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Abstract 
 

 

Nowadays, the security of cryptographic tokens is a big concern in the era of digital technology 

and internet. The Public-Key Cryptography Standards PKCS#11 defines API for security tokens 

such as hardware security modules (HSMs) and smartcards. This standard is widely adopted by 

most industries to enhance the security of their products. In this thesis we will analyze PKCS#11 

Key Management API using the AIF framework which is based on an abstraction technique called 

set-abstraction. AIF allow us to model and automatically analyze distributed systems where each 

participant can have a database, e.g. HSM storing keys. This abstraction allows for the analysis 

without bounding the number of steps. During the AIF modeling and verification, we will 

experiment some intruder models and assumptions, and design rules and policies for PKCS#11 

API in the AIF language.  
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Glossary: 

 

PROVERIF  Automated tool for protocol verification 

API    Application Programming Interface 

Attribute   A characteristic of a key 

Cryptoki   API by PKCS#11 

Token   Security token, physical electronica device 

Application  Any computer program that calls the Cryptoki interface. 

HSMs   Hardware Security Module, a physical computing device 

Object   The object class in Cryptoki 

State   transition state of AIF, composed by a number of facts 

System   That system running key management API of PKCS#11 

SATMC   Security protocol model checker. 

HC    Horn Clauses 

ERACOM Eracom Technologies, a leading developer and global supplier of 

cryptographic technologies and solutions. 
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CHAPTER    1 

Introduction 

 

1.1  Background 

PKCS#11, a standard by RSA Laboratories, specifies an application programming interface (API) 

which allows application to interact with cryptographic tokens such as hardware security 

modules (HSMs) and smartcards. These devices hold cryptographic information and perform 

cryptographic functions. The token, like HSMs, can be used to store some high-value keys (e.g., 

TLS server keys, certificate signing keys, authentication keys) and like CA HSMs could be critical 

part of public key infrastructure or the HSMs used for ATM transaction and online banking 

application. Apparently, the concern about security issue of these tokens is growing. Many 

cryptographic functions, like encryption and decryption, are embedded into the HSMs token. The 

sensitive keys/data must be strictly prevented from leaking to an untrusted party/machine. This 

motivates the analysis of PKCS#11 key management and design rules/policies for it, since 

PKCS#11 is widely adopted on most of this type devices. 

There have been some people’s works of analyzing PKCS#11, such as G.Steel [8] analyzing 

PKCS#11 Key Management APIs using model checker SATMC [7], as well as a master thesis [9] 

which using AVISPA tools [11] for the analysis of PKCS#11. Tools like AVISPA are restricted by 

number of steps that participant can make, other tools like Scyther [10] are even restricted by 

“simple” protocol that only consists of message exchange. To overcome such limitations, we use 

AIF framework [1] for the modeling and the verification tool ProVerif [3] for model checking. The 

AIF is based on a novel set-abstraction technique that enables the modeling the databases of 

messages that do not necessarily monotonically grow and the modeling and verification are not 

restricted by the bounding number of steps that participants can make. We got good inspirations 

from the work of G.Steel [8], and we extend it from bounded to unbounded model by using AIF 

framework. We show that this framework is well-suited for analyzing the PKCS#11 key 

management system, since each security tokens may have a key databases to maintain and the 

keys are associated with “attribute” values, e.g. sensitive or decrypt…, which could be set/unset/.. 

and those actions happen frequently.  
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We conduct our work by using the AIF (Abstract Intermediate Format) framework which 

consists of the AIF specification language and a translator from AIF to first-order Horn clauses. 

The workflow is illustrated as below: 

 

 

 

 

 

 

 

 

 

 

 

First, we construct AIF file reflects the system modeling and input (step 1) it to the translator 

called OFMC-FP-ASLan [2] which is for translating (step 2) the AIF language to first-order Horn 

clauses. For checking the generated Horn Clauses that incorporates the set-abstraction, we input 

(step 3/4) the HC to protocol verification tool ProVerif (used in further works) or SPASS. When the 

tool stops, it either gives us an attack or proof of security. The attack could be caused by the 

tool’s over-approximation like ProVerif, the methods of over-approximation do not consider a 

state transition system, but just a set of derivable facts like intruder knowledge.  

 

1.2  PCKS#11 key management 

The defined API by PKCS#11 is called Cryptoki, and there are many diverse cryptographic 

function sets inside Cryptoki, some examples are: Encryption Functions, Decrypt Functions, 

Object Management Functions, Key Management Functions, Singing and Macing Functions. See 

the full list from document [4].  

Our design and analysis would base on the Key Management API of Eracom PKCS#11, this 

subset API include functions such as WrapKey, i.e. encryption of keys for secure transport, and 

UnwrapKey, generateKey…etc., that would be the crucial part of the tokens’ security. Of course, 

we may also need to use some other essential functions, like encryption and decryption, as well 

as some functions of Object Management which allow us to set/unset attribute to object. In 

PKCS#11, an object could have many types, e.g. key object, certificate object, mechanism object, 

or domain parameter object….etc. Since we focus on the key management of PKCS#11, therefore 

objects mentioned in the following sections are referred to key objects.    
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Figure 1 protocol verification workflow 
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1.3  Scope of Contribution 

This work is inspired by a similar work of G.Steel [8], who modeled the Key Management APIs of 

PKCS#11 using SATMC [7]. His modeling was conducted by a SAT-based abstraction approach 

such an approach is bounded to a number of steps that honest or dishonest agent can perform. 

The AIF framework allows for modeling and verification with an unbounded number of steps that 

participants can make, unlike the standard model-checking approaches, AIF is based on a new 

way of abstraction, called set-abstraction that can handle a database in which the data/key can 

be added/removed and the states/facts do not monotonically growth. With those advantages, 

we show that AIF is a suitable language for studying HSM security, and begin with the APIs of key 

management. We show how we model the system and conduct the analysis in AIF.  

Our work start with using AIF to formalize the modeling of the system which has basic API 

functions, some parts of that system are inspired by a typical known attack, so called 

“key-separation”, which was presented by Jolyon Clulow’s 2003 CHES paper [5]. We translate the 

AIF modeling to first-order Horn Clauses and solve it in ProVerif, after analyzing the output attack 

trace, we introduce some rules/policies as counter measures and apply them in AIF form, again 

this modified version shall be verified through ProVerif. From this start point, we successfully 

expand the modeling of the API system, and experience several intruder models, e.g. re-import 

attack which allow the intruder to obtain multiple handles (i.e. a pointer to a key) for the same 

key and reveal sensitive key in clear, and the loss-key attack where a certain type key loss to 

intruder. For preventing attacks, we do the analysis and present the solutions as AIF, then we 

verify the solutions through ProVerif, and from the verification result we can tell what rules must 

be applied to fix breaches. In the end, we successfully verified the system security properties. 

