, to be considered truly ‘socially in-
telligent’, it should at least be able to pass these false-belief tasks. Hence it becomes
important to find ways of formalising ToM and false-belief tasks in a way that will
allow computers to do the required reasoning.

The goal of the present paper is to present one such possible formalisation, using
the framework of Dynamic Epistemic Logic (DEL). We will now explain why DEL
is a fairly natural choice here. First of all, we need a formalism that can represent the
beliefs of other agents, e.g. the beliefs of Sally, Sally’s beliefs about Anne, etc. This
naturally leads one to consider an epistemic logic (or, more precisely, a doxastic
logic, but we will here still refer to it as epistemic). Basic epistemic logic is however
only sufficient to model static state of affairs, like “Sally believes the marble to be in
the basket.” In the false-belief tasks we also need to be able to model the dynamics
of beliefs, e.g. “After Anne has moved the marble to the box, Sally still believes it
to be in the basket.” This is where DEL comes into the picture: it has a natural way
to deal with static states of beliefs (the epistemic models of DEL), a natural way to
describe actions with epistemic and/or world changing effects (the event models of
DEL), and a simple way of calculating the result of executing an action in a state
(the product update of DEL).

Hintikka, transmissibility and autistic agents

DEL is a dynamic version of epistemic logic, where actions and their effects can
directly be described in the logic. The seminal treatise on (non-dynamic) epistemic
logic is the book ‘Knowledge and Belief’ by Hintikka (1962). Hintikka carefully in-
troduces and discusses the required semantic properties of the knowledge and belief
modalities. He settles for a knowledge modality in which the accessibility relation
has to satisfy reflexivity, seriality and transitivity, and where the only difference
between the knowledge and belief modalities is that (the accessibility relation of)

1 One might argue that if Sally is capable of doing intention recognition, that is, predict the goals of
Anne, she might actually suspect that Anne has been transferring the marble while she was away,
because she perhaps knows that Anne wants the marble for herself. However, it is implicit in the
Sally-Anne task that intention recognition is not taken into account, and we will not do it here
either.
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the belief modality does not have to satisfy reflexivity. This essentially means that
the only difference between knowledge and belief is that beliefs can be false (since
reflexivity of the knowledge modality is equivalent to the property that everything
known is true). False beliefs are clearly essential to this paper, since they are in-
deed the most essential ingredient of the false-belief tasks. False-belief tasks are
actually about a certain type of false beliefs, where the false belief φ is ascribed
to another agent, that is, the situation can be formalised by a formula of the form
Ba¬φ ∧BaBbφ : agent a believes ¬φ and at the same time believes that b wrongly
believes φ (see Section 3 for details on the epistemic language). In the case of the
Sally-Anne task, a formula describing the state of mind of a child having success-
fully passed the test would be Bchild¬basket ∧BchildBSallybasket: the child believes,
indeed knows, that the marble is is not in the basket, but at the same time believes
that Sally believes it to be in the basket.

Hintikka (1962) discusses the principle of transmissibility: “If I know that you
know that p is true, I virtually know myself that p is true.” The idea is that if an
agent a knows that another agent b knows some fact φ , then agent a should itself
be allowed to claim to know φ . The principle is formalised by KaKbφ → Kaφ . It is
different with beliefs. Agent a might believe agent b to believe φ without agent a
then starting to believe p. “Beliefs are not transmissible”, as Hintikka says, that is,
BaBbφ → Baφ is not valid. In fact, transmissibility of belief directly contradicts the
possibility of attributing a false belief to another agent, the essence of the false belief
tasks. This is so since the combination of the false belief attribution formula Ba¬φ ∧
BaBbφ and transmissibility directly leads to the inconsistent belief Ba¬φ ∧ Baφ ,
which is a non-satisfiable formula when the accessibility relation of belief is serial.
The fact that knowledge is transmissible and belief is not can be explained in terms
of the trivial difference between reflexivity and non-reflexivity of the underlying
accessibility relations, as Hintikka notes.

Van Ditmarsch and Labuschagne (2007) consider an “autistic” agent type de-
scribed as an “agent a such that the ToM of agent a imputes to every agent b a state
of mind identical to a’s own”. A possible way to formalise this (different from the
one considered by Van Ditmarsch and Labuschagne (2007)) is the converse of Hin-
tikka’s transmissibility principle: Baφ → BaBbφ (whatever agent a believes, agent
a also believes agent b to believe). The connection to autism is that autistic chil-
dren are known to have a defective ToM, and “one interpretation of this failure
of mentalising is to regard autistic children as possessing a rudimentary ToM in
which the belief of other agents are assumed to be identical to those of the imput-
ing agent” (Van Ditmarsch and Labuschagne 2007). The converse transmissibility
principle clearly also makes it impossible to ascribe a false belief to another agent.
From a false-belief attribution Ba¬φ ∧BaBbφ and the converse transmissibility prin-
ciple Baφ→ BaBbφ we get BaBb¬φ ∧BaBbφ , which is also non-satisfiable when the
accessibility relation is serial. Hence an agent a that satisfies either the transmissi-
bility or converse transmissibility principle will have no possibility of passing a
false-belief task.2

2 Except if the tested agent itself ends up forming a false belief. For instance, in the case of the
Sally-Anne task, an agent without a ToM could in principle pass the test by being fooled into itself
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In this paper, the accessibility relation of belief is in all models going to satisfy
seriality and transitivity. This is not as obvious and trivial as one might at first think.
In general, seriality is not preserved under the update of epistemic states in dynamic
epistemic logic (see, e.g., Aucher (2012)). However, as we will see, the false-belief
tasks we are going to consider only involve action types that preserve both transitiv-
ity and seriality, the conditions of Hintikka’s belief modality.

Structure of the paper

Below we will first, in Section 2, briefly present the qualities we aim for in our
false-belief task formalisations. Next, in Section 3, we introduce the required parts
of DEL, and then apply it to formalise the Sally-Anne task in Section 4. The for-
malisation turns out not to be entirely satisfactory, and hence we will, in Section
5, introduce an extension of DEL that gives more appropriate formalisations. The
improved formalisations are in Section 6.

2 Robustness and Faithfulness

Above we claim that DEL is a fairly natural choice for the formalisation of false-
belief tasks. This of course doesn’t imply that it is the only natural choice. Indeed,
there are several existing formalisations of false-belief tasks in the literature, us-
ing different formal frameworks. Figure 2 gives a brief overview of the full for-
malisations and implemented systems we know of. In addition to these we should
mention Stenning and Van Lambalgen (2008), who gives a detailed logical analysis
of several false-belief tasks, though no full formalisations. The Sally-Anne task is
usually referred to as a first-order false-belief task since it only involves first-order
belief attribution: the child has to attribute beliefs to Sally, but not, say, to Sally’s
beliefs about Anne’s beliefs (which would be second-order belief attribution). Most
of the existing formalisations can only deal with first-order or at most second-order
false-belief tasks. We wish to be more general, and at the same time have formal-
isations that stay as close as possible to the informal versions of the tasks, and so
propose the following two criteria:
Robustness. The formalism should not only be able to deal with one or two selected
false-belief tasks, but with as many as possible, with no strict limit on the order of
belief attribution.
Faithfulness. Each action of the false-belief story should correspond to an action in
the formalism in a natural way, and it should be fairly straightforward, not requiring

believing that the marble is in the basket. When asked about where Sally believes the marble to be,
the agent would consult its own beliefs, and answer “in the basket”. But often in the Sally-Anne
task, two questions are asked: “where is the marble?” and “where does Sally believe the marble to
be”. To pass the test, the answers to the two questions must be distinct.
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system/reference year formalism/platform h-o reas. other features

CRIBB (Wahl and Spada 2000) 2000 Prolog ≤ 2 goal recognition,
plan recognition

Edd Hifeng (Arkoudas and
Bringsjord 2008)

2008 event calculus ≤ 1 Second Life avatar

Leonardo (Breazeal et al. 2011) 2011 C5 agent architecture ≤ 1 goal recognition,
learning

(Sindlar 2011) 2011 extension of PDL,
implemented in 2APL

≤ 1 goal recognition

ACT-R agent (Arslan et al. 2013) 2013 ACT-R cognitive
architecture

∞ learning

(Braüner 2013) 2013 hybrid logic ∞ temporal reasoning

Fig. 2 Existing full formalisations/implementations of false-belief tasks, ordered chronologically.
The numbers in the ‘h-o reas.’ column refer to the highest level of belief attribution the formal-
ism/system allows (∞ if there is no upper bound).

ingenuity, to find out what that action of the formalism is. The formalisation of the
false-belief story should only consist of these formalised actions.

