

M.Sc. Thesis
Master of Science in Engineering

Design and Analysis of PKCS#11 key management

With AIF

Supervisor: Sebastian Alexander Mödersheim

Author: Ming Ye

Student No: s114671

Kongens Lyngby 2014

DTU Compute

Department of Applied Mathematics and Computer Science

Technical University of Denmark

Matematiktorvet, building 303B,

DK - 2800 Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

1

Abstract

Nowadays, the security of cryptographic tokens is a big concern in the era of digital technology

and internet. The Public-Key Cryptography Standards PKCS#11 defines API for security tokens

such as hardware security modules (HSMs) and smartcards. This standard is widely adopted by

most industries to enhance the security of their products. In this thesis we will analyze PKCS#11

Key Management API using the AIF framework which is based on an abstraction technique called

set-abstraction. AIF allow us to model and automatically analyze distributed systems where each

participant can have a database, e.g. HSM storing keys. This abstraction allows for the analysis

without bounding the number of steps. During the AIF modeling and verification, we will

experiment some intruder models and assumptions, and design rules and policies for PKCS#11

API in the AIF language.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

2

Preface

This thesis was prepared at the department of Applied Mathematics and Computer Science at

the Technical University of Denmark in fulfillment of the requirements for acquiring a Master

Degree of Science in Computer Science and Engineering.

This thesis deals with the API security of key management of PKCS#11.

Kongens Lyngby, August 24, 2014

Ming Ye (s114671)

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

3

Acknowledgements

My sincerest thanks go to my supervisor Sebastian Alexander Mödersheim who helped me to get

a good start and lead me to the right theory and perspective while I was facing obstacles. I’m very

grateful for his patience, enthusiasm and immense knowledge, without his guidance and support

I may never reach a positive result of this thesis.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

4

Content

1. Introduction .. 6

1.1 Background ... 6

1.2 PCKS#11 key management .. 7

1.3 Scope of Contribution ... 8

2. AIF - Abstract Intermediate Format ... 8

3. Attributes and Functions.. 11

4. Analysis and Modeling Phase One ... 13

4.1 Key Separation Attack .. 13

4.2 Attack on the unset of attribute ... 15

5. Analysis and Modeling Phase Two ... 17

5.1 System Modeling ... 17

5.2 Re-Import Attack Version 1 ... 19

5.3 Re-Import Attack Version 2 ... 20

5.4 System Verified ... 22

5.5 Modeling of a lost key scenario .. 24

6. Further improvement And Conclusion ... 26

References .. 27

Appendix ... 28

Appendix 1 ... 28

Appendix 2 ... 29

Appendix 3 ... 30

Appendix 4 ... 31

Appendix 5 ... 33

Appendix 6 ... 33

Appendix 7 ... 35

Appendix 8 ... 37

Appendix 9 ... 39

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

5

Glossary:

PROVERIF Automated tool for protocol verification

API Application Programming Interface

Attribute A characteristic of a key

Cryptoki API by PKCS#11

Token Security token, physical electronica device

Application Any computer program that calls the Cryptoki interface.

HSMs Hardware Security Module, a physical computing device

Object The object class in Cryptoki

State transition state of AIF, composed by a number of facts

System That system running key management API of PKCS#11

SATMC Security protocol model checker.

HC Horn Clauses

ERACOM Eracom Technologies, a leading developer and global supplier of

cryptographic technologies and solutions.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

6

CHAPTER 1

Introduction

1.1 Background

PKCS#11, a standard by RSA Laboratories, specifies an application programming interface (API)

which allows application to interact with cryptographic tokens such as hardware security

modules (HSMs) and smartcards. These devices hold cryptographic information and perform

cryptographic functions. The token, like HSMs, can be used to store some high-value keys (e.g.,

TLS server keys, certificate signing keys, authentication keys) and like CA HSMs could be critical

part of public key infrastructure or the HSMs used for ATM transaction and online banking

application. Apparently, the concern about security issue of these tokens is growing. Many

cryptographic functions, like encryption and decryption, are embedded into the HSMs token. The

sensitive keys/data must be strictly prevented from leaking to an untrusted party/machine. This

motivates the analysis of PKCS#11 key management and design rules/policies for it, since

PKCS#11 is widely adopted on most of this type devices.

There have been some people’s works of analyzing PKCS#11, such as G.Steel [8] analyzing

PKCS#11 Key Management APIs using model checker SATMC [7], as well as a master thesis [9]

which using AVISPA tools [11] for the analysis of PKCS#11. Tools like AVISPA are restricted by

number of steps that participant can make, other tools like Scyther [10] are even restricted by

“simple” protocol that only consists of message exchange. To overcome such limitations, we use

AIF framework [1] for the modeling and the verification tool ProVerif [3] for model checking. The

AIF is based on a novel set-abstraction technique that enables the modeling the databases of

messages that do not necessarily monotonically grow and the modeling and verification are not

restricted by the bounding number of steps that participants can make. We got good inspirations

from the work of G.Steel [8], and we extend it from bounded to unbounded model by using AIF

framework. We show that this framework is well-suited for analyzing the PKCS#11 key

management system, since each security tokens may have a key databases to maintain and the

keys are associated with “attribute” values, e.g. sensitive or decrypt…, which could be set/unset/..

and those actions happen frequently.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

7

We conduct our work by using the AIF (Abstract Intermediate Format) framework which

consists of the AIF specification language and a translator from AIF to first-order Horn clauses.

The workflow is illustrated as below:

First, we construct AIF file reflects the system modeling and input (step 1) it to the translator

called OFMC-FP-ASLan [2] which is for translating (step 2) the AIF language to first-order Horn

clauses. For checking the generated Horn Clauses that incorporates the set-abstraction, we input

(step 3/4) the HC to protocol verification tool ProVerif (used in further works) or SPASS. When the

tool stops, it either gives us an attack or proof of security. The attack could be caused by the

tool’s over-approximation like ProVerif, the methods of over-approximation do not consider a

state transition system, but just a set of derivable facts like intruder knowledge.

1.2 PCKS#11 key management

The defined API by PKCS#11 is called Cryptoki, and there are many diverse cryptographic

function sets inside Cryptoki, some examples are: Encryption Functions, Decrypt Functions,

Object Management Functions, Key Management Functions, Singing and Macing Functions. See

the full list from document [4].