 

 

CHAPTER    2 

AIF - Abstract Intermediate Format 

AIF is the language that we used for specifying security protocols in which allows each participant 

has a database, and enable us to analyze the protocol without bounding the number of step that 

participant can make. In this section, we briefly go through some basic features of AIF, the formal 

definition can be found in [1].  
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State: A state is a set of some true facts in that state, e.g., 

{ 𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑖𝑔𝑛(𝑖𝑛𝑣(𝑃𝐾), 𝑀))}, in such a state intruder 

know a public-key encrypted message 𝑒𝑛𝑐(𝑀, 𝑃𝐾), the public key 𝑃𝐾 and a signature signed 

by its private key (𝑠𝑖𝑔𝑛(𝑖𝑛𝑣(𝑃𝐾), 𝑀). All the symbols/predicates above, include 𝑖𝑘𝑛𝑜𝑤𝑠(), do 

not have predefined meaning; their meaning is defined through transition rules which manage 

the transitions among different states. Some rules are intruder deduction rules that reflect 

intruder’s capability. For example, if intruder gains message M and a public key PK, then he may 

able to encrypt such message; this can be reflected by transition rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑀). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾)); 

Likewise, if intruder has knowledge of the encrypted message and the private key, he can decrypt 

the cipher: 

 𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖𝑛𝑣(𝑃𝐾)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑀); 

In the AIF language, variable names start with uppercase letters and constant names start with 

lowercase letters. The transition rule can be applied to the state that contains the facts matching 

the left hand side of arrow and new facts are generated on the right. 

Transition rule that are not required to have any facts on the left hand side, it can be taken in any 

state, for instance: 

= ,𝑃𝐾- => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖𝑛𝑣(𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾) 

The term = ,𝑃𝐾- => means that the value 𝑃𝐾 is freshly created when the transition is taken, 

and the right hand side contains the facts relate to the new value. Interpret this rule as intruder 

can generate a key pair for himself at any time. 

 

Sets: In the example of an HSM need to maintain a database of keys that has different status, e.g. 

valid, revoked or outdated. There are several classical abstraction approaches can model the 

protocol in unbounded steps that participant can make, but these approaches may cause the 

states/true facts monotonically growth, because the techniques however have a kind of 

monotonicity built-in: what is true at some point cannot become false later. To extend the 

classical approaches, AIF has a way to express transitions in which the state does not 

monotonically grow, namely using Sets. And AIF has fixed number of sets. 

 

To get good insight of Sets, we use a running example that is similar to the SeVeCom case [6]: 

Assume that there are two security token namely*𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2+, and the key types are 

*𝑟𝑜𝑜𝑡, 𝑙𝑡𝑠𝑖𝑔, 𝑠𝑡𝑠𝑖𝑔, 𝑙𝑡𝑑𝑒𝑐, 𝑠𝑡𝑑𝑒𝑐+, i.e. root key, long/short term signing key and long/short term 

decryption key and the status of key *𝑣𝑎𝑙𝑖𝑑, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑, 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑+. For instance the all valid 

short term decrypt key in 𝑡𝑜𝑘𝑒𝑛1 can be denoted by the set 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), and the 

all revoked long term signing key in 𝑡𝑜𝑘𝑒𝑛2, 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛2, 𝑙𝑡𝑠𝑖𝑔, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑). Totally, we have a 

family of 30 sets 𝑑𝑏(𝑇𝑂𝐾𝐸𝑁, 𝐾𝑒𝑦𝑇𝑦𝑝𝑒, 𝑆𝑡𝑎𝑡𝑢𝑠). 
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Set-Memberhsip Transition: Different from the normal fact, i.e. 𝑖𝑘𝑛𝑜𝑤𝑠(), the set-fact has the 

form 𝑚 ∈ 𝑆 where 𝑚 is an element and 𝑆 is a set. For example to describe a key that is a 

valid long term signing key stored in 𝑡𝑜𝑘𝑒𝑛1 can be expressed as 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑣𝑎𝑙𝑖𝑑), 

and the transition between set-facts can be modeled by the rules like: 

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑣𝑎𝑙𝑖𝑑) ⇒ 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑); 

Such rule may be applied when security token like HSM receives an API command to revoke the 

long term signing key 𝑘  of 𝑡𝑜𝑘𝑒𝑛1 . Over the set-facts transitions, the state does not 

monotonically grow because the set-facts on left-hand side will be removed from system if they 

do not appear on right-hand side. For instance: 

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑). 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) => 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) 

A key 𝑘 is both a valid long term and short term decrypt key of 𝑡𝑜𝑘𝑒𝑛1, after applied this 

transition rule the set-fact that k is the short term decrypt key for token1 get removed, because 

the fact 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) does not appear on the right-hand side. 

Of course the facts that appear on the right-hand side but not on the left-hand side can be seen 

as the new generated facts, for instance: 

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) => 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑). 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) 

Key k is a valid long term decrypt key for token1, after this transition it becomes both the long 

term and short term decrypt key, because a new facts, 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), appear on 

the right hand side and still the left-hand side fact, 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), is kept on the 

right.  

 

 

Goals: There is one built-in fact symbol in AIF, which is attack. We can put the symbol at 

right-hand side of a rule to specify the attack state. E.g. if any valid root key revealed to intruder, 

it is an attack:  

𝑘 ∈ 𝑑𝑏(𝑇𝑂𝐾𝐸𝑁, 𝑟𝑜𝑜𝑡, 𝑣𝑎𝑙𝑖𝑑). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑘) ⇒ 𝑎𝑡𝑡𝑎𝑐𝑘; 

After all, AIF allows protocol abstraction by set-membership that participants can have databases 

of keys where keys revocation is possible. For checking the AIF modeling, first we use a translator, 

called OFMC-FP-ASLan [2], for translating the AIF language to standard Horn clauses, then use 

the verifier ProVerif to solve them. But the tool doesn’t not always terminate, once it stops, it 

give either an attack trace or the security proof. And we can tell whether our AIF specification is 

secure. 
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CHAPTER    3 

Attributes and Functions 

 In key management of PKCS#11, through API commands intruder/honest user is able to change 

states of keys and apply those key to do cryptographic operations. The states of key are 

determined by its attributes. Some API calls like set-attribute and unset-attribute can 

add/remove attribute to/from a key, we denoted such procedure as p1 in the graph below. The 

states of key decide the way of its application, the procedure of user apply keys through API is 

denoted as p2. The workflow of key management could be simply illustrated as following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The key’s attributes determine the states and through the API commands one can set/unset key’s 

attributes and manipulate the key to perform some functions (listed below) such as wrap, 

unwrap…etc. Some functions may require the target key obtain the relevant attributes (listed 

below), for an instance a key can only be wrapped if it has the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute, likewise the 

𝑤𝑟𝑎𝑝 attribute is the precondition for a key to wrap other keys.  

 

Our modeling would cover the following functions of API calls and key attributes: 

Functions –API calls 

Wrap:   Wrapping a key for transport purpose, generate the cipher text. 

Unwrap: unwrap a cipher that may contain the wrapped key and assign a handle to the 

key. (The handle, i.e. pointer to a key, see later section for more details). 

Decrypt:       Decrypt cipher to get plain text of key. 

Set Attribute:  Set an attribute to a key. 

Unset Attribute: Remove an attribute from a key. 

 

 

 

 States of Keys 

Application of keys 

APIs 

Intruder/Honest User 

Figure 2 key Management workflow illustration 

HSM 

p1 

p2
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Attributes 

Sensitive: Sensitive key is high value key, which must not be revealed off token. It supports 

core functions of a token, such as PIN derivation. 

Wrap: Support the wrap function, a key that has the wrap attribute is used to wrap other 

keys.  

Unwrap: Support the unwrap function, a key that has the unwrap attribute is used to 

unwrap a cipher that may contain the wrapped key. 

Decrypt: Support the decrypt function, a key has decrypt attribute can be used to decrypt a 

cipher 

Extract:  A key with extract attribute can be wrapped for transport purpose. 