The idea behind the faithfulness criterion is that the ultimate aim is to have an
autonomous agent who can formalise the false-belief story only by being told the
informal, natural language variant of it. This agent should not be required ingenuity
in translating the steps of the informal story into their formal counterparts, and it
should not be necessary to provide the agent with information that goes beyond the
story itself (that is, it is not allowed to “cheat” by providing the agent with additional
information which is not explicitly part of the informal version of the story).

Of the formalisations listed in Figure 2, the first four only allow belief attribu-
tion to a fixed order (first- or second-order), and hence do not satisfy our robust-
ness criterion. In principle, all of them could be generalised to handle any fixed
level of higher-order belief attribution, but a fixed level is still not satisfying our
criterion. The last two formalisations have the generality in terms of higher-order
belief-attribution that we are after. However, in the hybrid logic approach, there is
no explicit representation of actions, which goes against our chosen faithfulness cri-
terion. The closest to our approach of modelling the false-belief tasks in DEL is
probably the ACT-R agent listed second to last in Figure 2. However, in the ACT-R
formalisation, it is explicitly mentioned as part of the formalised story who ob-
serves who at which points of time during the story (Arslan et al. 2013). As this is
usually not explicitly mentioned as part of the false-belief stories (see in particular
the second-order chocolate task formalised in Section 6), it does not fully satisfy our
faithfulness criterion.

One can distinguish approaches to formalising false-belief tasks that seek to: 1)
provide formal models of human reasoning; 2) provide the basis for a reasoning
engine of autonomous agents. These two are of course not always disjoint aims,
as discussed by Verbrugge (2009) (and further explored in the context of strategic
reasoning by Ghosh et al. (2014)). In this paper, however, we are exclusively con-



Seeing is Believing: Formalising False-Belief Tasks in Dynamic Epistemic Logic 7

cerned with the second aim. The ultimate aim of this line of work is to construct
autonomous planning agents with ToM capabilities using dynamic epistemic logic
(see Bolander and Andersen (2011) for further details).

3 Dynamic Epistemic Logic

In this section we will introduce the required basics of dynamic epistemic logic
(DEL). The less technically inclined, or interested, reader can browse very quickly
through the definitions and instead focus on the examples that illustrate the work-
ings of the formalism in relation to the Sally-Anne task. Basic familiarity with epis-
temic logic, but not necessarily DEL, is expected. All definitions in this section are
well-known and standard in DEL. The particular variant presented here is adopted
from van Ditmarsch and Kooi (2008).

Epistemic Models

Throughout this article, P is an infinite, countable set of atomic propositions (propo-
sitional symbols), and A is a non-empty finite set of agents. We will most often use
lower case letters p,q,r, . . . for atomic propositions and capital letters A,B,C, . . .
for agents. Variables ranging over agents will be denoted i, j,k, . . . . The epistemic
language L(P,A) is generated by the following BNF:

φ ::= p | ¬φ | φ ∧φ | Biφ | CBφ

where p ∈ P, i ∈ A, and B ⊆ A. We read Biφ as “agent i believes φ”, and CBφ

as “it is common belief among the agents in B that φ”. The formula φ ∨ψ is an
abbreviations of ¬(¬φ ∧¬ψ), and we define > as an abbreviation for p∨¬p and
⊥ as an abbreviation for p∧¬p for some arbitrarily chosen p ∈ P. Furthermore, we
use Eφ as abbreviation for

∧
i∈A Biφ . We read Eφ as “everybody believes φ .” The

semantics of L(P,A) is defined through epistemic models.

Definition 1 (Epistemic models and states). An epistemic model of L(P,A) is
M= (W,R,V ), where

• W , the domain, is a set of worlds;
• R :A→ 2W×W assigns an accessibility relation R(i) to each agent i ∈ A;
• V : P→ 2W , the valuation, assigns a set of worlds to each atomic proposition.

The relation R(i) is usually abbreviated Ri, and we write wRiv when (w,v) ∈ Ri. For
w∈W , the pair (M,w) is called a state of L(P,A), and w is referred to as the actual
world. An epistemic modelM = (W,R,V ) or state (M,w) is called serial if each
relation Ri is serial, that is, if for all w ∈W and all i ∈ A, there exists a v ∈W with
wRiv.
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(M,w0) (M′,w′0) (E ,e0)

w0 : t

S,A

w′0 : x

A

w′1 : t

S,A

S

e0 : 〈>,¬t ∧ x〉

A

e1 : 〈>,>〉

S,A

S

Fig. 3 Two states, (M,w0) and (M′,w′0), and an action, (E ,e0).

The truth conditions—that is, the definition of (M,w) |= φ for models M =
(W,R,V ), worlds w ∈W and formulas φ ∈ L(P,A)—are standard:

(M,w) |= p iff w ∈V (p)
(M,w) |= ¬φ iff M,w 6|= φ

(M,w) |= φ ∧ψ iff M,w |= φ andM,w |= ψ

(M,w) |= Biφ iff for all v ∈W , if wRiv thenM,v |= φ

(M,w) |=CBφ iff for all v ∈W , if (w,v) ∈ (
⋃

i∈B Ri)
∗ thenM,v |= φ

In this paper, all considered epistemic models and states are going to be serial. Se-
riality is necessary to preserve consistent beliefs. If a modelM = (W,V,R) is not
serial, it means there is a world w∈W and an agent i∈A such that there is no v∈W
with wRiv. According to the truth conditions above this implies that (M,w) |= Bi⊥.
Since we are going to formalise false-belief tasks, consistency can not always be ex-
pected to be preserved. If Sally gets a false belief that the marble is in the basket, and
Anne then announces: “the marble is in the box”, then Sally will get inconsistent be-
liefs (if we treat the announcement as a standard truthful announcement). However,
for the false-belief tasks considered in this paper, we are going to see that seriality
can be preserved, and inconsistent beliefs hence be avoided (essentially because the
considered false-belief tasks do not involve announcements).

Example 2. We will now illustrate the notion of a state relative to the Sally-Anne
task of Example 1. The example states are (M,w0) and (M′,w′0) of Figure 3. Here
we have two atomic propositions, x and t, where x is intended to mean “the marble
is in the box”, and t means “the marble is in the basket”. We use the agent symbols
S and A for Sally and Anne, respectively.

In (M,w0) and (M′,w′0), and states in general, each world is marked by its name
followed by a list of the atomic propositions true at that world (which may be empty
if none holds true). Sometimes we will drop names on worlds and just label them
by the list of true propositions. Edges are labelled with the name of the relevant
accessibility relations (agents). We use the symbol to mark the actual world.