Our design and analysis would base on the Key Management API of Eracom PKCS#11, this

subset API include functions such as WrapKey, i.e. encryption of keys for secure transport, and

UnwrapKey, generateKey…etc., that would be the crucial part of the tokens’ security. Of course,

we may also need to use some other essential functions, like encryption and decryption, as well

as some functions of Object Management which allow us to set/unset attribute to object. In

PKCS#11, an object could have many types, e.g. key object, certificate object, mechanism object,

or domain parameter object….etc. Since we focus on the key management of PKCS#11, therefore

objects mentioned in the following sections are referred to key objects.

OFMC

FP-ASLan

First-order

Horn Clauses
AIF

Proverif

SPASS

1 2
3

4

Figure 1 protocol verification workflow

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

8

1.3 Scope of Contribution

This work is inspired by a similar work of G.Steel [8], who modeled the Key Management APIs of

PKCS#11 using SATMC [7]. His modeling was conducted by a SAT-based abstraction approach

such an approach is bounded to a number of steps that honest or dishonest agent can perform.

The AIF framework allows for modeling and verification with an unbounded number of steps that

participants can make, unlike the standard model-checking approaches, AIF is based on a new

way of abstraction, called set-abstraction that can handle a database in which the data/key can

be added/removed and the states/facts do not monotonically growth. With those advantages,

we show that AIF is a suitable language for studying HSM security, and begin with the APIs of key

management. We show how we model the system and conduct the analysis in AIF.

Our work start with using AIF to formalize the modeling of the system which has basic API

functions, some parts of that system are inspired by a typical known attack, so called

“key-separation”, which was presented by Jolyon Clulow’s 2003 CHES paper [5]. We translate the

AIF modeling to first-order Horn Clauses and solve it in ProVerif, after analyzing the output attack

trace, we introduce some rules/policies as counter measures and apply them in AIF form, again

this modified version shall be verified through ProVerif. From this start point, we successfully

expand the modeling of the API system, and experience several intruder models, e.g. re-import

attack which allow the intruder to obtain multiple handles (i.e. a pointer to a key) for the same

key and reveal sensitive key in clear, and the loss-key attack where a certain type key loss to

intruder. For preventing attacks, we do the analysis and present the solutions as AIF, then we

verify the solutions through ProVerif, and from the verification result we can tell what rules must

be applied to fix breaches. In the end, we successfully verified the system security properties.

CHAPTER 2

AIF - Abstract Intermediate Format

AIF is the language that we used for specifying security protocols in which allows each participant

has a database, and enable us to analyze the protocol without bounding the number of step that

participant can make. In this section, we briefly go through some basic features of AIF, the formal

definition can be found in [1].

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

9

State: A state is a set of some true facts in that state, e.g.,

{ 𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑖𝑔𝑛(𝑖𝑛𝑣(𝑃𝐾), 𝑀))}, in such a state intruder

know a public-key encrypted message 𝑒𝑛𝑐(𝑀, 𝑃𝐾), the public key 𝑃𝐾 and a signature signed

by its private key (𝑠𝑖𝑔𝑛(𝑖𝑛𝑣(𝑃𝐾), 𝑀). All the symbols/predicates above, include 𝑖𝑘𝑛𝑜𝑤𝑠(), do

not have predefined meaning; their meaning is defined through transition rules which manage

the transitions among different states. Some rules are intruder deduction rules that reflect

intruder’s capability. For example, if intruder gains message M and a public key PK, then he may

able to encrypt such message; this can be reflected by transition rule:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑀). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾));

Likewise, if intruder has knowledge of the encrypted message and the private key, he can decrypt

the cipher:

 𝑖𝑘𝑛𝑜𝑤𝑠(𝑒𝑛𝑐(𝑀, 𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖𝑛𝑣(𝑃𝐾)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀);

In the AIF language, variable names start with uppercase letters and constant names start with

lowercase letters. The transition rule can be applied to the state that contains the facts matching

the left hand side of arrow and new facts are generated on the right.

Transition rule that are not required to have any facts on the left hand side, it can be taken in any

state, for instance:

= ,𝑃𝐾- => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖𝑛𝑣(𝑃𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑃𝐾)

The term = ,𝑃𝐾- => means that the value 𝑃𝐾 is freshly created when the transition is taken,

and the right hand side contains the facts relate to the new value. Interpret this rule as intruder

can generate a key pair for himself at any time.

Sets: In the example of an HSM need to maintain a database of keys that has different status, e.g.

valid, revoked or outdated. There are several classical abstraction approaches can model the

protocol in unbounded steps that participant can make, but these approaches may cause the

states/true facts monotonically growth, because the techniques however have a kind of

monotonicity built-in: what is true at some point cannot become false later. To extend the

classical approaches, AIF has a way to express transitions in which the state does not

monotonically grow, namely using Sets. And AIF has fixed number of sets.

To get good insight of Sets, we use a running example that is similar to the SeVeCom case [6]:

Assume that there are two security token namely*𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2+, and the key types are

*𝑟𝑜𝑜𝑡, 𝑙𝑡𝑠𝑖𝑔, 𝑠𝑡𝑠𝑖𝑔, 𝑙𝑡𝑑𝑒𝑐, 𝑠𝑡𝑑𝑒𝑐+, i.e. root key, long/short term signing key and long/short term

decryption key and the status of key *𝑣𝑎𝑙𝑖𝑑, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑, 𝑜𝑢𝑡𝑑𝑎𝑡𝑒𝑑+. For instance the all valid

short term decrypt key in 𝑡𝑜𝑘𝑒𝑛1 can be denoted by the set 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), and the

all revoked long term signing key in 𝑡𝑜𝑘𝑒𝑛2, 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛2, 𝑙𝑡𝑠𝑖𝑔, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑). Totally, we have a

family of 30 sets 𝑑𝑏(𝑇𝑂𝐾𝐸𝑁, 𝐾𝑒𝑦𝑇𝑦𝑝𝑒, 𝑆𝑡𝑎𝑡𝑢𝑠).