 

Attribute Modeling in AIF 

We use the Sets in AIF to model key’s attributes, because all the keys that have one certain type 

attribute can be treated as a key database. And the changes/shifting on key’s attributes are 

exactly can be modeled by the transitions between Sets-Membership. For each type of attributes, 

we create the relevant set such as: 𝑤𝑟𝑎𝑝(𝑇𝑂𝐾𝐸𝑁), 𝑢𝑛𝑤𝑟𝑎𝑝(𝑇𝑂𝐾𝐸𝑁), 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑇𝑂𝐾𝐸𝑁), 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑂𝐾𝐸𝑁), 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇𝑂𝐾𝐸𝑁). A wrapping key set of token can be expressed as: 

𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛) and as well as the sensitive key: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛). Of course a key may have 

several attributes, for modeling this we just use a combination of facts. For example a key has 

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 and 𝑤𝑟𝑎𝑝 attribute can be denoted by:    

𝐾 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛). 𝐾 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛) 

The transitions of set-facts can be used to express the changes of key’s attributes, and for 

instance a HSM receives an API command to set key 𝑘 attribute to wrap, it can be denoted as:  

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑘 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛); 

And to add wrap attribute to this key: 

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛). 𝑘 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛); 

The key k of token1 has decrypt attribute, apply this rule to give it wrap attribute as well. 

To delete decrypt attribute from this key: 

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑖𝑘𝑛𝑜𝑤(𝑖); 

If left-hand side membership fact doesn’t appear on the right-hand side, it means that fact does 

no longer exist in the modeling state space anymore. We put fact 𝑖𝑘𝑛𝑜𝑤(𝑖) on the right in case 

no new fact generated, because the right-hand part of transition rule cannot be empty. The fact 

𝑖𝑘𝑛𝑜𝑤(𝑖) can be described as intruder knows his own name as a dummy fact. 
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CHAPTER    4 

Analysis and Modeling Phase One 

 

 The security tokens, such as HSMs or Smartcards, can be viewed as a device that store objects 

and perform cryptographic functions with those objects. In PKCS#11, an object could be referred 

to a key, a certificate, a mechanism, or domain parameter .etc. And the aim of this thesis is to 

model and analyze the key management API of PKCS#11, that is the subset of Cryptoki functions, 

therefore the objects will always be referred to cryptographic keys. Each object is associated with 

an identifier, which is also called a handle that can be thought as a pointer to the object. One 

object is allowed to have several handles. In Cryptoki, the objects are manipulated through its 

handle, for example if the user wants to make an API call to use a key for decrypting a cipher text, 

and the API function need to know the handle of the decryption key to initialize the operation. Of 

course, to accomplish that operation, the decrypt attribute have to be set to the key. Attributes 

are the characteristics possessed by keys, so which functions can be applied to the keys is 

determined by attributes.  

In this phase modeling and analysis, we aim to model the system that has the basic functions 

of key management APIs, which could help us to conduct the analysis of some trivial intruder 

models. And the ASCII syntax for the notation “∈” and “∉” in AIF is simply “in” and “notin”, which 

are used in our modeling files (appendix). 

4.1  Key Separation Attack  

In AIF specification, we use a function to express the handle of a key by ℎ(𝐾). And for 

representing the function of symmetric encryption, we use 𝑠𝑒𝑛𝑐(𝑀, 𝐾) to denote the cipher of 

message 𝑀 encrypted by 𝐾. 

In order to get our work started, the some parts of the first system modeling are inspired by an 

known attack presented by Jolyon Clulow [5] called key-separation, where a key may have 

conflicting roles. Conflicting means that a key both has wrap and decrypt attribute which allow 

intruder to manipulate this key to reveal other sensitive key in clear.  

 

To model that system, we create 4 key sets and 5 rules in AIF. 

The sets are: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) 

Each set reflect the one kind attribute in the system, and we use the following two rules to define 

the initial knowledge of intruder:  

= ,𝐾1- => 𝐾1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1)); 

= ,𝐾2- => 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)); 
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The above transition rules can be taken by intruder at any time, that means intruder can create 

any value of key that has 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute (first rule) or 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 

attribute (second rule). The key is stored in HSM token and intruder only knows the key’s handle.  

 

Above, we use normal fact to express the fact of intruder knowledge: 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1)), and use 

set fact to denote the attribute characteristics of keys:  

𝐾1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) , likewise 𝐾2  has 𝑤𝑟𝑎𝑝  and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 

attributes and its handle known by intruder. The term = ,𝐾1- means that the value 𝐾1 can be 

freshly created at any time in the system modeling, and the right hand side of transition decides 

the states of the new value.  

 

To model function of wrap in AIF, we apply this transition rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1)). 𝐾1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)). 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1); 

 

This rule means that if intruder know two keys’ handles, then he can wrap the key that has 

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute by using the other key which has 𝑤𝑟𝑎𝑝 attribute. After the operation, 

intruder gains the cipher text of the wrapped key, denoted by a normal fact: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). Note that the set facts on the left hand side will be removed by the 

transition rule if they do not appear on the right hand side. We keep the same set-facts on the 

right hand side, 𝐾1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), because the wrap operation 

doesn’t change any keys’ attributes. 

 

The decrypt function: 

𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾2)) 

=> 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀). 𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

 

This rule expresses that if the intruder knows a handle of a key that has decrypt attribute and the 

cipher of a message which encrypted by this key, then he is able to conduct a decrypt operation 

on this message. Afterwards, the intruder gains the plaintext of the message, denoted as 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑀) in right hand side of the decrypt rule. Note that the message 𝑀 could be a key.  

Again, we keep the set-fact on right hand side to maintain the states of key, 

𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 

 

The basic decrypt ability of intruder is reflected by the rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾2) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀); 

Intruder can decrypt a cipher if he gains the key that’s used to encrypt the message.  

 

The last rule describes the security goal, i.e. the attack fact: 

𝐾1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1) => 𝑎𝑡𝑡𝑎𝑐𝑘; 

We say it is an attack when a sensitive key is known by intruder. The whole AIF file, 

key_separation.aif, of this modeling can be found in appendix 1. 
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We verified the system modeling through ProVerif and it gives us exactly the same 

“key-separation” attack trace presented by G.Steel in [8]. To describe the attack trace, here we 

use 𝑀 => 𝑀′ denote that the intruder send command with message M to the HSM and 

receives M’ as an answer, for instance this “key-separation” attack is expressed as following: 

 

Initial Knowledge of Intruder: 

ℎ(𝑘1), 𝑘1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

ℎ(𝑘2), 𝑘2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑘2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) 

1 WRAP  ℎ(𝑘1). ℎ(𝑘2). 𝑘2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑘1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑠𝑒𝑛𝑐(𝑘1, 𝑘2); 

2 DECRYPT  ℎ(𝑘2). 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). 𝑘2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) =>  𝑘1; 

Figure 3 attack trace of key separation 

 

The key 𝑘1  has attribute 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒  and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 , and key 𝑘2  has attribute 𝑤𝑟𝑎𝑝  and 

𝑑𝑒𝑐𝑟𝑦𝑝𝑡. Both of their handles ℎ(𝑘1) and ℎ(𝑘2) are known by intruder and after a sequence 

of valid PKCS#11 commands, the sensitive key being revealed in clear. The extract attribute of 

𝑘1 allow the key itself to be wrapped, and because intruder gains the knowledge of the handles 

of two keys, the wrap attribute of 𝑘2 allow intruder to apply k2 for wrapping (step 1) the 

sensitive key 𝑘1 and gain the cipher text 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). Due to the conflicting attributes of 𝑘2, 

intruder can also exploit its decrypt attribute that enable him to apply the same key 𝑘2 to 

decrypt (step 2) the cipher and reveal the sensitive key 𝑘1 in clear.  