Consider (M,w0). The actual world is w0, that is, the marble is in the basket (t
holds). The loop at w0 for S and A means that Sally and Anne consider the actual
world w0 possible, and the absence of other edges means that they only consider
w0 possible. Hence we have (M,w0) |=CS,At: it is common belief among Sally and
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Anne that the marble is in the basket. The state (M,w0) corresponds to the situation
before Anne has transferred the marble to the box.

Consider now (M′,w′0). This corresponds to the situation after Anne has trans-
ferred the marble in Sally’s absence. The actual world now satisfies x. In the actual
world, w0, Anne only considers w0 possible (signified by the loop labelled A at w0):
she knows the marble to be in the box. However, Sally doesn’t have such a loop at
w0, rather she has an edge going to w1 where t holds. This means that, in the actual
world w0, Sally only considers it possible that the actual world is in fact w1. Hence
she has a false belief that the marble is in the basket (a false belief that t holds).
Formally,

(M′,w′0) |= x∧BAx∧BSt.

We have now seen how we can use states to model the beliefs of Sally and Anne
before and after the marble is moved. But we also need a way to model the act of
moving the marble. This is done using DEL event models, presented next.

Event Models

DEL introduces the concept of event model (or action model) for modeling the
changes to states brought about by the execution of actions (Baltag et al. 1998;
Baltag and Moss 2004). We here use a variant that includes postconditions (van Dit-
marsch et al. 2005; van Benthem et al. 2006; Bolander and Andersen 2011), which
means that actions can have both epistemic effects (changing the beliefs of agents)
and ontic effects (changing the physical facts of the world).

Definition 2 (Event models and actions). An event model of L(P,A) is E =
(E,Q, pre, post), where

• E, the domain, is a finite non-empty set of events;
• Q :A→ 2E×E assigns an accessibility relation Q(i) to each agent i ∈ A;
• pre : E→L(P,A) assigns to each event a precondition, which can be any formula

in L(P,A).
• post : E → L(P,A) assigns to each event a postcondition. Postconditions are

conjunctions of propositional literals, i.e., conjunctions of atomic propositions
and their negations (including > and ⊥).

The relation Q(i) is generally abbreviated Qi. For e ∈ E, (E ,e) is called an action
(or pointed event model) of L(P,A), and e is referred to as the actual event. An
event model E = (E,Q, pre, post) or action (E ,e) is called serial if each relation Qi
is serial, that is, if for all e ∈ E and all i ∈ A, there exists an f ∈ E with eRi f .

Example 3. Consider the action (E ,e0) of Figure 3. Labeling events by the pair
〈φ1,φ2〉 means that the event has precondition φ1 and postcondition φ2. Hence the
actual event, e0, corresponds to the action of making t false and x true, that is, it is
the act of transferring the marble from the basket to the box. The event e1 has trivial
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private announcement(φ ,B) private assignment(φ ,B)

e0 : 〈φ ,>〉

B

e1 : 〈>,>〉

A
A−B

e0 : 〈>,φ〉

B

e1 : 〈>,>〉

A
A−B

Fig. 4 Left: Private announcement of φ to the agents in B ⊆A. Right: Private assignment of φ (φ
becomes true) to the agents in B.

pre- and post-conditions meaning that it is a ‘skip’ action representing that noth-
ing happens. Looking at the edges of the action, we see that Anne only considers it
possible that the marble is transferred (the loop at e0), whereas Sally only considers
it possible that nothing happens (she only has en edge from the actual event to the
‘skip’ event e1). Hence the model encodes an action where the marble is actually
transferred from the basket to the box, Anne is aware of this, but Sally thinks that
nothing happens. It hence encodes step 3 of the Sally-Anne task, cf. Example 1.

The action (E ,e0) has the same form as a private announcement (Baltag et al.
1998), except it is an ontic action, so it should probably rather be called a private as-
signment. More generally, a private announcement of φ to a group of agents B ⊆A
can be represented as the event model private announcement(φ ,B) of Figure 4, and
the corresponding private assignment of φ to group B as private assignment(φ ,B)
of the same figure. Note that the two event models only differ by φ being a pre-
condition in the announcement and a postcondition in the assignment. In both event
models, the agents in B observe that the event e0 takes place (the B-loop at e0),
whereas the agents not in B thinks that nothing happens (the A−B-edge leading
to the ‘skip’ event e1). We note that the action (E ,e0) of transferring the marble in
Sally’s absence is private assignment(¬t ∧ x,{A}).

Product Update

Assume given a state (M,w0) and an action (E ,e0). The product update yields a
new state (M,w0)⊗ (E ,e0) representing the situation after the action (E ,e0) has
been executed in the state (M,w0).

Definition 3 (Product update). Let (M,w0) be a state and (E ,e0) an action,
where M = (W,R,V ), E = (E,Q, pre, post), and M,w0 |= pre(e0). The prod-
uct update of (M,w0) with (E ,e0) is defined as the state (M,w0)⊗ (E ,e0) =
((W ′,R′,V ′),(w0,e0)), where

• W ′ = {(w,e) ∈W ×E |M,w |= pre(e)}
• R′i = {((w,e),(v, f )) ∈W ′×W ′ | wRiv and eQi f}
• (w,e) ∈V ′(p) iff post(e) |= p or (M,w |= p and post(e) 6|= ¬p).
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s1 a1 a2 a3 a4

p

S,A

〈>, t〉

S,A

〈>,¬p〉

S,A

〈>,¬t ∧ x〉

A

〈>,>〉

S,A

S
〈>, p〉

S,A

Fig. 5 The states and actions in the DEL formalisation of Sally-Anne.

Example 4. Referring again to Figure 3, we can calculate the product update of
(M,w0) with (E ,e0). Intuitively, the calculation works like this. For each event
in E , we first find the worlds inM that satisfies the precondition of the event. Each
such matching world-event pair will become a world in the resulting model. Since
both e0 and e1 have the trivial precondition>, both have their precondition satisfied
in the world w0. This gives us two matching world-event pairs (w0,e0) and (w0,e1)
that will become the worlds of the new model. Now we have to use the postcondi-
tions of the events in order to figure out what the labels of these new worlds will be.
In (w0,e0) we have paired w0 with e0. This means that we should take the existing
label of w0 and then update it according to the postcondition of e0. The label of w0
is t and the postcondition of e0 is ¬t ∧ x. The postcondition ¬t ∧ x will force t to
become false and x to become true, so the label of (w0,e0) will be x. The label of
(w0,e1) is the same as of w0, since e0 has the trivial postcondition>. So the updated
model (M,w0)⊗(E ,e0) will have the two worlds (w0,e0):x and (w0,e1):t. Now we
only need to find the edges connecting these two worlds. There will be an A-loop at
(w0,e0), since there is both an A-loop at w0 inM and an A-loop at e0 in E . Similarly
there will be an {S,A}-loop at (w0,e1). Finally, we need to check the edges between
(w0,e0) and (w0,e1). Since there is an S-loop at w0 and an S-edge from e0 to e1, we
get an S-edge from (w0,e0) to (w0,e1). In total, the product update becomes:

(M,w0)⊗ (E ,e0) =

(w0,e0) : x

A

(w0,e1) : t

S,A

S

Note that the resulting model is isomorphic to (M′,w′0) of Figure 3. Since (M,w0)
represents the situation before Anne transfers the marble, and (M′,w′0) represents
the situation afterwards (cf. Example 2), (E ,e0) correctly captures the action of
transferring the marble in Sally’s absence.
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p

S,A

s1

p, t

S,A

s2

〈>, t〉

S,A

t

S,A

s3

〈>,¬p〉

S,A

〈>,¬t ∧ x〉

A

〈>,>〉

S,A

S

x

A

t

S,A

S

s4

p,x

A

p, t

S,A

S

s5

〈>, p〉

S,A

a1 a2 a3

a4

Fig. 6 The DEL-formalisation of the Sally-Anne task.

