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Abstract. Epistemic plausibility models are Kripke models agents use
to reason about the knowledge and beliefs of themselves and each other.
Restricting ourselves to the single-agent case, we determine when such
models are indistinguishable in the logical language containing condi-
tional belief, i.e., we define a proper notion of bisimulation, and prove
that bisimulation corresponds to logical equivalence on image-finite mod-
els. We relate our results to other epistemic notions, such as safe belief
and degrees of belief. Our results imply that there are only finitely many
non-bisimilar single-agent epistemic plausibility models on a finite set of
propositions. This gives decidability for single-agent epistemic plausibil-
ity planning.

1 Introduction

A typical approach in belief revision involves preferential orders to express de-
grees of belief and knowledge [10, 13]. This goes back to the ‘systems of spheres’
in [11, 9]. Dynamic doxastic logic was proposed and investigated in [14] in order
to provide a link between the (non-modal logical) belief revision and modal logics
with explicit knowledge and belief operators. A similar approach was pursued
in belief revision in dynamic epistemic logic [3, 19, 17, 5, 20], that continues to
develop strongly [7, 18]. We focus on the proper notion of structural equivalence
on (static) models encoding knowledge and belief simultaneously. A prior inves-
tigation into that is [8], which we relate our results to at the end of the paper.
Our motivation is to find suitable structural notions to reduce the complexity of
planning problems. Such plans are sequences of actions, such as iterated belief
revision. It is the dynamics of knowledge and belief that, after all, motivates our
research.

The semantics of belief depend on the structural properties of models. To
relate the structural properties of models to a logical language we need a notion
of structural similarity, known as bisimulation. A bisimulation relation relates a
modal operator to an accessibility relation. Epistemic plausibility models do not
have an accessibility relation as such but a plausibility relation. This induces a
set of accessibility relations: the most plausible states are the accessible states for
the modal belief operator; and the plausible states are the accessible states for



the modal knowledge operator. But it contains much more information: to each
modal operator of conditional belief (or of degree of belief) one can associate a
possibly distinct accessibility relation. This begs the question how one should
represent the bisimulation conditions succinctly. Can this be done by reference
to the plausibility relation directly, instead of by reference to these, possibly
many, induced accessibility relations? It is now rather interesting to observe
that relative to the modal operations of knowledge and belief the plausibility
relation is already in some way too rich.

Example 1. The (single-agent) epistemic plausibility model on the left in Figure
1 consists of three worlds w1, w2, and w3. p is only false in w2, and w1 < w2 <
w3

1: the agent finds it most plausible that p is true, less plausible that p is
false, and even less plausible that p is true. As p is true in the most plausible
world, the agent believes p. If we go to slightly less plausible, the agent is already
uncertain about the value of p, she only knows trivialities such as p ∨ ¬p. The
world w3 does not make the agent even more uncertain. We therefore can discard
that other world where p is true. This is the model in the middle in Figure 1.
It is bisimilar to the model on the left! Therefore, and that is the important
observation: having one world more or less plausible than another world in a
plausibility model does not mean that in any model with the same logical content
we should find a matching pair of worlds. This is evidenced in the figure: on the
left w3 is less plausible than w2, but in the middle no world is less plausible than
v2; there is no match.

Now consider retaining w3 and making it as plausible state as w1. This gives
the plausibility model on the right in Figure 1, where u1 and u3 are equiplausible
(equally plausible), written u1 ' u3. This model is bisimilar to both the left and
the middle model. But the right and middle one share the property that more or
less plausible in one, is more or less plausible in the other: now there is a match.
This makes for another important observation: we can reshuffle the plausibilities
such that models with the same logical content preserve the plausibility order.
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Fig. 1: All three models are bisimilar. The models in the middle and on the right
are normal, the model on the left is not normal. An arrow w1 ← w2 corresponds to
w1 ≤ w2. Reflexive edges are omitted. p means that p does not hold.