 

4.2  Attack on the unset of attribute  

In the APIs, intruder is able to set/unset an attribute to the key if he gain the knowledge of the 

key’s handle. To model that, we could apply the 4 transition rules: 

 

Set and unset wrap attribute: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

 

Set and unset decrypt attribute: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

 

But for preventing the attack in Figure 3, we might need a policy that no key should have both 

wrap and decrypt attribute. To that end, we add a precondition/fact for the “set” transition rule, 

for example, one can only set the wrap attribute to a key if the key doesn’t have decrypt attribute, 

likewise, give the decrypt attribute to a key if the key doesn’t obtain the wrap attribute. 

Therefore, we change the rules above into the following: 
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Set and unset wrap attribute: 

𝐾2 ∉  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

 

Set and unset decrypt attribute: 

𝐾2 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

 

The whole AIF, attack_unset.aif, file of this modeling can be found in appendix 2. 

And by the verification result, another trivial attack is revealed as following: 

 

Initial Knowledge of Intruder: 

ℎ(𝑘1), 𝑘1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

ℎ(𝑘2), 𝑘2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

1 WRAP ℎ(𝑘1). ℎ(𝑘2). 𝑘1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑘2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑠𝑒𝑛𝑐(𝑘1, 𝑘2); 

2 Unset Wrap ℎ(𝑘2). 𝑘2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) =>  𝑘2 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

3 Set Decrypt 𝑘2 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑘2) => 𝑘2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

4 Decrypt 𝑘2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑘2). 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) => 𝑘1; 

Figure 4 attack trace of attribute unset attack 

Note that the above set-facts such as 𝑘2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) or 𝑘2 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) are 

not messages but shows the current state of key’s attributes. Intruder uses key 𝑘2 to wrap the 

sensitive key 𝑘1, since he know both of their handles. After he got cipher 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2), unset 

wrap attribute from 𝑘2, and set its attribute as decrypt, and finally he can apply 𝑘2 to decrypt 

𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) and obtains sensitive key 𝑘1 without breaking the policy of no key should have 

both wrap and decrypt attribute.  

 

The attack in Figure 4 inspires us that we should declare the wrap and decrypt as “sticky” which 

cannot be unset. To model that, we delete those two transition rules of unset from our modeling:  

 

Remove: 𝐾2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

𝐾2 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑖); 

 

After those changes, we composed the new AIF, attack_unset_revised.aif, file of the modeling 

can be found in appendix 3. The verification result shows that no attack found on this modeling. 

But we can’t say that it’s the final proof of the system, because for the simplicity reason we didn’t 

model the unwrap function of APIs at beginning of the work. The unwrap function will be 

included and analyzed in next sections. However, this verification result does support the policies 

that: 

 A key is not allow to have both wrap and decrypt attribute 

 wrap and decrypt attribute should not be unset 

 

 



Design and Analysis of PKCS#11 key management with AIF  8/24/2014 

17 
 

 

 

CHAPTER    5 

Analysis and Modeling Phase Two 

This phase focuses on modeling a more complicated system which includes the unwrap function. 

The verification result gives us a new intruder model called “Re-Import”, our analysis goes step by 

step until the proof of security of the system is found.  

5.1  System Modeling 

The Handle of a key  

The wrap function is to wrap a key for transport purpose, so there must be a function to “unpack” 

the wrapped key, that is called unwrap. During the unwrap process, the wrapped key will be 

assigned with a fresh generated handle. As before, the handle of a key is modeled in AIF 

specification ℎ(𝑘), that specification is difficult for us to model the wrap and unwrap function, 

especially on the modeling of generating new handle for a key. Therefore we change modeling of 

handle to the term ℎ(𝑛, 𝑘). Interpret that ℎ is the function to bind the nonce 𝑛 with key 𝑘. 

Compare to ℎ(𝑘) , it’s much easier for us to model the generation of a new handle. For instance, 

two different handles of the same key can be denoted as ℎ(𝑛1, 𝑘) and ℎ(𝑛2, 𝑘). 

 

Set-Membership of Handle 

In previous sections, the attribute of a key is modeled as set membership. E.g. A key has decrypt 

attribute can be expressed as the key is member of decrypt set, denoted as 

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). But now we model the set-membership on key handles, for example, a 

key’s handle expressed is as ℎ(𝑛, 𝑘) and the handle has decrypt attribute is reflected on the 

nonce 𝑛 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). We made this change because in PKCS#11 API a key is associated 

with handles and handles are associated with attributes, of course a key may have several 

handles. We didn’t apply this modeling in early sections because modeling the set-membership 

on the key is already sufficient to reflect the early system version. And modeling the 

set-membership on the nonce would be easier for us to model a more complex system, for 

instance, the unwrap function gives a new handle to the wrapped key, and the new handle must 

inherit some attributes for restraining the key’s usage (see detail in later sections). 

 

 

 

 

 

 

 



Design and Analysis of PKCS#11 key management with AIF  8/24/2014 

18 
 

 

Modeling of rules and functions 

The analysis in section 4 confirms that those two policies below is the foundation for our new 

development: 

 A key is not allowed to have both 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute.  

 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute should be sticky/cannot be unset. 

 

We update our AIF rules for the new modeling of handle of a key and implement those two policy 

into our new system modeling, i.e. one handle cannot obtain both 𝑤𝑟𝑎𝑝  and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 

attribute and we should not have rule for unset 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. Based on all the 

changes we discussed above, rules are updated and some crucial rules are listed as below: 

 

AIF rules of setting 𝑤𝑟𝑎𝑝 attribute and 𝑢𝑛𝑤𝑟𝑎𝑝 attribute: 

 

 𝑁 ∉  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁 ∉  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾)) 

=>  𝑁 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

New Rule: 𝑁 ∉  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾))  =>  𝑁 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

 

The second rule is new that allows for setting the unwrap attribute to a handle. The condition for 

setting the 𝑤𝑟𝑎𝑝 attribute to a key’s handle is that this handle must not possess either the 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute or 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. We add the new condition that the handle does not 

has 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attributes, because sensitive keys are used for encryption, decryption/digital 

signing or signature verification….etc. And people use other type keys to wrap/unwrap the 

sensitive key for transport purpose. For example, a private key in HSM has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 

attribute, and it’s not allowed to have the 𝑤𝑟𝑎𝑝 attribute for wrapping other keys, but it may 

have the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute for being wrapped. 

 

AIF rules of setting 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute: 

𝑁 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾))  =>  𝑁 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

 

Before set 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to a handle, check that the handle does not has 𝑤𝑟𝑎𝑝 attribute.  

 

The WRAP rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)  

=>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

 

To wrap one key with another key, the wrapping key must has the 𝑤𝑟𝑎𝑝 attribute and the other 

should has the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute to allow itself to be wrapped. Here, we use key 𝐾2 to wrap 

the key 𝐾1. 

 

The UNWRAP rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾)). 𝑁 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 

= ,𝑁𝑛𝑒𝑤- =>  𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀)). 𝑁 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 
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To be unwrapped, the data format must be 𝑠𝑒𝑛𝑐(𝑀, 𝐾), here 𝑀 is an “untyped” value in AIF 

which could be replaced by any other values. We can say that any value wrapped by key 𝐾 can 

also be unwrapped by 𝐾 if 𝐾 has 𝑢𝑛𝑤𝑟𝑎𝑝 attribute on its handle. During unwrapping, a fresh 

handle is generated and assigned to the unwrapped value 𝑀 which could be any message but 

we can treat it as key in this rule of unwrap.  