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

10

Set-Memberhsip Transition: Different from the normal fact, i.e. 𝑖𝑘𝑛𝑜𝑤𝑠(), the set-fact has the

form 𝑚 ∈ 𝑆 where 𝑚 is an element and 𝑆 is a set. For example to describe a key that is a

valid long term signing key stored in 𝑡𝑜𝑘𝑒𝑛1 can be expressed as 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑣𝑎𝑙𝑖𝑑),

and the transition between set-facts can be modeled by the rules like:

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑣𝑎𝑙𝑖𝑑) ⇒ 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑠𝑖𝑔, 𝑟𝑒𝑣𝑜𝑘𝑒𝑑);

Such rule may be applied when security token like HSM receives an API command to revoke the

long term signing key 𝑘 of 𝑡𝑜𝑘𝑒𝑛1 . Over the set-facts transitions, the state does not

monotonically grow because the set-facts on left-hand side will be removed from system if they

do not appear on right-hand side. For instance:

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑). 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) => 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑)

A key 𝑘 is both a valid long term and short term decrypt key of 𝑡𝑜𝑘𝑒𝑛1, after applied this

transition rule the set-fact that k is the short term decrypt key for token1 get removed, because

the fact 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) does not appear on the right-hand side.

Of course the facts that appear on the right-hand side but not on the left-hand side can be seen

as the new generated facts, for instance:

𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑) => 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑). 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑)

Key k is a valid long term decrypt key for token1, after this transition it becomes both the long

term and short term decrypt key, because a new facts, 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑠𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), appear on

the right hand side and still the left-hand side fact, 𝑘 ∈ 𝑑𝑏(𝑡𝑜𝑘𝑒𝑛1, 𝑙𝑡𝑑𝑒𝑐, 𝑣𝑎𝑙𝑖𝑑), is kept on the

right.

Goals: There is one built-in fact symbol in AIF, which is attack. We can put the symbol at

right-hand side of a rule to specify the attack state. E.g. if any valid root key revealed to intruder,

it is an attack:

𝑘 ∈ 𝑑𝑏(𝑇𝑂𝐾𝐸𝑁, 𝑟𝑜𝑜𝑡, 𝑣𝑎𝑙𝑖𝑑). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑘) ⇒ 𝑎𝑡𝑡𝑎𝑐𝑘;

After all, AIF allows protocol abstraction by set-membership that participants can have databases

of keys where keys revocation is possible. For checking the AIF modeling, first we use a translator,

called OFMC-FP-ASLan [2], for translating the AIF language to standard Horn clauses, then use

the verifier ProVerif to solve them. But the tool doesn’t not always terminate, once it stops, it

give either an attack trace or the security proof. And we can tell whether our AIF specification is

secure.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

11

CHAPTER 3

Attributes and Functions

 In key management of PKCS#11, through API commands intruder/honest user is able to change

states of keys and apply those key to do cryptographic operations. The states of key are

determined by its attributes. Some API calls like set-attribute and unset-attribute can

add/remove attribute to/from a key, we denoted such procedure as p1 in the graph below. The

states of key decide the way of its application, the procedure of user apply keys through API is

denoted as p2. The workflow of key management could be simply illustrated as following:

The key’s attributes determine the states and through the API commands one can set/unset key’s

attributes and manipulate the key to perform some functions (listed below) such as wrap,

unwrap…etc. Some functions may require the target key obtain the relevant attributes (listed

below), for an instance a key can only be wrapped if it has the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute, likewise the

𝑤𝑟𝑎𝑝 attribute is the precondition for a key to wrap other keys.

Our modeling would cover the following functions of API calls and key attributes:

Functions –API calls

Wrap: Wrapping a key for transport purpose, generate the cipher text.

Unwrap: unwrap a cipher that may contain the wrapped key and assign a handle to the

key. (The handle, i.e. pointer to a key, see later section for more details).

Decrypt: Decrypt cipher to get plain text of key.

Set Attribute: Set an attribute to a key.

Unset Attribute: Remove an attribute from a key.

 States of Keys

Application of keys

APIs

Intruder/Honest User

Figure 2 key Management workflow illustration

HSM

p1

p2

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

12

Attributes

Sensitive: Sensitive key is high value key, which must not be revealed off token. It supports

core functions of a token, such as PIN derivation.

Wrap: Support the wrap function, a key that has the wrap attribute is used to wrap other

keys.

Unwrap: Support the unwrap function, a key that has the unwrap attribute is used to

unwrap a cipher that may contain the wrapped key.

Decrypt: Support the decrypt function, a key has decrypt attribute can be used to decrypt a

cipher

Extract: A key with extract attribute can be wrapped for transport purpose.

Attribute Modeling in AIF

We use the Sets in AIF to model key’s attributes, because all the keys that have one certain type

attribute can be treated as a key database. And the changes/shifting on key’s attributes are

exactly can be modeled by the transitions between Sets-Membership. For each type of attributes,

we create the relevant set such as: 𝑤𝑟𝑎𝑝(𝑇𝑂𝐾𝐸𝑁), 𝑢𝑛𝑤𝑟𝑎𝑝(𝑇𝑂𝐾𝐸𝑁), 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑇𝑂𝐾𝐸𝑁),

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑂𝐾𝐸𝑁), 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇𝑂𝐾𝐸𝑁). A wrapping key set of token can be expressed as:

𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛) and as well as the sensitive key: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛). Of course a key may have

several attributes, for modeling this we just use a combination of facts. For example a key has

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 and 𝑤𝑟𝑎𝑝 attribute can be denoted by:

𝐾 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛). 𝐾 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛)

The transitions of set-facts can be used to express the changes of key’s attributes, and for

instance a HSM receives an API command to set key 𝑘 attribute to wrap, it can be denoted as:

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑘 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛);

And to add wrap attribute to this key:

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛). 𝑘 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛);

The key k of token1 has decrypt attribute, apply this rule to give it wrap attribute as well.

To delete decrypt attribute from this key:

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛) ⇒ 𝑖𝑘𝑛𝑜𝑤(𝑖);

If left-hand side membership fact doesn’t appear on the right-hand side, it means that fact does

no longer exist in the modeling state space anymore. We put fact 𝑖𝑘𝑛𝑜𝑤(𝑖) on the right in case

no new fact generated, because the right-hand part of transition rule cannot be empty. The fact

𝑖𝑘𝑛𝑜𝑤(𝑖) can be described as intruder knows his own name as a dummy fact.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

13

CHAPTER 4

Analysis and Modeling Phase One

 The security tokens, such as HSMs or Smartcards, can be viewed as a device that store objects

and perform cryptographic functions with those objects. In PKCS#11, an object could be referred

to a key, a certificate, a mechanism, or domain parameter .etc. And the aim of this thesis is to

model and analyze the key management API of PKCS#11, that is the subset of Cryptoki functions,

therefore the objects will always be referred to cryptographic keys. Each object is associated with

an identifier, which is also called a handle that can be thought as a pointer to the object. One

object is allowed to have several handles. In Cryptoki, the objects are manipulated through its

handle, for example if the user wants to make an API call to use a key for decrypting a cipher text,

and the API function need to know the handle of the decryption key to initialize the operation. Of

course, to accomplish that operation, the decrypt attribute have to be set to the key. Attributes

are the characteristics possessed by keys, so which functions can be applied to the keys is

determined by attributes.