In Section 2 we define the epistemic doxastic logic, the epistemic plausibil-
ity models on which it is interpreted, the suitable notion of bisimulation, and
demonstrate the adequacy of this notion via a correspondence between modal
equivalence and bisimilarity. The final sections 3, 4, and 5 respectively translate
our results to degrees of belief and safe belief, discuss the problematic general-
ization to the multi-agent case, and demonstrate the relevance of our results for
epistemic planning.

1 If s < t, we have s ≤ t and t 6≤ s.



2 Single-agent plausibility models and bisimulation

2.1 Language, structures, and semantics

Definition 1 (Epistemic doxastic language). For any countable set of propo-
sitional symbols P , we define the epistemic-doxastic language LP by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕϕ

where p ∈ P , K is the epistemic modality (knowledge) and Bϕ the conditional
doxastic modality (conditional belief). We use the usual abbreviations for the
other boolean connectives as well as for > and ⊥, and the abbreviation B for
B>. The dual of K is denoted K̂, and the dual of Bϕ is denoted B̂ϕ.

We consider epistemic plausibility models as in [5]. A well-preorder on a set
S is a reflexive and transitive relation ≤ on S such that every non-empty subset
has minimal elements. The set of minimal elements of a subset T of S is given
by:

Min≤T = {s ∈ T | s ≤ s′ for all s′ ∈ T}.

This is a non-standard notion of minimality, taken from [5]. Usually a minimal
element of a set is an element that is not greater than any other element. On
total preorders the two notions of minimality coincide. In fact, using the defini-
tion of minimality above, any well-preorder is total: For any pair of worlds s, t,
Min≤{s, t} is non-empty, and therefore s ≤ t or t ≤ s.2 These well-preorders
are the plausibility relations (or plausibility orderings), expressing that a world
is considered at least as plausible as another. This encodes the doxastic content
of a model.

We can define such epistemic plausibility models with the plausibility relation
as a primitive and with the epistemic relation as a derived notion. Alternatively,
we can assume both as primitive relations, but require that more plausible means
(epistemically) possible. We chose the latter.

Definition 2 (Epistemic plausibility model). An epistemic plausibility model
(or simply plausibility model) on a set of propositional symbols P is a tuple
M = (W,≤,∼, V ), where

– W is a set of worlds, called the domain.
– ≤ is a well-preorder on W , called the plausibility relation.
– ∼ is an equivalence relation on W called the epistemic relation. We require,

for all w, v ∈W , that w ≤ v implies w ∼ v.
– V : W → 2P is a valuation.

For w ∈ W we name (M, w) a pointed epistemic plausibility model, and refer
to w as the actual world of (M, w).

2 A well-preorder is not the same as a well-founded preorder; e.g., y ≤ x, z ≤ x
is a well-founded preorder, but not a well-preorder, as z and y are incomparable.
Well-founded preorders are not necessarily total.



As we require that ≤-comparable worlds are indistinguishable, totality of ≤ gives
that ∼ is the universal relation W ×W .

Definition 3 (Satisfaction Relation). LetM = (W,≤,∼, V ) be a plausibility
model on P . The satisfaction relation is given by, for w ∈W , p ∈ P , ϕ,ϕ′ ∈ LP ,

M, w |= p iff p ∈ V (w)
M, w |= ¬ϕ iff not M, w |= ϕ
M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= Kϕ iff M, v |= ϕ for all v ∼ w
M, w |= Bψϕ iff M, v |= ϕ for all v ∈ Min≤JψKM,

where JψKM := {w ∈ W | M, w |= ψ}. We write M |= ϕ to mean M, w |= ϕ
for all w ∈W . Further, |= ϕ (ϕ is valid) means that M |= ϕ for all models M,
and Φ |= ϕ (ϕ is a logical consequence of the set of formulas Φ) stands for: for
all M and w ∈M, if M, w |= ψ for all ψ ∈ Φ, then M, w |= ϕ.3

Example 2. Consider again the the models in Figure 1. The model on the left
is of the form M = (W,≤,∼, V ) with W = {w1, w2, w3} and ≤ defined by:
w1 ≤ w2, w2 ≤ w3, w1 ≤ w3 (plus the reflexive edges). The valuation V of the
model on the left maps w1 into {p}, w2 into ∅ and w3 into {p}. In all three
models of the figure, the formula Bp ∧ ¬Kp holds, that is, p is believed but not
known.