 

The initial knowledge: 

= ,𝐾1, 𝑁1- => 𝑁1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

= ,𝐾2, 𝑁2- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1); 

 

We apply above two rules to define initial knowledge of intruder; those two transitions can be 

taken by intruder at any time. He gains the knowledge of two handles, which can be expressed by 

normal facts: 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)) and 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). And the handles’ attributes are 

reflected on the nonce: 

𝑁1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

Obviously, ℎ(𝑁1, 𝐾1) could be the handle of sensitive key and ℎ(𝑁2, 𝐾2) could be the handle 

of wrapping key. In the first rule of creating the sensitive key value, we give an attribute to the 

key value: 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). We do this because it makes thing easier when analyzing 

the output of Proverif, i.e. to distinguish the sensitive key and understand the attack trace. We 

don’t use the fact, 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), as precondition for any transition rules except the 

rule of attack:  𝐾1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1) => 𝑎𝑡𝑡𝑎𝑐𝑘. Therefore, we can say that 

this fact doesn’t have any impacts on the system modeling but it help on finding attack correctly.   

 

The AIF file, system_phase2.aif, of this system modeling could be found in Appendix 4. 

5.2  Re-Import Attack Version 1 

We verify the system modeling, system_phase2.aif, through the automated tool and the crucial 

part of output from Proverif can be found in appendix 5. Here we used it as an illustration to see 

how the output from the tool looks like, all the verification result of modeling files will be 

attached with report. In the output of Proverif, the fact 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)) is expressed as 

𝑖𝑘𝑛𝑜𝑤𝑠: ℎ(𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-), 

𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-)) 

Set membership of 𝑁1 is denoted as 𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-) and 

Set membership of 𝐾1 is denoted as 𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-)). 

We are modeling 5 sets (attributes), respectively: 

𝑣𝑎𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝐸𝑥𝑡𝑟𝑎𝑐𝑡, 𝑊𝑟𝑎𝑝, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡, 𝑈𝑛𝑤𝑟𝑎𝑝) 

Therefore, we can see that N1 is member of set 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1) and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). The 

key value shall not have any set membership except it is a sensitive key (explained in previous 

section).  
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Note that all the verification result from Proverif are attached with the report but are not putted 

in the appendix. After the analysis on the verification result, we conclude the attack as following:  

 

Initial Knowledge of Intruder: 

ℎ(𝑛1, 𝑘1), 𝑛1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

ℎ(𝑛2, 𝑘2), 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

1 WRAP  ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘2). 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2); 

2 Set Unwrap  ℎ(𝑛2, 𝑘2) => 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

3 Unwrap  𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) => ℎ(𝑛𝑛𝑒𝑤, 𝑘1); 

4 Set Wrap  𝑛𝑛𝑒𝑤 ∉  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛𝑛𝑒𝑤, 𝑘1) 

=> 𝑛𝑛𝑒𝑤 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

5 WRAP: 

(self wrap) 

𝑛𝑛𝑒𝑤 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛𝑛𝑒𝑤, 𝑘1) 

=>  𝑠𝑒𝑛𝑐(𝑘1, 𝑘1); 

6 Set Decrypt  ℎ(𝑛1, 𝑘1) => 𝑛1 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

7 Decrypt  𝑠𝑒𝑛𝑐(𝑘1, 𝑘1). ℎ(𝑛1, 𝑘1). 𝑛1 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1; 

Figure 5 attack trace of Re-Import Version 1 

 

The central point of this attack is that the intruder can obtain multiple handles for the same 

key by calling the unwrap function, and use different attributes on those handles to reveal the 

sensitive key off the token in plain text. The trace above shows that intruder first wrap key 𝑘1 

with 𝑘2 for getting 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2), then he gives the 𝑢𝑛𝑤𝑟𝑎𝑝 attribute to the handle of 𝑘2, 

and unwrap the data 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) with 𝑘2 (step3), this is where the new handle being 

generated and bound to 𝑘1. The new generated handle ℎ(𝑁𝑛𝑒𝑤, 𝑘1) is not assigned with any 

attributes, therefore intruder can set any attributes to it.  

What happens next is that the intruder set 𝑤𝑟𝑎𝑝 attribute to the new handle (step 4) and by 

the knowledge of ℎ(𝑁𝑛𝑒𝑤, 𝑘1), he can do a key self-wrapping (step 5) which wrap 𝑘1 by 𝑘1 

and gain 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1). At this time, the intruder may still keep knowledge of the original handle 

ℎ(𝑛1, 𝑘1) of the same key 𝑘1, and set 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to it. Finally (step 7) intruder is able to 

decrypt message 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1) by applying the original handle of 𝑘1, ℎ(𝑛1, 𝑘1).  

5.3  Re-Import Attack Version 2  

The analysis of the previous attack shows that the fresh generated handle in unwrap function 

breaks the security, because it’s not bound with any attributes while being generated, intruder 

take advantage of this and could assign “conflicting” attributes to different handles of the same 

key. To counter this flaw, a good solution could be letting the fresh handle inherits the attributes 

from the other handle of the same key. E.g., in above case ℎ(𝑛1, 𝑘1) and ℎ(𝑁𝑛𝑒𝑤, 𝑘1), both 

are the handle of the key 𝑘1, while the generation of 𝑁𝑛𝑒𝑤, this new handle should inherit the 

same attributes from 𝑛1. Therefore, what the intruder cannot do with 𝑛1 (i.e. set the wrap 

attribute to 𝑛1), he also cannot do with 𝑁𝑛𝑒𝑤. Those two handles must have same level of 

being manipulation. 
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To that end, we modify the wrap and unwrap rules in AIF: 

 

The WRAP rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) . 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁1, 𝐾1)); 

 

Compare to the previous wrap rule, what difference is that we introduced a new function, called 

𝑏𝑖𝑛𝑑 , to bind the handle’s attributes with the wrapped key, here expressed by term 

𝑏𝑖𝑛𝑑(𝑁1, 𝐾1). This is inspired by the work of G.Steel [8] who used an HMAC to bind the 

attributes to the wrapped key for preventing the “re-import” attack. They use a fresh key to 

generate the HMAC, and the fresh key is encrypted by the wrapped key. For simplicity reason, we 

modeled this process by the binding function: 𝑏𝑖𝑛𝑑(𝑁1, 𝐾1). The fresh key is not modeled 

because it doesn’t have any impacts on the system modeling. Because that if the fresh key is 

known by intruder, he cannot fake the HMAC message without knowing the wrapping key, and if 

the intruder knows the wrapping key, obviously he can gain the knowledge of the fresh key.  

 

In AIF definition, we define 𝑏𝑖𝑛𝑑 as a function which is used as precondition for unwrap rule: 

 

The UNWRAP rule part 1, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute inheritance:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- => 

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

 

In this rule, the attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2) is one of the preconditions to unwrap the data 

𝑠𝑒𝑛𝑐(𝑀2, 𝐾2). Here, 𝑀1 and 𝑀2 is “untyped” value and could be replaced by any other 

values. In another word, we could say that to unwrap the key 𝑀2, its handle’s attribute 𝑀1 

must be accompany. If 𝑀1 has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute, then this attribute must be inherited 

by the new generated handle. Why inherit 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute to the new handle? Because it 

obviously counter the attack shown in Figure 5, i.e. when the new handle inherit the sensitive 

attribute, the intruder cannot set the wrap attribute to it (see the rule of set-wrap). That motive 

us to start experiment with this attribute first. 