4 Formalising the Sally-Anne Task in DEL

We now have all the necessary ingredients for our first formalisation of the Sally-
Anne task. Consider again the 5 steps of the Sally-Anne story presented in Exam-
ple 1. The first step, step 0, describes the initial state, whereas the rest, 1–4, describes
a sequence of actions. We will now show how to represent step 0 as a state and steps
1–4 as actions. We use the same symbols as in the previous examples, except we
add a new atomic proposition p meaning “Sally is present in the room with Anne”.
The following 5 step list, corresponding to the list of Example 1, shows the relevant
states and actions:

0. Sally is in the room, holding the marble: state s1 of Figure 5.
1. Sally puts the marble into the basket: action a1 of Figure 5.
2. Sally leaves the room: action a2 of Figure 5.
3. Anne transfers the marble to the box: action a3 of Figure 5.
4. Sally re-enters: action a4 of Figure 5.

Figure 6 calculates the result of executing the action sequence a1, . . . ,a4 in s1, that
is, si+1 = si⊗ai for all i = 1, . . . ,4, and hence s5 = s1⊗a1⊗·· ·⊗a4. The first two
actions, a1 and a2, are very simple. As seen from Figure 6, executing a1 in the initial
state s1 simply adds the proposition t to the actual world (in s2), signifying that now
the marble is in the basket. Executing a2 in the resulting state s2 amounts to deleting
p from the actual world: in s3, Sally is no longer present in the room. The action a3,
the most complex one, has already been discussed in Example 3, and in Example 4
we carefully checked that s4 = s3⊗a3. The final action, a4, simply adds p to every
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world of the model, corresponding to the fact the Sally returns to the room, and this
is observed by both agents.

What is important is now of course to check what holds in s5, the model resulting
from executing a1, . . . ,a4 in s1. From Figure 6 we can see that

s5 |= ¬t ∧BSt,

that is, Sally mistakenly believes the marble to be in the basket. Assume an agent
presented with steps 0–4 of the original informal story is able to formalise the steps
as s1,a1, . . . ,a4, and is afterwards asked “where does Sally believe the marble to
be”. Then that agent can first calculate the final state s5 = s1⊗ a1⊗ ·· · ⊗ a4 and
conclude that s5 |= BSt holds. From this the agent can answer “in the basket”, hence
passing the Sally-Anne test!

5 Extending the DEL formalism

So far so good, or at least it seems that way. But a closer look shows that there are
two problems with the DEL-formalisation that need to be addressed. The first is:
where do the event models come from? How is an agent supposed to get from the
informal steps of the story to the formalisations s1,a1, . . . ,a4? It seems to require
ingenuity to come up with the right event models to formalise the informal action
descriptions, in particular action a3. Hence the proposed solution does not yet really
satisfy the faithfulness criterion presented in Section 2.

The second problem with the formalisation can be illustrated by considering a
shortened version of the Sally-Anne task where Sally does not leave the room, that
is, it only includes the steps 0, 1 and 3 of Example 1. These steps ought to have
the same formalisations as before, that is, s1, a1 and a3, respectively. Hence the
situation after the shortened Sally-Anne story should correspond to s1⊗ a1⊗ a3.
However, consulting Figure 6 it can be checked that s1 ⊗ a1 ⊗ a3 = s5 (since a2
only makes p false, and a4 makes it true again). Hence, an agent presented with the
shortened Sally-Anne story would conclude that

s1⊗a1⊗a3 |= BSt,

implying that Sally ends up believing the marble to be in the basket. This is clearly
not correct, since in this version she never left the room!

In the following we will propose an improved formalisation that solves both of
these problems. We start out by analysing the source of the second problem, which
is in the formalisation of a3 (see Figure 5). As explained in Example 3, a3 “encodes
an action where the marble is actually transferred from the basket to the box, Anne
is aware of this, but Sally thinks that nothing happens”. All this is clearly not part of
step 3 of the story, which simply states “Anne transfers the marble to the box”. The
problem with a3, and private announcements and assignments in general, is that it
is hardcoded into the event model who observes the action taking place. For some
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aedge
3 aobs

3

e0 : 〈>,¬t ∧ x〉

S : p,A

e1 : 〈>,>〉

S,A

S :¬p

e0 : 〈>,¬t ∧ x〉

S :S^A,A

e1 : 〈>,>〉

S,A

S :¬S^A

Fig. 7 Two generalised variants of the action a3 of the Sally-Anne example.

modelling purposes this is sufficient, but in most real-life cases when modelling
actions, who observes an action taking place is a feature of the state in which the
action is applied, not a feature of the action description itself. This is also the case in
the Sally-Anne story: whether Sally observes the action “the marble is transferred”
depends on whether she is in the room or not, which is a feature of the state in
which the action is applied, not a feature of the action description “the marble is
transferred”.

Hence the edges of the event model for action a3 ought to depend on whether
Sally is present, that is, whether p holds or not. This leads us to a more general
type of event model like aedge

3 of Figure 7. Here S : p at the loop of e0 means that
there is an edge here for agent S if p is true: Sally observes the event e0 if she is
present in the room. The other label A at the loop of e0 simply as usual means that A
has an edge here (Anne unconditionally observes the event e0). Similarly, the label
S :¬p on the edge from e0 to e1 means that if Sally is not in the room (¬p) then
she thinks that nothing (e1) happens. This is a new type of event model, called an
edge-conditioned event model, to be defined formally in the next subsection.

With edge-conditioned event models we can solve the second problem mentioned
above. We now have an event model that will behave correctly both if applied in a
state where Sally is present (p holds) and in a state where Sally is not present (p
doesn’t hold). If aedge

3 is applied in a state where p holds, from e0 Sally will only
consider e0 possible (have a loop at e0), but if p does not hold, from e0 she will only
consider e1 possible (have an edge from e0 to e1). Hence, if p holds she observes the
event e0, otherwise she does not. Using edge-conditioned event models also brings
us a step closer to satisfying the first criterion of faithfulness. In almost all existing
false-belief tasks, all ontic actions have the same structure as aedge

3 , and we can
hence define a generic event model for all such ontic actions (which we will do in
Section 5). However, it is still not quite satisfactory to use ad hoc symbols like p to
state that a certain agent is present. This leads us to our next new idea.

In addition to our existing set P of propositional symbols, we add to the language
a new set of propositional symbols i^ j (i sees j) for each pair of agents i, j. The
intended meaning of i^ j is that agent i observes the actions of agent j. Using such
symbols we can replace the event model aedge

3 by aobs
3 , see Figure 7. The meaning

of the label S : S^A at the loop of e0 is that agent S observes the event e0 if S
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currently sees A (S^A is the case). We will now define these new technical constructs
formally, and afterwards apply them to give an improved formalisation of the Sally-
Anne task.

Edge-Conditioned Event Models

Definition 4 (Edge-conditioned event models). An edge-conditioned event model
ofL(P,A) is E =(E,Q, pre, post), where E, pre and post are defined as for standard
event models (Definition 2), and Q :A→ (E×E→L(P,A)) assigns to each agent
i a mapping Q(i) from pairs of events into formulas of L(P,A). The mapping Q(i)
is generally abbreviated Qi. For e ∈ E, (E ,e) is called an edge-conditioned action of
L(P,A).