2.2 Normal epistemic plausibility models and bisimulation

The examples and proposal of Section 1 are captured by the definition of bisim-
ulation that follows after these preliminaries. First, given a plausibility model
M = (W,∼,≤, V ) consider an equivalence relation on worlds defined as follows:

w ≈ w′ iff V (w) = V (w′).

The ≈-equivalence class of a world is defined as usual as [w]≈ = {w′ ∈W | w′ ≈
w}. Next, the ordering ≤ on worlds in W can be lifted to an ordering between
sets of worlds W ′,W ′′ ⊆W in the following way:

W ′ ≤W ′′ iff w′ ≤ w′′ for all (w′, w′′) ∈W ′ ×W ′′.

Finally, the lifted ordering leads us to a formalization of normal models of Ex-
ample 1.

Definition 4 (Normal Plausibility Relation). Given a plausibility model
M = (W,≤,∼, V ), the normal plausibility relation on M is the relation on W
defined by:

w � w′ iff Min≤[w]≈ ≤ Min≤[w′]≈.

M is called normal if � = ≤. The normalisation of M = (W,≤,∼, V ) is M′ =
(W,�,∼, V ). As for <, we write w ≺ w′ for w � w′ and w′ 6� w.

3 For an axiomatization of this logic see e.g. [16].



Note that if u, v ∈ Min≤W
′ for some set W ′ then, by definition of Min≤, both

u ≤ v and v ≤ u. Hence, the condition Min≤[w]≈ ≤ Min≤[w′]≈ above is equiva-
lent to the existence some minimal element of [w]≈ being ≤-smaller than some
minimal element of [w′]≈.

Lemma 1. Let w and w′ be two worlds in the normal modelM = (W,�,∼, V ).
If w and w′ have the same valuation, they are equiplausible.

Proof. As w ≈ w′, we have [w]≈ = [w′]≈, and thus Min�[w]≈ = Min�[w′]≈. By
Definition 4 we w � w′ and w′ � w, which is equivalent to w ' w′.

Example 3. Take another look at the models of Figure 1 (for reference, we name
them M1, M2 and M3). We want models M1 and M2 to be bisimilar via the
relation R given by R = {(w1, v1), (w3, v1), (w2, v2)} (see Section 1). Usually, in
a bisimulation, every modal operator has corresponding back and forth require-
ments. For our logic of conditional belief there is an infinity of modal operators,
as there is an infinity of of conditional formulas. (Having only unconditional be-
lief Bϕ defined as B>ϕ is not enough, see Example 4.) Instead, we define our
bisimulation indirectly by way of the plausibility relation. Example 1 showed
that we cannot match ‘more plausible’ inM1 with ‘more plausible’ inM2 using
simply ≤. With ≤ as seen in M3 (the normalization of M1) where ≤=�, we
can.

Definition 5 (Bisimulation). Let plausibility models M = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) be given. Let �,�′ be the respective derived normal plau-
sibility relations. A non-empty relation R ⊆ W ×W ′ is a bisimulation between
M and M′ if for all (w,w′) ∈ R:

[atoms] V (w) = V ′(w′).
[forth�] If v ∈W and v � w, there is a v′ ∈W ′ s.t. v′ �′ w′ and (v, v′) ∈ R.
[back�] If v′ ∈W ′ and v′ �′ w′, there is a v ∈W s.t. v � w and (v, v′) ∈ R.
[forth∼] If v ∈W and w ∼ v, there is a v′ ∈W ′ s.t. w′ ∼′ v′ and (v, v′) ∈ R.
[back∼] If v′ ∈W ′ and w′ ∼′ v′, there is a v ∈W s.t. w ∼ v and (v, v′) ∈ R.