  

The UNWRAP rule part 2, case of other attributes:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∉ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- => 

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

 

Except the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute on 𝑀1, the other attributes will not be inherited to the new 

handle. The AIF file, re_import_att_bind_attributes.aif, of this system modeling could be found 

in Appendix 6.   
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Through verification, the attack trace is shown below: 

Initial Knowledge of Intruder: 

ℎ(𝑛1, 𝑘1), 𝑛1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

ℎ(𝑛2, 𝑘2), 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

1 Wrap: 

(self wrap)  

 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛2 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛2, 𝑘2) 

=>  𝑠𝑒𝑛𝑐(𝑘2, 𝑘2). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘2); 

2 Set-Unwrap  ℎ(𝑛2, 𝑘2) => 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

3 Unwrap 𝑠𝑒𝑛𝑐(𝑘2, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘2). 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) 

=> ℎ(𝑛𝑛𝑒𝑤, 𝑘2); 

4 Set Decrypt  ℎ(𝑁𝑛𝑒𝑤, 𝑘2) => 𝑛𝑛𝑒𝑤 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

5 WRAP  ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘2). 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑠𝑒𝑛𝑐(𝑘1, 𝑘2); 

6 Decrypt  𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). ℎ(𝑛𝑛𝑒𝑤, 𝑘2). 𝑛𝑛𝑒𝑤 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1; 

Figure 6 attack trace of Re-Import Version 2  

 

In the attack of Figure 5, the fresh handle of sensitive key is without any constraints. After we 

updated the wrap and unwrap rules, the new generated handle will inherit the sensitive attribute 

while being unwrapped, that prevent the attack in Figure 5. But the intruder model shown in 

Figure 6 is based on the new generated handle of the wrapping key 𝑘2, this key 𝑘2 is 

manipulated to wrap itself, and because the wrapped key’s handle doesn’t possess sensitive 

attributes but has the 𝑤𝑟𝑎𝑝 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attributes. Still, the intruder is able to give attributes 

to the new handle and that allows re-importing several copies of keys with different handles.  

 

First, due to the intruder’s knowledge ℎ(𝑛2, 𝑘2), he can wrap key k2 by itself and gain 

𝑠𝑒𝑛𝑐(𝑘2, 𝑘2) and 𝑏𝑖𝑛𝑑 (𝑛2, 𝑘2). He sets (step 2) 𝑢𝑛𝑤𝑟𝑎𝑝 attribute to the handle 𝑛2, and 

performs (step 3) the unwrap action on the wrapped key 𝑠𝑒𝑛𝑐(𝑘2, 𝑘2), and the new handle is 

generated without inheriting any attributes from 𝑛2. Afterwards, the intruder set the decrypt 

attribute to the new handle and do a regular wrap action (step5) to get cipher data 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2), 

finally (step 6) decrypt 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) by applying ℎ(𝑁𝑛𝑒𝑤, 𝑘2) and gain sensitive key 𝑘1 in 

plain text.  

5.4  System Verified 

Observe the attack in Figure 6, we can see that only copying the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute to the new 

handle is not enough, obviously the 𝑤𝑟𝑎𝑝 attribute should also be copied to prevent intruder to 

set any conflicting attributes to the new handle. E.g. in the attack model shown in Figure 5 the 

intruder set the 𝑤𝑟𝑎𝑝 attribute to the new handle which bound with a key and the key’s original 

handle has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute. As well as the attack in Figure 6 intruder set the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 

attribute to the new handle which belong to the key and the key’s original handle has the 𝑤𝑟𝑎𝑝 

attribute. Therefore, we decide to copy all the “sticky” attributes to the new generated handle 

during the UNWRAP operation, the “sticky” attributes which are not allowed to be unset, that 

includes the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝑤𝑟𝑎𝑝, and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute.  
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To do that, we modify the unwrap rule and it consists of four parts: 

 

The UNWRAP rule part 1, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute inheritance:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- => 

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

 

Part1 is same as earlier used for copying the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute. 

 

The UNWRAP rule part 2, 𝑤𝑟𝑎𝑝 attribute inheritance:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>  

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

 

Unlike the rule part 1, this part is for copying the 𝑤𝑟𝑎𝑝 attribute to the new handle. Similarly, 

intruder knows the attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2), this is one of the preconditions to unwrap 

the data 𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)  and if 𝑀1  has the 𝑤𝑟𝑎𝑝  attribute, then this attribute must be 

inherited by the new generated handle on the right hand side of the rule. 

 

The UNWRAP rule part 3, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 attribute inheritance:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>  

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); 

 

This rule is for copying the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to the new handle. As the rule above, the intruder 

knows attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2) is one of the preconditions to unwrap the data cipher 

𝑠𝑒𝑛𝑐(𝑀2, 𝐾2) and if 𝑀1 has the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡  attribute, then it will be copied to the new 

generated handle.  

 

The UNWRAP rule part 4, case of other attributes:  

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∉  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑀1 ∉  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∉  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 

𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>  

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

 

Part 4 is to handle the case that 𝑀1 doesn’t contain any one of the attributes 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝑤𝑟𝑎𝑝, 

and decrypt. Then the new generated handles will be bound without any attributes. 

After applied those changes, the modeling file is expanded, system_verified.aif, could be found 

in appendix 7. We verify this system modeling in Proverif, and finally we have a positive result 

that no attack is found, the tool output the verification result in less than 2 sec. 
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5.5  Modeling of a lost key scenario  

After the previous positive verification result, we now consider a scenario that a key lost to 

intruder by some means that beyond the scope of model, let it be a key that has the decrypt 

attribute since 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 is more “sensitive” compare to others like the 𝑤𝑟𝑎𝑝 and 𝑢𝑛𝑤𝑟𝑎𝑝 

attribute. Therefore, compare to the initial knowledge before, additionally we give intruder the 

lost key that its handle has 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute, denoted in AIF: 

= ,𝐾3, 𝑁3- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁3, 𝐾3)). 𝑁3 𝑖𝑛 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 

  𝑁3 𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝐾3 𝑖𝑛 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3); 

We also give a decrypt-set membership on the key value that allows us to easier analyze the 

attack trace output by Proverif. The 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute allow this key to be wrapped like other 

keys. With this lost key 𝐾3, intruder shall be able to decrypt any cipher that’s encrypted by this 

key (this AIF rule included in previous modeling), and he is also able to generate his own “bind” 

message: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁2, 𝐾3)); 

If intruder know a key and a handle of any keys, he can bind the key with the attributes the 

handle possessed. We start using “bind” for binding the key’s attributes with the key in section 

5.3, it’s introduced as a counter measure for “re-import attack”. This rule shows that if intruder 

has the lost key (𝐾3), he can bind attributes that belong to a known handle ℎ(𝑁2, 𝐾2) with this 

key. After applied those additional rules into the previous modeling, the AIF file, lost_key_att.aif, 

could be found in appendix 8. We checked this modeling in ProVerif, and it throws an attack: 

 

Initial Knowledge of Intruder: 

ℎ(𝑛1, 𝑘1), 𝑛1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

ℎ(𝑛2, 𝑘2), 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1); 

ℎ(𝑛3, 𝑘3). 𝑘3, 𝑛3 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑛3 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘3 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); ; 

1 Set-Unwrap  ℎ(𝑛2, 𝑘2) => 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1); 

2 Bind  ℎ(𝑛2, 𝑘2). 𝑘3 => 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3); 

3 WRAP  ℎ(𝑛3, 𝑘3). ℎ(𝑛2, 𝑘2). 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛3 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑠𝑒𝑛𝑐(𝑘3, 𝑘2); 

4 Unwrap  𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑛2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3) 

=> ℎ(𝑛2, 𝑘3); 

5 WRAP  ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘3). 𝑛2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) 