For standard event models (Definition 2), eQi f means that event f is accessible
from event e by agent i, and we include i in the label of the edge from e to f in
the graph of the event model. In edge-conditioned event models, accessibility has
become conditioned by a formula: Qi(e, f ) = φ means that f is accessible from e
by i under condition φ . When Qi(e, f ) = φ , we include i :φ in the label of the edge
from e to f in the graph of the event model. There are two exceptions to this: when
Qi(e, f ) = ⊥ we do not include i in the label of (e, f ), and when Qi(e, f ) = > we
simply put i in the label of (e, f ) instead of i :>. We already saw an example of such
an edge-conditioned event model: aedge

3 of Figure 7. We also have to generalise the
notion of product update:

Definition 5 (Edge-conditioned product update). Let a state (M,w0) and an
edge-conditioned action (E ,e0) be given withM= (W,R,V ), E = (E,Q, pre, post),
andM,w0 |= pre(e0). The product update of (M,w0) with (E ,e0) is defined as the
state (M,w0)⊗ (E ,e0) = ((W ′,R′,V ′), (w0,e0)), where W ′ and V ′ are defined as
in the standard product update (Definition 3) and R′i = {((w,e),(v, f )) ∈W ′×W ′ |
wRiv andM,w |= Qi(e, f )}.

The only difference to the standard product update is that the R′i relations have be-
come parametrised by the Qi(e, f ) formulas. There is an i-edge from a world-event
pair (w,e) to a world-event pair (v, f ) iff there is an i-edge from w to v in the epis-
temic model, and the condition Qi(e, f ) for having an edge from e to f in the event
model is true in w.

Note that edge-conditioned event models naturally generalise standard event
models: Any standard event model E = (E,Q, pre, post) can be equivalently repre-
sented as an edge-conditioned event model E ′ = (E,Q′, pre, post) by simply letting
Q′i(e, f ) => for all (e, f ) ∈ Qi and Q′i(e, f ) =⊥ otherwise. It is easy to verify that
we then for any state (M,w0) have

(M,w0)⊗ (E ′,e0) = (M,w0)⊗ (E ,e0).
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It can be shown that, conversely, any edge-conditioned event model induces a
standard event model in a canonical way, but the induced standard event model
might be exponentially bigger. In technical terms, it can be shown that edge-
conditioned event models are exponentially more succinct than standard event mod-
els (we will prove this and other interesting properties of edge-conditioned event
models in a future paper). In particular, our generic event models for ontic actions
and observability change (to be presented in Section 5) are going to consist of 2
events each, whereas the same actions using only standard event models would con-
tain 2n−1 +1 events, where n is the number of agents!

Observability Propositions

We now define a new language Lobs(P,A) extending L(P,A) by the addition of
observability propositions on the form i^ j:

φ ::= p | i^ j | ¬φ | φ ∧φ | Biφ ,

where p ∈ P and i, j ∈ A. As noted above, the intended meaning of i^ j is that
“agent i observes all actions performed by agent j”. We have also included the
reflexive propositions i^i, so we can represent a situation in which an agent i
is not even observing its own actions (a “drunk agent”) by ¬i^i. However, in
this paper we will generally assume our models to be normal, which we define
to mean that i^i holds in all worlds of the model for all agents. For simplic-
ity, we will not include i^i in the label of all worlds, so the reader has to re-
member that these formulas are always implicitly taken to be true everywhere.
In the expression i^ j we call i the observer. Given a formula φ , we use obs(φ)
to denote the set of agents occurring (positively or negatively) as observers in φ ,
that is, obs(φ) = {i | i^ j is a subformula of φ for some j}. For instance we have
obs(i^ j ∧¬k^l) = {i,k} (note that k is in the set even though the formula k^l
occurs negated).

The idea of introducing observability propositions in the context of DEL was first
introduced in van Ditmarsch et al. (2013). They, however, only use a simpler type
of proposition hi with the intended meaning “agent i observes all actions” (agent i
is in a state of paying attention to everything that happens). Here we need some-
thing more fine-grained, in particular for our later formalisation of the chocolate
task (Section 6) where we need to be able to represent that an agent i is observing
the actions of an agent j without j observing the actions of i.
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do(i,φ)

e0 : 〈>,φ〉

{ j : j^i} j∈A

e1 : 〈>,>〉

A

{ j :¬ j^i} j∈A

oc(φ)

e0 : 〈>,φ〉

obs(φ)

e1 : 〈>,>〉

A

A−obs(φ)

Fig. 8 The edge-conditioned actions do(i,φ) and oc(φ).

Ontic Actions and Observability Change

The previous definitions of edge-conditioned event models and product update ex-
tend to the language Lobs(P,A) in the obvious way (after all, we only added some
additional atomic propositions). We can now finally define two generic types of
edge-conditioned actions that are sufficient to formalise a number of different false-
belief tasks of varying belief-attribution order. The first action type is an ontic action
do(i,φ): agent i makes φ true. Step 1 of the Sally-Anne task is for instance going
to be formalised by do(S, t): Sally makes t true. The second is an observability
changing action oc(φ) for changing who observes who. For instance step 2 of
the Sally-Anne task where Sally leaves the room is going to be formalised by
oc(¬S^A∧¬A^S): Sally stops observing Anne (¬S^A), and Anne stops observ-
ing Sally (¬A^S).

Definition 6. We define the following edge-conditioned actions on Lobs(P,A).

• do(i,φ): for each agent i and each conjunction of propositional literals φ , this is
the ontic action shown at the top of Figure 8.

• oc(φ): for each conjunction of observability literals (observability propositions
and their negations), this is the observability changing action shown at the bottom
of Figure 8.

These new actions need a little explanation. Consider first do(i,φ). As mentioned,
this is an action where agent i makes φ true (since the actual event e0 has postcondi-
tion φ ). From the label at the loop of e0 we can see that the agents who observe the
action taking place, and hence come to believe φ , are all the agents who is currently
observing agent i (all the agents j for which j^i is true). The agents who are not
observing i will think that nothing happens (the label { j :¬ j^i} j∈A on the edge to
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e1). This also explains the title of the paper, “Seeing is believing”: If agent j sees
agent i, j^i, then j comes to believe any formula φ that i brings about.

The action oc(φ) follows the same principle (note that the two event models only
differ in their edge labels). Looking at the label of the loop at e0, we can see that
the agents observing the observability change are those whose observer status is
affected by the action. This is not the only reasonable way to define an observability
changing action. An alternative could be to say that those who observe the action
are those in obs(φ) whose observer status is affected and anyone observing at least
one of the agents in obs(φ). That is, we could make the label of the loop at e0
be { j :

∨
k∈obs(φ) j^k} j∈A instead. The intuition here would be that if i is currently

observing j, and j either starts or stops to observe k, then i will also observe this
change. This would be the natural way of formalising things if we think of the
action “ j stops observing k” as an action that j performs, since if i is currently
observing j, then i is supposed to observe any action performed by j. However, one
could conversely argue that even if an agent i observes all actions of an agent j, it
might not necessarily imply that agent i can observe it whenever there is a change
in what j pays attention to. If you are in the same room as your spouse, and you
are paying attention to him, you will notice all his ontic (world-changing) actions,
but not necessarily notice when he starts and stops paying attention to you. For the
purposes of this paper, either way of formalising oc(φ) will work, and for simplicity
we have chosen the one with the simpler edge-conditions.

Joint Attention

Note that joint attention (Tomasello 1995; Lorini et al. 2005; Bolander et al. 2015)
in a group of agents B ⊆A can be achieved by the action oc(

∧
i, j∈B i^ j), which we

will abbreviate jointAtt(B). Executing this action will create a situation after which
any action performed by any of the agents in B will be jointly observed by all agents
in B and hence lead to common belief in B of the action effects. More precisely, by
consulting the event models of Figure 8 it is easy to show that for any state (M,w0)
and any agent i ∈ B we have

(M,w0)⊗ jointAtt(B)⊗do(i,φ) |=CBφ .