A total bisimulation between M and M′ is a bisimulation with domain W and
codomain W ′. For a bisimulation between pointed models (M, w) and (M′, w′)
it is required that (w,w′) ∈ R. If a bisimulation between (M, w) and (M′, w′)
exists, the two models are called bisimilar and we write (M, w)↔(M′, w′). Two
worlds w,w′ of a model M are called bisimilar if there exists a bisimulation R
between M and itself with (w,w′) ∈ R.

This definition gives us the bisimulation put forth in Example 3. As ∼ is the
universal relation on W , [forth∼] and [back∼] enforce that all bisimulations are
total.

If ∼ was not a primitive, we could instead have conditions [up-forth�] and
[up-back�] (that consider less plausible v and v′), in place of [forth∼] and [back∼].
This would define the same bisimulations.



2.3 Correspondence between bisimilarity and modal equivalence

In the following we prove that bisimilarity implies modal equivalence and vice
versa. This shows that our notion of bisimulation is proper for the language and
models at hand. First we define modal equivalence.

Definition 6 (Modal equivalence). Given are modelsM = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) on P with w ∈W and w′ ∈W ′. We say that (M, w) and
(M′, w′) are modally equivalent iff for all ϕ ∈ LP , M, w |= ϕ iff M′, w′ |= ϕ.
In this case we write (M, w) ≡ (M′, w′).

Lemma 2. If two worlds of a model are ≈-equivalent, they are bisimilar.

Proof. Assume worlds w and w′ of a model M = (W,≤,∼, V ) have the same
valuation. Let R be the relation that relates each world of M to itself and
additionally relates w to w′. We want to show that R is a bisimulation. This
amounts to showing [atoms], [forth�], [back�], [forth∼] and [back∼] for the pair
(w,w′) ∈ R. [atoms] holds trivially since w ≈ w′. [forth∼] and [back∼] also hold
trivially, by choice of R. For [forth�], assume v ∈W and v � w. We need to find
a v′ ∈ W such that v′ � w′ and (v, v′) ∈ R. Letting v′ = v, it suffices to prove
v � w′. Since w ≈ w′ this is immediate: v � w iff Min≤[v]≈ ≤ Min≤[w]≈ iff
(because w ≈ w′) Min≤[v]≈ ≤ Min≤[w′]≈ iff v � w′. [back�] is proved similarly.

Proposition 1. Bisimilarity implies modal equivalence.

Proof. We will prove that for all formulas ϕ ∈ LP , if R is a bisimulation between
pointed models (M, w) and (M′, w′) then M, w |= ϕ iff M′, w′ |= ϕ. The proof
is by induction on the structure of ϕ. The base case is when ϕ is propositional.
Then the required follows immediately from [atoms], using that (w,w′) ∈ R. For
the induction step, we have the following cases of ϕ: ¬ψ,ψ ∧ γ,Kψ,Bγψ. We
skip the first three, fairly standard cases and show only Bγψ.

Let R be a bisimulation between (M, w) and (M′, w′) with M = (W,≤,∼
, V ) and M = (W ′,≤′,∼′, V ′). We only prove M, w |= Bγψ ⇒M′, w′ |= Bγψ,
the other direction being proved symmetrically. So assume M, w |= Bγψ, that
is, M, v |= ψ for all v ∈ Min≤JγKM. We need to prove M′, v′ |= ψ for all
v′ ∈ Min≤′JγKM′ . So let v′ ∈ Min≤′JγKM′ . Choose x ∈ Min≤{u ∈ W | u ≈
z and (z, v′) ∈ R for some z ∈W}. Let y ∈ JγKM be chosen arbitrarily, and
choose y′ with (y, y′) ∈ R (recall that any bisimulation is total). The induction
hypothesis implies M′, y′ |= γ. Let y′′ ≈ y′ be chosen arbitrarily. Lemma 2
implies the existence of a bisimulation R′ between (M′, y′′) and (M′, y′). Since
M′, y′ |= γ, the induction hypothesis gives us M′, y′′ |= γ, that is, y′′ ∈ JγKM′ .
Since v′ was chosen ≤′-minimal in JγKM′ , we must have v′ ≤′ y′′. Since y′′ was
chosen arbitrarily with y′′ ≈ y′, we get v′ ≤′ Min≤′ [y′]≈. We can now conclude
Min≤′ [v′]≈ ≤′ v′ ≤′ Min≤′ [y′]≈, and hence v′ � y′.