=>  𝑠𝑒𝑛𝑐(𝑘1, 𝑘3); 

6 Decrypt  𝑠𝑒𝑛𝑐(𝑘1, 𝑘3). ℎ(𝑛3, 𝑘3). 𝑛3 ∈  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1; 

Figure 7 attack trace of lost key scenario  

 

Because of the lost key 𝑘3, the intruder can fake a “Bind” message and using the fake message 

during unwrap operation, intruder can assign the desired handle to 𝑘3, e.g. intruder can assign 

the handle (𝑛2) that has the 𝑤𝑟𝑎𝑝 attribute to the key 𝑘3 whose original handle (𝑛3) possess 

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. Therefore, using 𝑘3 intruder may encrypt the sensitive key by a wrap 

command and decrypt the sensitive key by 𝑘3 as well. (More details on attack trace shown 

below). 
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First, due to the intruder’s knowledge ℎ(𝑛2, 𝑘2) and 𝑘3, he set (step 1) the unwrap attribute to 

the handle of key 𝑘2 and fake (step 2) the attribute-bind message 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3). After a normal 

wrapping operation (step 3), intruder gains the cipher 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). Now the intruder is ready 

for crucial step, the unwrapping (step4), he knows the handle ℎ(𝑛2, 𝑘2) used for unwrapping 

and he inserts the faked message 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3) with 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). Afterwards, the intruder 

the assign desired handle’s attributes (𝑛2) to 𝑘3, and gains ℎ(𝑛2, 𝑘3). Now the key 𝑘3 have 

two handles ℎ(𝑛2, 𝑘3) and ℎ(𝑛3, 𝑘3), one (𝑛2) has wrap attribute and the other (𝑛3) has 

decrypt attributes. Eventually, the intruder can wrap (step5) key 𝑘1 by ℎ(𝑛2, 𝑘3) and gains 

cipher 𝑠𝑒𝑛𝑐(𝑘1, 𝑘3), afterwards apply ℎ(𝑛3, 𝑘3) to decrypt (step6) cipher and get sensitive key 

𝑘1 in plain text. 

 

A good way to prevent such an attack is to add the wrapping key inside the “Bind” message, for 

example, when using wrapping 𝑘2 to wrap 𝑘3, it generates 𝑏𝑖𝑛𝑑(𝑛1, 𝑘3, 𝑘2) which contains 

the handle’s attributes of the wrapped key (𝑘3) and both keys (𝑘2, 𝑘3) of wrapping and being 

wrapped. Therefore, if the intruder only knows one of the keys, he’s not able to fake the “Bind” 

message, but he can generate message like 𝑏𝑖𝑛𝑑(𝑛1, 𝑘3, 𝑘3) which is not accepted by the 

unwrap operation. To apply this counter measure, we modified some AIF rule: 

 

The WRAP rule: 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) =>  𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈  𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈  𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁1, 𝐾1, 𝐾2)); 

 

Using one key to wrap other keys, now the wrapping operation generates a “Bind” message that 

include the handle’s attributes of wrapped key and both participated keys.  

 

For the unwrap operation, since it consists of 4 rules, and the changes made to each rule are 

similar, therefore we only illustrate one of its rules here: 

The UNWRAP rule part 1: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2, 𝐾2)). 𝑀1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- => 

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 

𝑁2 ∈  𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1); 

 

Now the precondition for the unwrapping is changed, the 𝑏𝑖𝑛𝑑 must contain keys of both 

wrapping and being wrapped, for instance, 𝑠𝑒𝑛𝑐(𝑀2, 𝐾2) which stands for a cipher that 

encrypted by 𝐾2, and both 𝑀2 and 𝐾2 shall be inside the “Bind” message. Here, 𝑀2 can be 

treated as a key encrypted by 𝐾2.  
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Of course, intruder may have following abilities: 

𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) => 𝑏𝑖𝑛𝑑(𝑁2, 𝐾1, 𝐾3). 𝑏𝑖𝑛𝑑(𝑁2, 𝐾3, 𝐾1); 

This rule reflects that if intruder gains two keys (𝐾1 and 𝐾3 are different keys), he is able to 

generate the “Bind” message, and if he only gains one key (𝐾1 and 𝐾3 is same), then he still 

can generate similar “Bind” message like bind(𝑛2, 𝑘3, 𝑘3). Finally, applied all the modification, 

we have our modeling file, lost_key_att_countered.aif, could be found in appendix 9. And the 

verification by ProVerif shows the absence of attacks. 

 

CHAPTER    6 

Further improvement and Conclusion  

We have presented the AIF framework for analyzing the key management APIs which is the 

subset of a fixed version API of PKCS#11, i.e. the version used by Eracom. This work was inspired 

by the similar work of G.Steel [8] who modeled the API system in bounded number of steps that 

participants can perform. Our work shows that this API system can be modeled and verified with 

unbounded number of steps. The other advantage we have is that the AIF modeling of security 

protocol does not have monotonically growth of states. To discover attacks, we translate the AIF 

modeling to first-order Horn clauses, and input it to verification tool Proverif. After the analysis of 

the intruder model, we design/suggest rules as a counter-measure and apply the rules in AIF. By 

this work flow, we experienced some intruder models and expanded our modeling step by step, 

and finally we verified the security properties of the API system.  

  For further improvement, first thing we can do is to extend our modeling to asymmetric 

cryptography, e.g. using a pair of keys to encrypt and decrypt, some basic rules could be: 

= ,𝐾- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝑖𝑛𝑣(𝐾))); 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾)); 

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝑖𝑛𝑣(𝐾))). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀); 

Generating a key pair: public key 𝐾 and private key 𝑖𝑛𝑣(𝐾), the asymmetric encryption can be 

expressed as 𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾) that can only be decrypted by the private key. Since our analysis only 

covered one subset of PKCS#11, i.e. the key management API, which means we could expand our 

modeling to more crucial subset, such as session management API and object management API. 

Moreover, except the PKCS#11 API system, our analysis method could be adapted to many 

complex API versions, such as the Secure Vehicle Communication system SeVeCom [6] which 

already being proved by using AIF, or the IBM Common Cryptographic Architecture that has 

proofs of security in bounded model and we may try to turn it to unbounded.  
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Appendix 

Appendix 1 

key_separation.aif 

Problem: KEY_SEPARATION; 

 

Types:  

TOKEN :{token1}; 

K1,K2: value; 

M: untyped; 

 

Sets:  

extract(TOKEN),                      

wrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/1; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1)); 

 

=[K2]=>K2 in wrap(token1).K2 in decrypt(token1).iknows(h(K2)); 

 

% ======================wrap================ 

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2)) => 

iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1); 

 

% ======================decrypt================ 

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) => 

iknows(M).K2 in decrypt(token1); 

iknows(senc(M,K2)).iknows(K2)=>iknows(M); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 
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Appendix 2 

attack_unset.aif 

Problem: ATTACK_UNSET; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

K1,K2: value; 

M: untyped; 

 

Sets:  

extract(TOKEN),                     

wrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/1; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1)); 

 

=[K2]=>K2 in wrap(token1).iknows(h(K2)); 

 

% ======================wrap================ 

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2))  

=> iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1); 

 

% ======================set wrap================ 

K2 notin decrypt(token1).iknows(h(K2))=>K2 in wrap(token1); 

 

% ======================unset wrap================ 

K2 in wrap(token1).iknows(h(K2))=> iknows(i); 

 

% ======================set decrypt================ 

K2 notin wrap(token1).iknows(h(K2))=>K2 in decrypt(token1); 
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% ======================unset decrypt================ 