Seriality and announcements

In general, seriality is not preserved under product update, that is, the product update
of a serial epistemic model with a serial event model might still produce a non-serial
resulting model (see e.g. Aucher (2012)). However, since both do(i,φ) and oc(φ)
only have trivial preconditions (all preconditions being>), any sequence of updates
of a serial epistemic model with such actions is going to be serial (Aucher 2012).
This would no longer hold if we chose to include a standard announcement action in
our framework, as previously noted. We chose not to include announcements for the
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following reasons: 1) to save space; 2) since announcements are not part of the false-
belief tasks we are interested in studying in this paper; 3) to ensure the preservation
of seriality. It would be very simple to add announcements, though: simply take the
event model for do(i,φ) and put φ in the precondition instead of the postcondition
of e0, similar to the distinction between private assignments and announcements in
Figure 4. Note that do(i,φ) is indeed a straightforward generalisation of the private
assignment of Figure 4, where we have simply replaced the outgoing fixed-label
edges of e0 by edge-conditioned labels.

Agency

In standard DEL there is no explicit notion of agency, that is, an action simply
happens without any need to say who did it. But in our do action we need to include
the agent performing it as a parameter, since what will be observed by the other
agents depends on it.

6 New Formalisations of False-Belief Tasks

Example 5 (Formalising the Sally-Anne task). Given the generic actions from the
previous section, it is now quite straightforward to provide a new formalisation of
the Sally-Anne task using these actions:

0. Sally is in the room with Anne, holding the marble: state s1 =
S^A,A^S

S,A

1. Sally puts the marble into the basket: a1 = do(S, t).
2. Sally leaves the room: a2 = oc(¬S^A∧¬A^S).
3. Anne transfers the marble to the box: a3 = do(A,¬t ∧ x).
4. Sally re-enters: a4 = oc(S^A∧A^S).

Note that we no longer use the atomic proposition p, as we now have a more generic
way to deal with observability through our observability propositions. Note also that
in step 0 we could have chosen to start with an initial state satisfying no propositions,
and then have created joint attention by first executing jointAtt({S,A}) in this state.
This would generate the state s1 above (recall that we are omitting the reflexive
observability propositions i^i in figures).

Similar to the previous formalisation in Section 4, it can now be checked that

s1⊗a1⊗·· ·⊗a4 |= BSt,

hence again the formalisation gives the right answer to the Sally-Anne test. We
should also note that now we have

s1⊗a1⊗a3 |= BSx,
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so if Sally does not leave the room, she will not get a false belief. Thus we have
successfully solved the problem of the shortened Sally-Anne task that was discussed
in the beginning of Section 5. We will not show the detailed calculations, as we will
save that for the next example, which formalises a more complex false-belief task.

Example 6 (Formalising the second-order chocolate task). We now consider a com-
pact version of the second-order chocolate task presented in Flobbe et al. (2008);
Arslan et al. (2013). It has the following steps:

0. John and Mary are in a room. There is a chocolate bar in the room.
1. John puts the chocolate into a drawer.
2. John leaves the room.
3. John starts peeking into the room through the window, without Mary seeing.
4. Mary transfers the chocolate from the drawer to a box.

The child taking the test is now asked “where does Mary believe that John believes
the chocolate to be?” It is a second-order task since this question concerns second-
order belief attribution (Mary’s beliefs about John’s beliefs). The correct answer is
“in the drawer”, since Mary is not aware that John was peeking while she moved
the chocolate. It is immediate that step 1 and 4 above are ontic actions, and steps
2 and 3 are observability changing actions. Let us use atomic propositions d for
the “the chocolate is in the drawer” and x for “the chocolate is in the box.” We use
agent symbols J for John and M for Mary. Step 1, “John puts the chocolate into
the drawer”, must then be the ontic action do(J,d). Step 2, “John leaves the room”,
must be the observability change oc(¬J^M∧¬M^J) (John stops observing Mary
and Mary stops observing John). Step 3 is again an observability change, but this
time it is simply oc(J^M): John starts observing Mary. Finally, step 4 is the ontic
action do(M,¬d∧ x).

Figure 9 calculates the result of executing the action sequence of steps 1–4 in the
initial state described by step 0. The actions in the figure show the applied instances
of do(i,φ) and oc(φ) calculated from Figure 8. To simplify, we have replaced labels
of the form j : j^ j by j, and omitted labels of the from j :¬ j^ j. This can be done
as we are only working with normal models (i^i is universally true for all i). To
simplify further, in states (actions) we have omitted worlds (events) that are not
accessible from the actual world (event) by any sequence of agents, that is, we have
deleted worlds (events) that are not in the same connected component as the actual
world (event). This clearly does not change what is true in the actual world (event)
of that state (action).

Before going into the detailed calculations of Figure 9, let us have a look at the
resulting model s5. This is the model in which it should be checked where Mary
believes John believes the chocolate to be. Clearly we have

s5 |= BMBJd,

so the agent’s answer will be “in the drawer”, hence passing the false-belief test.
But s5 can do more than just answer this question, in fact it is a full description of
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J^M,M^J

J,M
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J^M,M^J,d

J,M

s2

〈>,d〉

J,M :M^J

〈>,>〉

J,M

M :¬M^J

d

J,M

s3

〈>,¬J^M∧¬M^J〉

J,M

〈>,J^M〉

J

〈>,>〉

J,M

M
w0 :J^M,d

J

w1 :d

J,M

M

s4

(w0,e0) :J^M,x

J

(w1,e0) :x

M

(w1,e1) :d

J,M

M J

s5

e0 : 〈>,¬d∧ x〉

M,J :J^M

e1 : 〈>,>〉

J,M

J :¬J^M

do(J,d) oc(¬J^M∧¬M^J)

oc(J^M) do(M,¬d∧ x)

1. John puts chocolate
in drawer: 2. John leaves room:

3. John peeks through
window: 4. Mary moves chocolate:

Fig. 9 The DEL-formalisation of the second-order chocolate task

the final situation, including all beliefs to arbitrary order. Concerning observability,
we can for instance see that

s5 |= J^M∧BM¬J^M∧BJBM¬J^M :

John sees Mary, Mary believes he does not, and John knows this.3 We can also
imagine a third-order version of the task, where the question is “Where does John
believe that Mary believes that John believes the chocolate to be”, and by consulting
s5 we immediately get the answer “in the drawer”:

s5 |= BJBMBJd.

The most interesting part of the calculation in Figure 9 is the last step, s5 = s4⊗
do(M,¬d ∧ x), so we will explain this in more detail. Calculating the product s4⊗

3 Strictly speaking, we should say “John believes this” instead of “John knows this”, since our
modality is a belief modality. To improve readability, we however allow ourselves to slightly abuse
the term and use “knows” instead of “believes” when the formula believed is also true.
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do(M,¬d∧x) follows the same strategy as in Example 4. First we find the matching
world-event pairs which, in this case, are all four world-event combinations (w0,e0),
(w0,e1), (w1,e0) and (w1,e1), since both e0 and e1 have trivial preconditions. See
Figure 9 where do(M,¬d ∧ x) is the event model of step 4. The world-event pair
(w0,e1) is not shown in s5 in Figure 9, as it turns out not to be accessible from the
actual world (w0,e0). In the world-event pairs containing e0, the postcondition of e0
is enforced, that is, d is made false and x true. The other world-event pairs simply
inherit their label from the first element of the pair. Hence the four worlds of the
resulting model s5 are (w0,e0) : J^M,x; (w0,e1) : J^M;d, (w1,e0) : x; (w1,e1) : d.
Now for the interesting part, the edges. At (w0,e0) we get a J-loop, since there is
J-loop at w0 and the condition for having a J-loop at e0 is J^M, which is satisfied
in w0. This should be contrasted with the situation at (w1,e0): Here we also have a
J-loop at the world of the pair, w1, but now the condition J^M for having a J-loop
at the event of the pair is not satisfied in the world of the pair. At (w1,e0) we hence
only get an M-loop (since both w1 and e0 unconditionally have such a loop). We
leave the calculation of the rest of the edges to the (enthusiastic) reader.