In this phase modeling and analysis, we aim to model the system that has the basic functions

of key management APIs, which could help us to conduct the analysis of some trivial intruder

models. And the ASCII syntax for the notation “∈” and “∉” in AIF is simply “in” and “notin”, which

are used in our modeling files (appendix).

4.1 Key Separation Attack

In AIF specification, we use a function to express the handle of a key by ℎ(𝐾). And for

representing the function of symmetric encryption, we use 𝑠𝑒𝑛𝑐(𝑀, 𝐾) to denote the cipher of

message 𝑀 encrypted by 𝐾.

In order to get our work started, the some parts of the first system modeling are inspired by an

known attack presented by Jolyon Clulow [5] called key-separation, where a key may have

conflicting roles. Conflicting means that a key both has wrap and decrypt attribute which allow

intruder to manipulate this key to reveal other sensitive key in clear.

To model that system, we create 4 key sets and 5 rules in AIF.

The sets are: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1)

Each set reflect the one kind attribute in the system, and we use the following two rules to define

the initial knowledge of intruder:

= ,𝐾1- => 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1));

= ,𝐾2- => 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2));

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

14

The above transition rules can be taken by intruder at any time, that means intruder can create

any value of key that has 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute (first rule) or 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

attribute (second rule). The key is stored in HSM token and intruder only knows the key’s handle.

Above, we use normal fact to express the fact of intruder knowledge: 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1)), and use

set fact to denote the attribute characteristics of keys:

𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1) , likewise 𝐾2 has 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

attributes and its handle known by intruder. The term = ,𝐾1- means that the value 𝐾1 can be

freshly created at any time in the system modeling, and the right hand side of transition decides

the states of the new value.

To model function of wrap in AIF, we apply this transition rule:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾1)). 𝐾1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)). 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝐾1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1);

This rule means that if intruder know two keys’ handles, then he can wrap the key that has

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute by using the other key which has 𝑤𝑟𝑎𝑝 attribute. After the operation,

intruder gains the cipher text of the wrapped key, denoted by a normal fact:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). Note that the set facts on the left hand side will be removed by the

transition rule if they do not appear on the right hand side. We keep the same set-facts on the

right hand side, 𝐾1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), because the wrap operation

doesn’t change any keys’ attributes.

The decrypt function:

𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾2))

=> 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀). 𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

This rule expresses that if the intruder knows a handle of a key that has decrypt attribute and the

cipher of a message which encrypted by this key, then he is able to conduct a decrypt operation

on this message. Afterwards, the intruder gains the plaintext of the message, denoted as

𝑖𝑘𝑛𝑜𝑤𝑠(𝑀) in right hand side of the decrypt rule. Note that the message 𝑀 could be a key.

Again, we keep the set-fact on right hand side to maintain the states of key,

𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1).

The basic decrypt ability of intruder is reflected by the rule:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾2) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀);

Intruder can decrypt a cipher if he gains the key that’s used to encrypt the message.

The last rule describes the security goal, i.e. the attack fact:

𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1) => 𝑎𝑡𝑡𝑎𝑐𝑘;

We say it is an attack when a sensitive key is known by intruder. The whole AIF file,

key_separation.aif, of this modeling can be found in appendix 1.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

15

We verified the system modeling through ProVerif and it gives us exactly the same

“key-separation” attack trace presented by G.Steel in [8]. To describe the attack trace, here we

use 𝑀 => 𝑀′ denote that the intruder send command with message M to the HSM and

receives M’ as an answer, for instance this “key-separation” attack is expressed as following:

Initial Knowledge of Intruder:

ℎ(𝑘1), 𝑘1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

ℎ(𝑘2), 𝑘2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑘2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1)

1 WRAP ℎ(𝑘1). ℎ(𝑘2). 𝑘2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑘1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2);

2 DECRYPT ℎ(𝑘2). 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). 𝑘2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1;

Figure 3 attack trace of key separation

The key 𝑘1 has attribute 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 , and key 𝑘2 has attribute 𝑤𝑟𝑎𝑝 and

𝑑𝑒𝑐𝑟𝑦𝑝𝑡. Both of their handles ℎ(𝑘1) and ℎ(𝑘2) are known by intruder and after a sequence

of valid PKCS#11 commands, the sensitive key being revealed in clear. The extract attribute of

𝑘1 allow the key itself to be wrapped, and because intruder gains the knowledge of the handles

of two keys, the wrap attribute of 𝑘2 allow intruder to apply k2 for wrapping (step 1) the

sensitive key 𝑘1 and gain the cipher text 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). Due to the conflicting attributes of 𝑘2,

intruder can also exploit its decrypt attribute that enable him to apply the same key 𝑘2 to

decrypt (step 2) the cipher and reveal the sensitive key 𝑘1 in clear.

4.2 Attack on the unset of attribute

In the APIs, intruder is able to set/unset an attribute to the key if he gain the knowledge of the

key’s handle. To model that, we could apply the 4 transition rules:

Set and unset wrap attribute:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

Set and unset decrypt attribute:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

But for preventing the attack in Figure 3, we might need a policy that no key should have both

wrap and decrypt attribute. To that end, we add a precondition/fact for the “set” transition rule,

for example, one can only set the wrap attribute to a key if the key doesn’t have decrypt attribute,

likewise, give the decrypt attribute to a key if the key doesn’t obtain the wrap attribute.

Therefore, we change the rules above into the following:

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

16

Set and unset wrap attribute:

𝐾2 ∉ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

Set and unset decrypt attribute:

𝐾2 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

The whole AIF, attack_unset.aif, file of this modeling can be found in appendix 2.