By [back�] there is a v such that (v, v′) ∈ R and v � y. By choice of x,
x ≤ Min≤[v]≈. Since v � y we now get: x ≤ Min≤[v]≈ ≤ Min≤[y]≈ ≤ y. Since
y was chosen arbitrarily in JγKM, we can conclude:

x ≤ u for all u ∈ JγKM. (1)



By choice of x, there is a z ≈ x with (z, v′) ∈ R. From z ≈ x, Lemma 2 implies
the existence of a bisimulation R′′ between (M, x) and (M, z). Since R′′ is a
bisimulation between (M, x) and (M, z), and R is a bisimulation between (M, z)
and (M′, v′), the composition R′′ ◦ R must be a bisimulation between (M, x)
and (M′, v′). Applying the induction hypothesis to the bisimulation R′′ ◦ R,
we can from v′ ∈ JγKM′ conclude x ∈ JγKM. Combining this with (1), we get
x ∈ Min≤JγKM. By original assumption this implies M, x |= ψ. Applying again
the induction hypothesis to the bisimulation R′′ ◦ R, this gives us M, v′ |= ψ,
as required, thereby concluding the proof.

We proceed now to the converse, that modal equivalence with regard to LP
implies bisimulation, though first taking a short detour motivating the need for
conditional belief.

Example 4. The normal plausibility models (M1, w1) and (M2, v1) of Figure
2 are modally equivalent for the language with only unconditional belief. We
can show this by first demonstrating that M1 and M2 have the same modal
description Φ (a modal description Φ of a model M is a set of formulas such
that Φ |= ψ iff M |= ψ). We observe that the description of both models is

B(p1 ∧ ¬p2 ∧ ¬p3) ∧K((p1 ∧ ¬p2 ∧ ¬p3) ∨ (¬p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ p3))

To see why, note that w1 and v1 are both the only minimal worlds in their
respective models, so belief in (description of the valuation) p1∧¬p2∧¬p3 will be
the same. Further, in both models all three constituent worlds are epistemically
possible, so K cannot distinguish either between the models (the disjunction
sums up the three different valuations). We then note that, as both w1 and
v1 satisfy p1 ∧ ¬p2 ∧ ¬p3, (M1, w1) and (M2, v1) of Figure 2 must be modally
equivalent: any boolean formula must be a consequence of p1∧¬p2∧¬p3, whereas
any belief or knowledge formula evaluated in the points of these models must be
a model validity that is a consequence from the model description Φ.

On the other hand, (M1, w1) and (M2, v1) are not bisimilar. Pairs in the
bisimulation must have matching valuations, so the only option is the relation
{(w1, v1), (w2, v2), (w3, v3)}. But this does neither satisfy [forth�] nor [back�].

We do not want that these models are modally equivalent in, for example,
a dynamic epistemic language. Consider an agent learning ¬p1 from a public
announcement. This deletes w1 and v1 from their respective models. After this
announcement in M1, the agent believes p2. In M2 this is not the case. Here
the agent will believe p3. With conditional belief we can capture this distinction
already in the static language (M1 |= B¬p1p2, while M2 6|= B¬p1p2).

w1

p1

w2

p2

w3

p3

M1 : v1

p1

v2

p3

v3

p2

M2 :

Fig. 2: The models M1 and M2 of Example 4. For visual clarity, we leave out false
propositional variables.