Let us try to analyse the formalisation of the second-order chocolate task a bit
deeper. For n≥ 1, we say that φ ∈ L(P,A) is an nth-order false belief in the state s
if for some sequence i1, . . . , in ∈ A the following holds:

s |= ¬φ ∧E¬φ ∧E2¬φ ∧·· ·∧En−1¬φ ∧Bi1Bi2 · · ·Binφ

That is, φ is false, everybody beliefs this to depth n−1, but agent i1 falsely believes
that agent i2 believes that. . . agent in believes that φ is true. Note that there is a
second-order false belief concerning d (and x) in s5 of Figure 9, since

s5 |= ¬d∧E¬d∧BMBJd.

In s4, there are no false beliefs about d. In fact, d is even common belief in s4:
s4 |= C{M,J}d. To get from common belief of d in s4 to a second-order false belief
concerning d in s5, we only had to apply an instance of a generic edge-conditioned
action with 2 events (do(M,¬d∧x)). This situation is much better than what can be
achieved with standard actions (standard event models). The following propositions
show that there is no standard action with 2 events that can create a second-order
false belief concerning a proposition p from a state in which p is common belief.
The first proposition considers only product updates of the state s4 of Figure 9. The
second proposition generalises the result.

Proposition 1. Let s be a state isomorphic to s4 of Figure 9, that is a state of the
following form, with A= {i, j}:

w0 : p,q

i

w1 : p

i, j
j
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Let a be a standard action (standard event model, as defined in Definition 2) with
only two events, and assume s⊗a is serial. Then p is not a second-order false belief
in s⊗a.

Proof. Let v0 denote the actual world of s⊗a. Let e0 and e1 denote the two events
of a, with e0 being the actual event. Then v0 = (w0,e0). We will make a proof by
contradiction, that is, we first assume p is a second-order false belief. This means
that for some choice of (i1, i2) ∈ {(i, j),( j, i)} we have:

s⊗a |= ¬p∧E¬p∧Bi1Bi2 p.

We can conclude that s⊗a must contain a path of the following form:

v0

¬p

v1

¬p

v2

pi1 i2

where p is false in v0 and v1, and true in v2. Since v0 = (w0,e0) and p is true in w0,
e0 must be an event that makes p false, that is, ¬p is a conjunct of post(e0). Since p
is true in v2, v2 can then not be a world-event pair of the form (·,e0). It must hence
be of the form (·,e1), and e1 must therefore be an event that does not make p false,
that is ¬p is not a conjunct of post(e1). Since p is false in v1, it follows that v1 must
be a world-event pair of the form (·,e0). Hence v1 = (w0,e0) or v1 = (w1,e0). We
can immediately eliminate the possibility v1 = (w0,e0), since in that case we would
have v1 = v0, and thus (v1,v2) would be an i2-edge from the actual world of s⊗a to
a world where p is true, contradicting that E¬p holds in s⊗a. Hence v1 = (w1,e0).
Thus the path above has the following form:

(w0,e0)

¬p

(w1,e0)

¬p

(·,e1)

pi1 i2

From the i1-edge from (w0,e0) to (w1,e0), we can conclude that in a there is an
i1-loop at e0 (cf. the definition of product update). Similarly, from the i2-edge from
(w1,e0) to (·,e1), we can conclude that there is an i2-edge from e0 to e1 in a.

Due to the seriality of s⊗a, there also has to be an outgoing i2-edge from (w0,e0).
This edge must end in a world of the form (·,e0), since E¬p holds in s⊗a. Hence
we can conclude that there must be an i2-loop at e0 in a. Since there is also an i2-
loop at w1 in s, we can conclude that there must be an i2-loop at (w1,e0) in s⊗ a.
That is, s⊗a must contain a submodel of the following form:

(w0,e0)

¬p

(w1,e0)

¬p

i2

(·,e1)

pi1 i2

This immediately contradicts the original assumption that s⊗a |= Bi1Bi2 p, and the
proof is complete.
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Proposition 2. Let s be a state and a a standard action (standard event model, as
defined in Definition 2) such that, for some p ∈ P,

1. p is common belief in s, that is, s |=CAp.
2. s is functional, that is, for each world w of s and each agent i ∈ A, there is at

most one world w′ with wRiw′.4

3. a contains only two events.
4. s⊗a is serial.

For all n > 1, if p is an nth-order false belief in s⊗ a, then some formula φ is an
nth-order false belief in s.

Proof. Let v0 denote the actual world of s⊗a. Let e0 and e1 denote the two events
of a, with e0 being the actual event. Let w0 denote the actual world of s. Then
v0 = (w0,e0). Assume p is an nth-order false belief for some n > 1. Then for some
sequence i1, i2, . . . , in ∈ A we have

s⊗a |= ¬p∧E¬p∧E2¬p∧·· ·∧En−1¬p∧Bi1Bi2 · · ·Bin p.

Hence there must exist a path in s⊗a of the following form

v0

¬p

v1

¬p

v2

¬p

vn−1

¬p

vn

pi1 i2 in

where p is false in vi, i < n, and true in vn. Since s |=CAp, p is true in w0 of s. Since
p is false in v0 = (w0,e0), e0 must be an event that makes p false, that is, ¬p is a
conjunct of post(e0). Since p is true in vn, vn can not be a world-event pair of the
form (·,e0). It must hence be of the form (·,e1), and e1 must therefore be an event
that does not make p false, that is, ¬p is not a conjunct of post(e1). Since p is false
in all of vi with 1 < i < n, all of these must be world-event pairs of the form (·,e0).
Hence the path has the following form:

(w0,e0)

¬p

(w1,e0)

¬p

(w2,e0)

¬p

(wn−1,e0)

¬p

(wn,e1)

pi1 i2 in

We now show that a contains an i-loop at e0 for each i ∈ A. Since s⊗a is serial,
for all i ∈ A, there must be an outgoing i-edge from (w0,e0) to some world v′ in
s⊗a. The world v′ can not have the form (·,e1), as p would then be true in v′, which
contradicts that p is an nth-order false belief with n > 1 (recall that p is common
belief in s, and e1 is an event that does not make p false). Hence v′ must have the
form (·,e0). We now have that s⊗ a contains an i-edge from (w0,e0) to a world-
event pair of the form (·,e0), from which we can conclude that a contains an i-loop
at e0.

4 Note that all states considered so far in this paper have been functional, and that the property of
being functional is preserved under any sequence of updates with do(i,φ) and oc(φ) actions.
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We wish to show that ¬pre(e0) is an nth-order false belief in s, which will com-
plete the proof. First we prove s |= Em pre(e0) for all m < n. To this end, let there be
given a path

w′0

pre(e0)

w′1

pre(e0)

w′2

pre(e0)

w′m−1

pre(e0)

w′m

i′1 i′2 i′m

in s with w′0 = w0 and such that w′k satisfies pre(e0) for all k < m. We need to
show that w′m also satisfies pre(e0). Since each w′k with k < m satisfies pre(e0), and
since we have already shown that a contains an i-loop at e0 for every i ∈ A, we can
conclude that s⊗a must contain a path of the following form:

(w′0,e0) (w′1,e0) (w′2,e0) (w′m−2,e0) (w′m−1,e0)

i′1 i′2 i′m−1

Since s⊗a is serial, (w′m−1,e0) must have an i′m-successor. This successor must have
the form (w′′m,e0), since s⊗ a |= Em¬p. Then w′′m must also be an i′m-successor of
w′m−1 in s, and since s is functional, we get w′′m = w′m. Since (w′′m,e0) = (w′m,e0) is a
world of s⊗a, we must have that w′m satisfies pre(e0), as required.