And by the verification result, another trivial attack is revealed as following:

Initial Knowledge of Intruder:

ℎ(𝑘1), 𝑘1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

ℎ(𝑘2), 𝑘2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

1 WRAP ℎ(𝑘1). ℎ(𝑘2). 𝑘1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑘2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2);

2 Unset Wrap ℎ(𝑘2). 𝑘2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) => 𝑘2 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

3 Set Decrypt 𝑘2 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑘2) => 𝑘2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

4 Decrypt 𝑘2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑘2). 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) => 𝑘1;

Figure 4 attack trace of attribute unset attack

Note that the above set-facts such as 𝑘2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) or 𝑘2 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) are

not messages but shows the current state of key’s attributes. Intruder uses key 𝑘2 to wrap the

sensitive key 𝑘1, since he know both of their handles. After he got cipher 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2), unset

wrap attribute from 𝑘2, and set its attribute as decrypt, and finally he can apply 𝑘2 to decrypt

𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) and obtains sensitive key 𝑘1 without breaking the policy of no key should have

both wrap and decrypt attribute.

The attack in Figure 4 inspires us that we should declare the wrap and decrypt as “sticky” which

cannot be unset. To model that, we delete those two transition rules of unset from our modeling:

Remove: 𝐾2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

𝐾2 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑖);

After those changes, we composed the new AIF, attack_unset_revised.aif, file of the modeling

can be found in appendix 3. The verification result shows that no attack found on this modeling.

But we can’t say that it’s the final proof of the system, because for the simplicity reason we didn’t

model the unwrap function of APIs at beginning of the work. The unwrap function will be

included and analyzed in next sections. However, this verification result does support the policies

that:

 A key is not allow to have both wrap and decrypt attribute

 wrap and decrypt attribute should not be unset

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

17

CHAPTER 5

Analysis and Modeling Phase Two

This phase focuses on modeling a more complicated system which includes the unwrap function.

The verification result gives us a new intruder model called “Re-Import”, our analysis goes step by

step until the proof of security of the system is found.

5.1 System Modeling

The Handle of a key

The wrap function is to wrap a key for transport purpose, so there must be a function to “unpack”

the wrapped key, that is called unwrap. During the unwrap process, the wrapped key will be

assigned with a fresh generated handle. As before, the handle of a key is modeled in AIF

specification ℎ(𝑘), that specification is difficult for us to model the wrap and unwrap function,

especially on the modeling of generating new handle for a key. Therefore we change modeling of

handle to the term ℎ(𝑛, 𝑘). Interpret that ℎ is the function to bind the nonce 𝑛 with key 𝑘.

Compare to ℎ(𝑘) , it’s much easier for us to model the generation of a new handle. For instance,

two different handles of the same key can be denoted as ℎ(𝑛1, 𝑘) and ℎ(𝑛2, 𝑘).

Set-Membership of Handle

In previous sections, the attribute of a key is modeled as set membership. E.g. A key has decrypt

attribute can be expressed as the key is member of decrypt set, denoted as

𝑘 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). But now we model the set-membership on key handles, for example, a

key’s handle expressed is as ℎ(𝑛, 𝑘) and the handle has decrypt attribute is reflected on the

nonce 𝑛 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). We made this change because in PKCS#11 API a key is associated

with handles and handles are associated with attributes, of course a key may have several

handles. We didn’t apply this modeling in early sections because modeling the set-membership

on the key is already sufficient to reflect the early system version. And modeling the

set-membership on the nonce would be easier for us to model a more complex system, for

instance, the unwrap function gives a new handle to the wrapped key, and the new handle must

inherit some attributes for restraining the key’s usage (see detail in later sections).

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

18

Modeling of rules and functions

The analysis in section 4 confirms that those two policies below is the foundation for our new

development:

 A key is not allowed to have both 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute.

 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute should be sticky/cannot be unset.

We update our AIF rules for the new modeling of handle of a key and implement those two policy

into our new system modeling, i.e. one handle cannot obtain both 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

attribute and we should not have rule for unset 𝑤𝑟𝑎𝑝 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. Based on all the

changes we discussed above, rules are updated and some crucial rules are listed as below:

AIF rules of setting 𝑤𝑟𝑎𝑝 attribute and 𝑢𝑛𝑤𝑟𝑎𝑝 attribute:

 𝑁 ∉ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁 ∉ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾))

=> 𝑁 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

New Rule: 𝑁 ∉ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾)) => 𝑁 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

The second rule is new that allows for setting the unwrap attribute to a handle. The condition for

setting the 𝑤𝑟𝑎𝑝 attribute to a key’s handle is that this handle must not possess either the

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute or 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. We add the new condition that the handle does not

has 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attributes, because sensitive keys are used for encryption, decryption/digital

signing or signature verification….etc. And people use other type keys to wrap/unwrap the

sensitive key for transport purpose. For example, a private key in HSM has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

attribute, and it’s not allowed to have the 𝑤𝑟𝑎𝑝 attribute for wrapping other keys, but it may

have the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute for being wrapped.

AIF rules of setting 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute:

𝑁 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾)) => 𝑁 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

Before set 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to a handle, check that the handle does not has 𝑤𝑟𝑎𝑝 attribute.

The WRAP rule:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

To wrap one key with another key, the wrapping key must has the 𝑤𝑟𝑎𝑝 attribute and the other

should has the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute to allow itself to be wrapped. Here, we use key 𝐾2 to wrap

the key 𝐾1.

The UNWRAP rule:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁, 𝐾)). 𝑁 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1).

= ,𝑁𝑛𝑒𝑤- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀)). 𝑁 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

19

To be unwrapped, the data format must be 𝑠𝑒𝑛𝑐(𝑀, 𝐾), here 𝑀 is an “untyped” value in AIF

which could be replaced by any other values. We can say that any value wrapped by key 𝐾 can

also be unwrapped by 𝐾 if 𝐾 has 𝑢𝑛𝑤𝑟𝑎𝑝 attribute on its handle. During unwrapping, a fresh

handle is generated and assigned to the unwrapped value 𝑀 which could be any message but

we can treat it as key in this rule of unwrap.