Definition 7 (∆). Let two worlds w,w′ of a model M = (W,≤,∼, V ) on P be
given where V (w) 6= V (w′). If there is a p ∈ V (w) − V (w′), then let δw,w′ be
such a p; otherwise, let δw,w′ = ¬q for some q ∈ V (w′)−V (w). Any such choice
of δw,w′ for a given pair w,w′ is called a propositional difference between w
and w′. Further, let ∆w =

∧
w′≺w δw,w′ be the conjunction of some propositional

difference between w and each world that is strictly more �-plausible than w (the
empty conjunction when no such world exist).

Continuing Example 4, we can choose ∆w2 = ¬p1. We then have that B̂∆w2p2
distinguishesM1 andM2 by evaluating belief on worlds no more plausible than
w2 and v2 respectively. However, choosing ∆w2

= p2 would not distinguish, so we
add an additional disjunct for w3. Regardless of which propositional differences
are used in ∆w2

and ∆w3
, B̂∆w2

∨∆w3p2 distinguishes the models. This is, of
course, not sufficient for constructing distinguishing formulas in the general case,
but for our purposes of proving Proposition 2 it is enough.

Lemma 3. Let w and w′ be worlds of the model M = (W,≤,∼, V ) and ϕ a

formula of LP , s.t. w′ � w and M, w′ |= ϕ. Then M, w |= B̂∆w∨∆w′ϕ.

Proof. In the following we abbreviate ∆w∨∆w′ by ∆w,w′ . We need to show that
∃u ∈ Min≤J∆w,w′KM, s.t. M, u |= ϕ. By construction of ∆w,w′ , we have that
for all s ∈ J∆w,w′KM, either s ≈ w, s ≈ w′ or (w � s and w′ � s). By choice
of w and w′, we have w′ � w, meaning that ∃w′′ ∈ Min≤J∆w,w′KM such that
w′ ≈ w′′. Lemma 2 then says that w′ and w′′ are bisimilar, and Proposition 1
that they are modally equivalent. ThusM, w′′ |= ϕ. This is the u we are looking

for, giving M, w |= B̂∆w,w′ϕ.

Proposition 2. On the class of image-finite models, modal equivalence implies
bisimilarity.

Proof. Let M = (W,≤,∼, V ) and M′ = (W ′,≤′,∼′, V ′) be two image-finite,
plausibility models on P , and define R ⊆ W ×W ′, such that (w,w′) ∈ R iff
(M, w) ≡ (M′, w′). We show that R is in fact a bisimulation of the kind defined
in Definition 5. Showing that R satisfies [atoms] is trivial. We skip the, less
trivial, [forth∼], and [back∼] and show the considerably more complicated case
of [forth�] ([back�] is similar) as follows: Assume (M, w) ≡ (M′, w′), v ∈ W
and v � w and show that assuming that for all v′ ∈ W ′, v′ � w′ implies
(M, v) 6≡ (M′, v′), leads to a contradiction. This then gives (M, v) ≡ (M′, v′)
and therefore (v, v′) ∈ R.

Let S′ = {v′ | v′ � w′} = {v′1, . . . v′n} be the successors of w′. This set is
finite, due to image-finiteness of the model. If v and no successor of w′ is modally
equivalent, there exists formulae ϕv

′
i , such that M, v |= ϕv

′
i and M′, v′i 6|= ϕv

′
i .

Therefore, M, v |= ϕv
′
1 ∧ · · · ∧ ϕv′n . For notational ease, let Φ = ϕv

′
1 ∧ · · · ∧ ϕv′n .