We now have proven that s |= Em pre(e0) for all m < n. The only thing left is to
prove s |= Bi1Bi2 · · ·Bin¬pre(e0). Consider any path in s of the following form:

w0 w1 w2 wn−1 wn

i1 i2 in

We need to prove that wn satisfies ¬pre(e0). To obtain a contradiction, assume the
opposite. Combined with what we have already shown, we must now have that wm
satisfies pre(e0) for all m≤ n, and since e0 contains an i-loop for every i ∈ A, s⊗a
must contain the following path

(w0,e0) (w1,e0) (w2,e0) (wn−1,e0) (wn,e0)

i1 i2 in

Since e0 makes p false, all these worlds satisfy ¬p, and we hence have a contradic-
tion with our original assumption that s⊗a |= Bi1Bi2 · · ·Bin p.

Both of the propositions above immediately implies that there is no standard event
model a with two events such that

s5 = s4⊗a.

Since s5 = s4⊗ do(M,¬d ∧ x), this is a clear difference to the situation with edge-
conditioned event models. The result might seem minor, but it is significant for our
faithfulness aim for the following reason. The propositions imply that the smallest
standard event model that can produce s5 from s4 is this:
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〈>,¬d∧ x〉

J

〈>,¬d∧ x〉

M

〈>,>〉

J,M

M J

The problem with this event model is that it is already a ‘second-order model’ that
fully encodes the structure of the model s5 we wish to obtain. Hence if we had to
formalise the second-order chocolate task using standard event models, we would
have to formalise the step “Mary moves the chocolate” as this event model that al-
ready fully encodes the final structure achieved at the end of the story! This would
certainly be very far from achieving the faithfulness criterion introduced in Sec-
tion 2. So indeed the edge-conditioned event models make a real difference to the
formalisation of false-belief tasks. The fact that we can build a single generic edge-
conditioned event model, do(i,φ), with only two events, that is both appropriate to
create a first-order false belief about t from common belief of t in the Sally-Anne
task and create a second-order false belief about d from common belief of d in
the second-order chocolate task, we find to be a significant step in the direction of
achieving faithful and generic formalisations of false-belief tasks.

7 Conclusion, related work and future work

In this paper we have shown how to formalise two false-belief tasks—a first- and a
second-order one—in an extension of dynamic epistemic logic. In the end, we were
able to express the formalisations rather compactly as a simple initial state followed
by a sequence of generic actions:

• Sally-Anne task:

S^A,A^S

S,A

,do(S, t),oc(¬S^A∧¬A^S),do(A,¬t ∧ x),oc(S^A∧A^S).

• Chocolate task:

J^M,M^J

J,M

,do(J,d),oc(¬J^M∧¬M^J),oc(J^M),do(M,¬d∧ x).

We started out expressing two overall criteria for our formalisations of false-belief
tasks: robustness and faithfulness. To be robust, the formalism should be able to
formalise false-belief tasks of arbitrary order. We claim to have such robustness in
our current formalism, but proving it formally is future work. Nevertheless, we have
been able to show that we could go from a formalisation of a first-order false-belief
task to a second-order one at no extra cost, which as discussed above is not the case
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in standard DEL (and not in most other frameworks either). To have faithfulness, we
required that it should be relatively straightforward to get from the informal action
descriptions of the false-belief task to the corresponding formalised actions. We
believe we have taken a big step closer towards achieving this. If the (semi-)informal
description says “agent i makes φ true” it is our action do(i,φ). If the informal
description says, e.g., “now agent i starts observing j without agent j noticing” it
is oc(i^ j). The formalisation step can of course still not be fully automated, but
we are much closer than if we just had to build all the relevant event models from
scratch, which was where this paper started.

There is of course also a limit to the types of false-belief tasks that can be dealt
with using only do and oc. In particular, a lot of the existing false-belief tasks in-
volve untruthful announcements such as the ‘ice-cream task’ in Perner and Wimmer
(1985), the ‘birthday puppy task’ in Sullivan et al. (1994) and the ‘clown-in-the-
park task’ in Wahl and Spada (2000). These can not be dealt with in the current
framework. To be able to deal with untruthful announcements and the revision of
false beliefs, we need another type of model called plausibility models (Baltag and
Smets 2008). We plan to show how these models can be used to formalise the afore-
mentioned false-belief tasks in a future paper.

In our approach, observability amounts to ‘who sees who’, that is, it is a re-
lation between agents. Other approaches to modelling observability can be found
in e.g. Brenner and Nebel (2009); Hoek et al. (2011); Baral et al. (2012); van
Ditmarsch et al. (2013); Herzig et al. (2015); Bolander et al. (2015). In these ap-
proaches, observability is instead connected either to propositions (Brenner and
Nebel 2009; Hoek et al. 2011; Herzig et al. 2015), particular actions (Baral et al.
2012) or all actions (van Ditmarsch et al. 2013; Bolander et al. 2015). The pa-
per Seligman et al. (2013) uses a similar approach to observability as we do, but in a
more complex 2-dimensional dynamic epistemic logic. In the papers by Brenner and
Nebel (2009) and Baral et al. (2012), observability is encoded using axioms instead
of being encoded into the states as we do. For us, it is very important to encode ob-
servability directly into the states to be able to deal with higher-order observability
(‘Mary does not see John seeing her’).

Even though edge-conditioned event models is an original idea of this paper,
they are close in spirit to the generalised arrow updates of Kooi and Renne (2011).
However, arrow updates are rather an alternative to event models, whereas our edge-
conditioned event models is a straightforward generalisation of event models. Fur-
thermore, arrow updates are purely epistemic (without postconditions), and would
hence not be able to represent the ontic actions of the false-belief tasks. Generalised
arrow updates are however more general than edge-conditioned event models along
a different dimension. We only employ what Kooi and Renne (2011) call source
conditions: To check whether an edge (w,v) of a state (M,w0) becomes an edge
((w,e),(v, f )) in the product update (M,w0)⊗ (E ,e0), we check the truth-value of
the edge condition Qi(e, f ) in the source w of the edge (w,v). In generalised arrow
updates, there is both a source condition, on w, and a target condition, on v. It would
be a simple matter to extend our edge-conditioned event models to also allow target
conditions, and hence bring edge-conditioned event models and generalised arrow
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updates closer together. However, as target conditions were not relevant for the type
of actions we wanted to formalise in this paper, we chose to keep things simple and
leave them out.

Solving false-belief tasks using DEL as we do in this paper is part of a larger
research effort in epistemic planning: combining automated planning with DEL to
integrate higher-order social cognition into intelligent planning agents (Bolander
and Andersen 2011; Andersen et al. 2012). Combining the ideas of the aforemen-
tioned papers with the ideas of this paper will allow us to devise algorithms not
only for analysing false beliefs (as is done in the false-belief tasks), but also for
synthesising them. It could e.g. be that Anne plans to deceive Sally by asking her to
go outside and then she moves the marble meanwhile. This is a case of epistemic
planning where the goal is to achieve a state where Sally does not know the location
of the marble.
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