The initial knowledge:

= ,𝐾1, 𝑁1- => 𝑁1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

= ,𝐾2, 𝑁2- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1);

We apply above two rules to define initial knowledge of intruder; those two transitions can be

taken by intruder at any time. He gains the knowledge of two handles, which can be expressed by

normal facts: 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)) and 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). And the handles’ attributes are

reflected on the nonce:

𝑁1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

Obviously, ℎ(𝑁1, 𝐾1) could be the handle of sensitive key and ℎ(𝑁2, 𝐾2) could be the handle

of wrapping key. In the first rule of creating the sensitive key value, we give an attribute to the

key value: 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). We do this because it makes thing easier when analyzing

the output of Proverif, i.e. to distinguish the sensitive key and understand the attack trace. We

don’t use the fact, 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), as precondition for any transition rules except the

rule of attack: 𝐾1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1) => 𝑎𝑡𝑡𝑎𝑐𝑘. Therefore, we can say that

this fact doesn’t have any impacts on the system modeling but it help on finding attack correctly.

The AIF file, system_phase2.aif, of this system modeling could be found in Appendix 4.

5.2 Re-Import Attack Version 1

We verify the system modeling, system_phase2.aif, through the automated tool and the crucial

part of output from Proverif can be found in appendix 5. Here we used it as an illustration to see

how the output from the tool looks like, all the verification result of modeling files will be

attached with report. In the output of Proverif, the fact 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)) is expressed as

𝑖𝑘𝑛𝑜𝑤𝑠: ℎ(𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-),

𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-))

Set membership of 𝑁1 is denoted as 𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-) and

Set membership of 𝐾1 is denoted as 𝑣𝑎𝑙(𝑁𝑢𝑚1,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-, 𝑁𝑢𝑚0,-)).

We are modeling 5 sets (attributes), respectively:

𝑣𝑎𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝐸𝑥𝑡𝑟𝑎𝑐𝑡, 𝑊𝑟𝑎𝑝, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡, 𝑈𝑛𝑤𝑟𝑎𝑝)

Therefore, we can see that N1 is member of set 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1) and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). The

key value shall not have any set membership except it is a sensitive key (explained in previous

section).

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

20

Note that all the verification result from Proverif are attached with the report but are not putted

in the appendix. After the analysis on the verification result, we conclude the attack as following:

Initial Knowledge of Intruder:

ℎ(𝑛1, 𝑘1), 𝑛1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

ℎ(𝑛2, 𝑘2), 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

1 WRAP ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘2). 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2);

2 Set Unwrap ℎ(𝑛2, 𝑘2) => 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

3 Unwrap 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1) => ℎ(𝑛𝑛𝑒𝑤, 𝑘1);

4 Set Wrap 𝑛𝑛𝑒𝑤 ∉ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛𝑛𝑒𝑤, 𝑘1)

=> 𝑛𝑛𝑒𝑤 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

5 WRAP:

(self wrap)

𝑛𝑛𝑒𝑤 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛𝑛𝑒𝑤, 𝑘1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1);

6 Set Decrypt ℎ(𝑛1, 𝑘1) => 𝑛1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

7 Decrypt 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1). ℎ(𝑛1, 𝑘1). 𝑛1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1;

Figure 5 attack trace of Re-Import Version 1

The central point of this attack is that the intruder can obtain multiple handles for the same

key by calling the unwrap function, and use different attributes on those handles to reveal the

sensitive key off the token in plain text. The trace above shows that intruder first wrap key 𝑘1

with 𝑘2 for getting 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2), then he gives the 𝑢𝑛𝑤𝑟𝑎𝑝 attribute to the handle of 𝑘2,

and unwrap the data 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) with 𝑘2 (step3), this is where the new handle being

generated and bound to 𝑘1. The new generated handle ℎ(𝑁𝑛𝑒𝑤, 𝑘1) is not assigned with any

attributes, therefore intruder can set any attributes to it.

What happens next is that the intruder set 𝑤𝑟𝑎𝑝 attribute to the new handle (step 4) and by

the knowledge of ℎ(𝑁𝑛𝑒𝑤, 𝑘1), he can do a key self-wrapping (step 5) which wrap 𝑘1 by 𝑘1

and gain 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1). At this time, the intruder may still keep knowledge of the original handle

ℎ(𝑛1, 𝑘1) of the same key 𝑘1, and set 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to it. Finally (step 7) intruder is able to

decrypt message 𝑠𝑒𝑛𝑐(𝑘1, 𝑘1) by applying the original handle of 𝑘1, ℎ(𝑛1, 𝑘1).

5.3 Re-Import Attack Version 2

The analysis of the previous attack shows that the fresh generated handle in unwrap function

breaks the security, because it’s not bound with any attributes while being generated, intruder

take advantage of this and could assign “conflicting” attributes to different handles of the same

key. To counter this flaw, a good solution could be letting the fresh handle inherits the attributes

from the other handle of the same key. E.g., in above case ℎ(𝑛1, 𝑘1) and ℎ(𝑁𝑛𝑒𝑤, 𝑘1), both

are the handle of the key 𝑘1, while the generation of 𝑁𝑛𝑒𝑤, this new handle should inherit the

same attributes from 𝑛1. Therefore, what the intruder cannot do with 𝑛1 (i.e. set the wrap

attribute to 𝑛1), he also cannot do with 𝑁𝑛𝑒𝑤. Those two handles must have same level of

being manipulation.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

21

To that end, we modify the wrap and unwrap rules in AIF:

The WRAP rule:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) . 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁1, 𝐾1));

Compare to the previous wrap rule, what difference is that we introduced a new function, called

𝑏𝑖𝑛𝑑 , to bind the handle’s attributes with the wrapped key, here expressed by term

𝑏𝑖𝑛𝑑(𝑁1, 𝐾1). This is inspired by the work of G.Steel [8] who used an HMAC to bind the

attributes to the wrapped key for preventing the “re-import” attack. They use a fresh key to

generate the HMAC, and the fresh key is encrypted by the wrapped key. For simplicity reason, we

modeled this process by the binding function: 𝑏𝑖𝑛𝑑(𝑁1, 𝐾1). The fresh key is not modeled

because it doesn’t have any impacts on the system modeling. Because that if the fresh key is

known by intruder, he cannot fake the HMAC message without knowing the wrapping key, and if

the intruder knows the wrapping key, obviously he can gain the knowledge of the fresh key.