K2 in decrypt(token1).iknows(h(K2))=> iknows(i); 

 

% ======================decrypt================ 

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) => 

iknows(M).K2 in decrypt(token1); 

iknows(senc(M,K2)).iknows(K2)=>iknows(M); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 

 

Appendix 3 

attack_unset_revised.aif 

Problem: ATTACK_UNSET; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

K1,K2: value; 

M: untyped; 

 

Sets:  

extract(TOKEN),                     

wrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/1; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1)); 

 

=[K2]=>K2 in wrap(token1).iknows(h(K2)); 
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% ======================wrap================ 

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2))  

=> iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1); 

 

% ======================set wrap================ 

K2 notin decrypt(token1).iknows(h(K2))=>K2 in wrap(token1); 

 

% ======================set decrypt================ 

K2 notin wrap(token1).iknows(h(K2))=>K2 in decrypt(token1); 

 

% ======================decrypt================ 

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) => 

iknows(M).K2 in decrypt(token1); 

iknows(senc(M,K2)).iknows(K2)=>iknows(M); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 

 

 

Appendix 4 

system_phase2.aif 

Problem: SYSTEM_PHASE2; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

 

K1,K2,N1,N2,Nnew: value; 

M: untyped; 

 

Sets:  

extract(TOKEN),                      

wrap(TOKEN), 

unwrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/2; 

private inv/1;  
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Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in 

sensitive(token1); 

 

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1); 

 

% =====set wrap===== 

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => 

N2 in wrap(token1); 

 

% =====set unwrap=== 

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1); 

 

% =====unwrap, generate new handler====== 

iknows(senc(M,K2)).N2 in unwrap(token1).iknows(h(N2,K2)).=[Nnew]=> 

iknows(h(Nnew,M)).N2 in unwrap(token1); 

 

% ======================wrap================ 

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))  

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1); 

 

% =====set decrypt=== 

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1); 

 

% ======================decrypt================ 

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M,K2)) =>iknows(M); 

iknows(senc(M,K2)).iknows(K2)=>iknows(M); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 
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Appendix 5 

Partial output of verifying system_phase2.aif 

 

 

 

Appendix 6 

re_import_att_bind_attributes.aif 

Problem: RE_IMPORT_ATT; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

 

K1,K2,N1,N2,Nnew: value; 

M1,M2: untyped; 

 

Sets:  

extract(TOKEN),   

wrap(TOKEN), 

unwrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/2, bind/2; 

private inv/1;  

 

Facts: 

iknows/1, attack/0;  
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Rules: 

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in 

sensitive(token1); 

 

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1); 

 

% =====set wrap===== 

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in 

wrap(token1); 

 

% =====set unwrap=== 

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1); 

 

% =====unwrap, generate new handler====== 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2 

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in 

unwrap(token1).M1 in sensitive(token1); 

 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin 

sensitive(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=> 

iknows(h(Nnew,M2)).N2 in unwrap(token1); 

 

% ======================wrap================ 

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))  

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1)); 

 

% =====set decrypt=== 

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1); 

 

% ======================decrypt================ 

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1); 

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 
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Appendix 7 

system_verified.aif 

Problem: RE_IMPORT_ATT; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

 

K1,K2,N1,N2,Nnew: value; 

M1,M2: untyped; 

 

Sets:  

extract(TOKEN), 

wrap(TOKEN), 

unwrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/2, bind/2; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in 

sensitive(token1); 

 

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1); 

 

% =====set wrap===== 

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in 

wrap(token1); 

 

% =====set unwrap=== 

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1); 
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% =====unwrap, generate new handler====== 

%-----------the senstive attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2 

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in 

unwrap(token1).M1 in sensitive(token1); 

 

%-----------the wrap attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in wrap(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in 

unwrap(token1).M1 in wrap(token1); 

 

%-----------the decrypt attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in decrypt(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in 

unwrap(token1).M1 in decrypt(token1); 

 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin sensitive(token1).M1 notin 

wrap(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1); 

 

% ======================wrap================ 

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))  

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1)); 

 

% =====set decrypt=== 

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1); 

 

% ======================decrypt================ 

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1); 

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 
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Appendix 8 

lost_key_att.aif 

Problem: LOSS_KEY_ATT; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

 

K1,K2,K3,N1,N2,N3,Nnew: value; 

M1,M2: untyped; 

 

Sets:  

extract(TOKEN),                   

wrap(TOKEN), 

unwrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/2, bind/2; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in 

sensitive(token1); 

 

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1); 

 

=[K3,N3]=>iknows(h(N3,K3)).N3 in extract(token1).N3 in decrypt(token1).K3 in 

decrypt(token1).iknows(K3); 

 

% =====set wrap===== 

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in 

wrap(token1); 

 

% =====set unwrap=== 

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1); 
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% =====unwrap, generate new handler====== 

%-----------add the wrap attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in wrap(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in 

unwrap(token1).M1 in wrap(token1); 

 

%-----------add the senstive attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2 

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in 

unwrap(token1).M1 in sensitive(token1); 

 

%-----------add the decrypt attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in decrypt(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in 

unwrap(token1).M1 in decrypt(token1); 

 

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin wrap(token1).M1 notin 

sensitive(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1); 

 

% ======================wrap================ 

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))  

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1)); 

 

% ======================bind generation================ 

iknows(K3).iknows(h(N2,K2))=>iknows(bind(N2,K3)); 

 

% =====set decrypt=== 

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1); 

 

% ======================decrypt================ 

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1); 

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 
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Appendix 9 

lost_key_att_countered.aif 

Problem: LOSS_KEY_ATT; 

 

Types:  

D : {i};                        % Dishonest Agents 

TOKEN :{token1}; 

 

K1,K2,K3,N1,N2,N3,Nnew: value; 

M1,M2: untyped; 

 

Sets:  

extract(TOKEN),                   

wrap(TOKEN), 

unwrap(TOKEN), 

decrypt(TOKEN), 

sensitive(TOKEN); 

 

Functions: 

public senc/2, h/2,bind/3; 

private inv/1;  

 

Facts: 

iknows/1, attack/0; 

 

Rules: 

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in 

sensitive(token1); 

 

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1); 

 

=[K3,N3]=>iknows(h(N3,K3)).N3 in extract(token1).N3 in decrypt(token1).K3 in 

decrypt(token1).iknows(K3); 

 

% =====set wrap===== 

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in 

wrap(token1); 

 

% =====set unwrap=== 

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1); 
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% =====unwrap, generate new handler====== 

%-----------add the wrap attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in wrap(token1).iknows(h(N2,K2)).N2 

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in 

unwrap(token1).M1 in wrap(token1); 

 

%-----------add the senstive attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in 

sensitive(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=> 

iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in unwrap(token1).M1 in 

sensitive(token1); 

 

%-----------add the decrypt attr copy------------- 

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in 

decrypt(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=> 

iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in unwrap(token1).M1 in 

decrypt(token1); 

 

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 notin wrap(token1).M1 notin 

sensitive(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in 

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1); 

 

% ======================wrap================ 

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))  

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1,K2)); 

 

% ======================bind generation================ 

iknows(K3).iknows(h(N2,K2))=>iknows(bind(N2,K3,K3)); 

iknows(K3).iknows(K1).iknows(h(N2,K2))=>iknows(bind(N2,K1,K3)).iknows(bind(N2,K3,K

1)); 

 

% =====set decrypt=== 

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1); 

 

% ======================decrypt================ 

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1); 

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1); 

 

% ======================attacks================ 

K1 in sensitive(token1).iknows(K1)=>attack; 

 