WithM, v |= Φ, Lemma 3 givesM, w |= B̂∆w,vΦ (∆w,v is finite due to image-

finiteness of the models). Now, M′, w′ |= B̂∆w,vΦ (which we must have due to
modal equivalence) iff there exists a u′ ∈ Min≤J∆w,vKM′ such that M′, u′ |= Φ.
By construction of Φ, no world v′i exists such that v′i � w′ and M′, v′i |= Φ, so



we must have w′ ≺ u′. There are two cases for (the weakest requirements for)
this u′ to be minimal. Either (i) u′ ≤ w′ or (ii) w′ < u′ and w′ 6∈ J∆w,vKM′ .
If (i) is the case, we must have a world w′′, with w′′ ≈ w′ and w′′ < u′, or we
couldn’t have w′ ≺ u′. But w′′ < u′ means that u′ cannot be minimal unless
w′ 6∈ J∆w,vKM′ , because otherwise w′′ ∈ J∆w,vKM′ . So, for (i) and (ii) both, we
must have w′ 6∈ J∆w,vKM′ . This yields M′, w′ |= ¬∆w,v. But as M, w |= ∆w,v,
we get the sought after contradiction of (M, w) ≡ (M′, w′).

3 Degrees of belief and safe belief

In this section we sketch some further results that can be obtained for our
single-agent setting of the logic of knowledge and conditional belief. Apart from
conditional belief, other familiar epistemic notions in the philosophical logical
and artificial intelligence community are safe belief [16] and degrees of belief [10,
15]. Our results generalize fairly straightforwardly to such other notions. An
agent has safe belief in formula ϕ iff it will continue to believe ϕ no matter what
true information conditions its belief.4

Definition 8 (Safe belief). We extend the inductive language definition with a
clause �ϕ for safe belief in ϕ. The semantics are M, w |= �ϕ iff (M, w |= Bψϕ
for all ψ such that M, w |= ψ).

Degrees of belief are a quantitative alternative to conditional belief. The zeroth
degree of belief B0ϕ is defeasible belief Bϕ as already defined. For M, w |=
B1ϕ to hold ϕ should be true in (i) all minimal worlds accessible from w; but
additionally, (ii) if you take away those from the equivalence class, in all worlds
that are now minimal. If we do this with the normal plausibility relation we
get what we want (otherwise, we run into the same problems as before — our
treatment is not compatible with e.g. Spohn’s approach [15], that allows ‘gaps’
(layers without worlds) in between different degrees of belief).

Min0
�[w]∼ := Min�([w]∼)

Minn+1
� [w]∼ := Minn�[w]∼ if Minn�([w]∼) = [w]∼

Minn+1
� [w]∼ := Minn�[w]∼ ∪Min�([w]∼ \Minn�[w]∼) otherwise

We now can define the logic of knowledge and degrees of belief.

Definition 9 (Degrees of belief). We replace the clause for conditional belief
in the inductive language definition by a clause Bnϕ for belief in ϕ to degree n,
for n ∈ N. The semantics are

M, w |= Bnϕ iff for all v ∈ Minn�([w]∼) :M, v |= ϕ

In an extended version of this paper we are confident that we will prove that the
logics of conditional belief and knowledge, of degrees of belief and knowledge,
and both with the addition of safe belief are all expressively equivalent.

4 This definition is conditional to modally definable subsets, unlike [5, 16] where it is
on any subset. In that case safe belief is not bisimulation invariant and increases the
expressivity of the logic.



4 Multi-agent epistemic doxastic logic

For a finite set A of agents and a set of propositional symbols P the multi-agent
epistemic-doxastic language LP,A is

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Bϕaϕ,

where p ∈ P and a ∈ A. Epistemic plausibility models are generalized similarly,
we now have plausibility relations ≤a and epistemic relations ∼a for each agent
a. For each agent the domain is partitioned into (possibly) various equivalence
classes, such that each class is a well-preorder. The single-agent results do not
simply transfer to the multi-agent stage. We give an example.

Example 5. Consider Figure 3. The solid arrows represent the plausibilities for
agent a and the dashed arrow for agent b. In our example, the partition for a
is {w0}, {w1, w2, w3}, whereas the partition for b is {w0, w1}, {w2}, {w3}. Unlike
before, the two p-states are not bisimilar, because in the state w1 agent b is
uncertain about the value of p but defeasibly believes p (there is a less plausible
alternative w0, whereas in state w3 agent b knows (and believes) that p. In
both worlds, of course, agent a still believes that p, but a distinguishing formula
between the two is now, for example, ¬Kbp ∧Bap, true in w1 but false in w3.

w0

p

w1

p

w2

p

w3

p

Fig. 3: A plausibility model wherein the two p worlds are not bisimilar, because they
have different higher-order belief properties.