In AIF definition, we define 𝑏𝑖𝑛𝑑 as a function which is used as precondition for unwrap rule:

The UNWRAP rule part 1, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute inheritance:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

In this rule, the attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2) is one of the preconditions to unwrap the data

𝑠𝑒𝑛𝑐(𝑀2, 𝐾2). Here, 𝑀1 and 𝑀2 is “untyped” value and could be replaced by any other

values. In another word, we could say that to unwrap the key 𝑀2, its handle’s attribute 𝑀1

must be accompany. If 𝑀1 has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute, then this attribute must be inherited

by the new generated handle. Why inherit 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute to the new handle? Because it

obviously counter the attack shown in Figure 5, i.e. when the new handle inherit the sensitive

attribute, the intruder cannot set the wrap attribute to it (see the rule of set-wrap). That motive

us to start experiment with this attribute first.

The UNWRAP rule part 2, case of other attributes:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∉ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

Except the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute on 𝑀1, the other attributes will not be inherited to the new

handle. The AIF file, re_import_att_bind_attributes.aif, of this system modeling could be found

in Appendix 6.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

22

Through verification, the attack trace is shown below:

Initial Knowledge of Intruder:

ℎ(𝑛1, 𝑘1), 𝑛1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

ℎ(𝑛2, 𝑘2), 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

1 Wrap:

(self wrap)

 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). ℎ(𝑛2, 𝑘2)

=> 𝑠𝑒𝑛𝑐(𝑘2, 𝑘2). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘2);

2 Set-Unwrap ℎ(𝑛2, 𝑘2) => 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

3 Unwrap 𝑠𝑒𝑛𝑐(𝑘2, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘2). 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1)

=> ℎ(𝑛𝑛𝑒𝑤, 𝑘2);

4 Set Decrypt ℎ(𝑁𝑛𝑒𝑤, 𝑘2) => 𝑛𝑛𝑒𝑤 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

5 WRAP ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘2). 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2);

6 Decrypt 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2). ℎ(𝑛𝑛𝑒𝑤, 𝑘2). 𝑛𝑛𝑒𝑤 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1;

Figure 6 attack trace of Re-Import Version 2

In the attack of Figure 5, the fresh handle of sensitive key is without any constraints. After we

updated the wrap and unwrap rules, the new generated handle will inherit the sensitive attribute

while being unwrapped, that prevent the attack in Figure 5. But the intruder model shown in

Figure 6 is based on the new generated handle of the wrapping key 𝑘2, this key 𝑘2 is

manipulated to wrap itself, and because the wrapped key’s handle doesn’t possess sensitive

attributes but has the 𝑤𝑟𝑎𝑝 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attributes. Still, the intruder is able to give attributes

to the new handle and that allows re-importing several copies of keys with different handles.

First, due to the intruder’s knowledge ℎ(𝑛2, 𝑘2), he can wrap key k2 by itself and gain

𝑠𝑒𝑛𝑐(𝑘2, 𝑘2) and 𝑏𝑖𝑛𝑑 (𝑛2, 𝑘2). He sets (step 2) 𝑢𝑛𝑤𝑟𝑎𝑝 attribute to the handle 𝑛2, and

performs (step 3) the unwrap action on the wrapped key 𝑠𝑒𝑛𝑐(𝑘2, 𝑘2), and the new handle is

generated without inheriting any attributes from 𝑛2. Afterwards, the intruder set the decrypt

attribute to the new handle and do a regular wrap action (step5) to get cipher data 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2),

finally (step 6) decrypt 𝑠𝑒𝑛𝑐(𝑘1, 𝑘2) by applying ℎ(𝑁𝑛𝑒𝑤, 𝑘2) and gain sensitive key 𝑘1 in

plain text.

5.4 System Verified

Observe the attack in Figure 6, we can see that only copying the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute to the new

handle is not enough, obviously the 𝑤𝑟𝑎𝑝 attribute should also be copied to prevent intruder to

set any conflicting attributes to the new handle. E.g. in the attack model shown in Figure 5 the

intruder set the 𝑤𝑟𝑎𝑝 attribute to the new handle which bound with a key and the key’s original

handle has the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute. As well as the attack in Figure 6 intruder set the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

attribute to the new handle which belong to the key and the key’s original handle has the 𝑤𝑟𝑎𝑝

attribute. Therefore, we decide to copy all the “sticky” attributes to the new generated handle

during the UNWRAP operation, the “sticky” attributes which are not allowed to be unset, that

includes the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝑤𝑟𝑎𝑝, and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

23

To do that, we modify the unwrap rule and it consists of four parts:

The UNWRAP rule part 1, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute inheritance:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

Part1 is same as earlier used for copying the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 attribute.

The UNWRAP rule part 2, 𝑤𝑟𝑎𝑝 attribute inheritance:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

Unlike the rule part 1, this part is for copying the 𝑤𝑟𝑎𝑝 attribute to the new handle. Similarly,

intruder knows the attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2), this is one of the preconditions to unwrap

the data 𝑠𝑒𝑛𝑐(𝑀2, 𝐾2) and if 𝑀1 has the 𝑤𝑟𝑎𝑝 attribute, then this attribute must be

inherited by the new generated handle on the right hand side of the rule.

The UNWRAP rule part 3, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 attribute inheritance:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1);

This rule is for copying the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute to the new handle. As the rule above, the intruder

knows attributes binding 𝑏𝑖𝑛𝑑(𝑀1, 𝑀2) is one of the preconditions to unwrap the data cipher

𝑠𝑒𝑛𝑐(𝑀2, 𝐾2) and if 𝑀1 has the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute, then it will be copied to the new

generated handle.

The UNWRAP rule part 4, case of other attributes:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2)). 𝑀1 ∉ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑀1 ∉ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∉ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

Part 4 is to handle the case that 𝑀1 doesn’t contain any one of the attributes 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝑤𝑟𝑎𝑝,

and decrypt. Then the new generated handles will be bound without any attributes.

After applied those changes, the modeling file is expanded, system_verified.aif, could be found

in appendix 7. We verify this system modeling in Proverif, and finally we have a positive result

that no attack is found, the tool output the verification result in less than 2 sec.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

24

5.5 Modeling of a lost key scenario

After the previous positive verification result, we now consider a scenario that a key lost to

intruder by some means that beyond the scope of model, let it be a key that has the decrypt

attribute since 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 is more “sensitive” compare to others like the 𝑤𝑟𝑎𝑝 and 𝑢𝑛𝑤𝑟𝑎𝑝

attribute. Therefore, compare to the initial knowledge before, additionally we give intruder the

lost key that its handle has 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute, denoted in AIF:

= ,𝐾3, 𝑁3- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁3, 𝐾3)). 𝑁3 𝑖𝑛 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1).