It will be clear from Example 5 that we cannot, for each agent, derive a normal
plausibility relation�a from a given plausibility relation≤a by identifying worlds
with the same valuation: w ≈a w′ iff V (w) = V (w′) and w ∼a w′ does not work
(worlds w1 and w3 in Example 3 satisfy different formulas). Some strengthening
guarantees that bisimilarity still implies modal equivalence. An example is, using
the above ≈a:

w ≈ w′ iff (for all agents a : w ≈a w′)
w �a w′ iff (Min≤a [w]≈ ≤a Min≤a [w′]≈)

Unfortunately we do not get that modal equivalence then implies bisimilarity.
The strongest possible approach is of course to require that [ w ≈ w′ iff (w,w′) is
a pair in the bisimulation relation ]. This works, but it is is rather self-defeating.
In due time we hope to find a proper generalisation in between these two ex-
tremes.

5 Planning

In planning an agent is tasked with finding a course of action (i.e. a plan) that
achieves a given goal. A planning problem implicitly represents a state-transition



system, where transitions are induced by actions. Exploring this state-space is a
common method for reasoning about and synthesising plans. A growing commu-
nity investigates planning in dynamic epistemic logic [6, 12, 4, 1], and using the
framework presented here we can in similar fashion consider planning with dox-
astic attitudes. To this end we identify states with plausibility models, and the
goal with a formula of the epistemic doxastic language. Further we can describe
the dynamics of actions by using e.g. hard announcements or soft announcements
[17], or yet more expressive notions such as event models [5].

With the state-space consisting of plausibility models, model theoretic results
become pivotal to the development of planning algorithms. In general, we cannot
require even single-agent plausibility models (even on a finite set of propositional
symbols) to be finite. Also, normal plausibility models need not be finite —
obvious, as the ‘normalising’ procedure in which we replace ≤ by � does not
change the domain. Our definition of bisimulation has a crucial property in this
regard: By Lemma 2 the bisimulation contraction of a model will contain no
two worlds with the same valuation, hence any bisimulation minimal model on
a finite set of propositions is finite. Moreover, two bisimulation minimal models
are bisimilar exactly when they are isomorphic, and it follows that are only
finitely many distinct bisimulation minimal epistemic plausibility models. With
the reasonable assumption that actions preserve bisimilarity (this is the case for
the types of actions mentioned above), our investigations on the proper notion of
bisimulation therefore allow us to employ a smaller class of models in planning.
This is a chief motivation for our work here, and an immediate consequence is
that determining whether there exists a plan for a plausibility planning problem
is decidable (see [2]).

w0

p

w1

p

w2

p

w3

p

w4

p

· · ·

Fig. 4: Uncontractable chain of p and ¬p-worlds.

It is remarkable that the approach of [8] to defining bisimulation for epistemic
plausibility models does not yield decidability of planning problems, not even
for single-agent models defined on a single proposition. It has, for instance, that
the model in Figure 4 consisting of an infinite ‘directed chain’ of alternating p
and ¬p worlds (a copy of the natural numbers axis) is bisimulation minimal. In
our approach the bisimulation minimal model would be the middle one of Figure
1, regardless of the number of worlds. Though [8] also shows that bisimilarity
implies modal equivalence and vice versa (for image finite models), this is not
inconsistent with our results here. Another difference between our approach and
[8] lies in the semantics of safe belief. There, safe belief is relative to any subset
(see also Footnote 4). For a ‘directed chain’ model, the safe belief semantics
of [8] permits counting the number of p and ¬p worlds. Such more expressive
semantics naturally come at a cost, namely having no finite bound on the size
of minimal single-agent models.
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