 𝑁3 𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝐾3 𝑖𝑛 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3);

We also give a decrypt-set membership on the key value that allows us to easier analyze the

attack trace output by Proverif. The 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 attribute allow this key to be wrapped like other

keys. With this lost key 𝐾3, intruder shall be able to decrypt any cipher that’s encrypted by this

key (this AIF rule included in previous modeling), and he is also able to generate his own “bind”

message:

𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁2, 𝐾3));

If intruder know a key and a handle of any keys, he can bind the key with the attributes the

handle possessed. We start using “bind” for binding the key’s attributes with the key in section

5.3, it’s introduced as a counter measure for “re-import attack”. This rule shows that if intruder

has the lost key (𝐾3), he can bind attributes that belong to a known handle ℎ(𝑁2, 𝐾2) with this

key. After applied those additional rules into the previous modeling, the AIF file, lost_key_att.aif,

could be found in appendix 8. We checked this modeling in ProVerif, and it throws an attack:

Initial Knowledge of Intruder:

ℎ(𝑛1, 𝑘1), 𝑛1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1), 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

ℎ(𝑛2, 𝑘2), 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1), 𝑛2 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1);

ℎ(𝑛3, 𝑘3). 𝑘3, 𝑛3 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑛3 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1), 𝑘3 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1); ;

1 Set-Unwrap ℎ(𝑛2, 𝑘2) => 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1);

2 Bind ℎ(𝑛2, 𝑘2). 𝑘3 => 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3);

3 WRAP ℎ(𝑛3, 𝑘3). ℎ(𝑛2, 𝑘2). 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛3 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2);

4 Unwrap 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). ℎ(𝑛2, 𝑘2). 𝑛2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3)

=> ℎ(𝑛2, 𝑘3);

5 WRAP ℎ(𝑛1, 𝑘1). ℎ(𝑛2, 𝑘3). 𝑛2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑛1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1)

=> 𝑠𝑒𝑛𝑐(𝑘1, 𝑘3);

6 Decrypt 𝑠𝑒𝑛𝑐(𝑘1, 𝑘3). ℎ(𝑛3, 𝑘3). 𝑛3 ∈ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛1) => 𝑘1;

Figure 7 attack trace of lost key scenario

Because of the lost key 𝑘3, the intruder can fake a “Bind” message and using the fake message

during unwrap operation, intruder can assign the desired handle to 𝑘3, e.g. intruder can assign

the handle (𝑛2) that has the 𝑤𝑟𝑎𝑝 attribute to the key 𝑘3 whose original handle (𝑛3) possess

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 attribute. Therefore, using 𝑘3 intruder may encrypt the sensitive key by a wrap

command and decrypt the sensitive key by 𝑘3 as well. (More details on attack trace shown

below).

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

25

First, due to the intruder’s knowledge ℎ(𝑛2, 𝑘2) and 𝑘3, he set (step 1) the unwrap attribute to

the handle of key 𝑘2 and fake (step 2) the attribute-bind message 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3). After a normal

wrapping operation (step 3), intruder gains the cipher 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). Now the intruder is ready

for crucial step, the unwrapping (step4), he knows the handle ℎ(𝑛2, 𝑘2) used for unwrapping

and he inserts the faked message 𝑏𝑖𝑛𝑑(𝑛2, 𝑘3) with 𝑠𝑒𝑛𝑐(𝑘3, 𝑘2). Afterwards, the intruder

the assign desired handle’s attributes (𝑛2) to 𝑘3, and gains ℎ(𝑛2, 𝑘3). Now the key 𝑘3 have

two handles ℎ(𝑛2, 𝑘3) and ℎ(𝑛3, 𝑘3), one (𝑛2) has wrap attribute and the other (𝑛3) has

decrypt attributes. Eventually, the intruder can wrap (step5) key 𝑘1 by ℎ(𝑛2, 𝑘3) and gains

cipher 𝑠𝑒𝑛𝑐(𝑘1, 𝑘3), afterwards apply ℎ(𝑛3, 𝑘3) to decrypt (step6) cipher and get sensitive key

𝑘1 in plain text.

A good way to prevent such an attack is to add the wrapping key inside the “Bind” message, for

example, when using wrapping 𝑘2 to wrap 𝑘3, it generates 𝑏𝑖𝑛𝑑(𝑛1, 𝑘3, 𝑘2) which contains

the handle’s attributes of the wrapped key (𝑘3) and both keys (𝑘2, 𝑘3) of wrapping and being

wrapped. Therefore, if the intruder only knows one of the keys, he’s not able to fake the “Bind”

message, but he can generate message like 𝑏𝑖𝑛𝑑(𝑛1, 𝑘3, 𝑘3) which is not accepted by the

unwrap operation. To apply this counter measure, we modified some AIF rule:

The WRAP rule:

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾1)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1). 𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝐾1, 𝐾2)). 𝑁1 ∈ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑁1, 𝐾1, 𝐾2));

Using one key to wrap other keys, now the wrapping operation generates a “Bind” message that

include the handle’s attributes of wrapped key and both participated keys.

For the unwrap operation, since it consists of 4 rules, and the changes made to each rule are

similar, therefore we only illustrate one of its rules here:

The UNWRAP rule part 1:

𝑖𝑘𝑛𝑜𝑤𝑠(𝑠𝑒𝑛𝑐(𝑀2, 𝐾2)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑏𝑖𝑛𝑑(𝑀1, 𝑀2, 𝐾2)). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)). 𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). = ,𝑁𝑛𝑒𝑤- =>

 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁𝑛𝑒𝑤, 𝑀2)). 𝑁𝑛𝑒𝑤 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1).

𝑁2 ∈ 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑜𝑘𝑒𝑛1). 𝑀1 ∈ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑡𝑜𝑘𝑒𝑛1);

Now the precondition for the unwrapping is changed, the 𝑏𝑖𝑛𝑑 must contain keys of both

wrapping and being wrapped, for instance, 𝑠𝑒𝑛𝑐(𝑀2, 𝐾2) which stands for a cipher that

encrypted by 𝐾2, and both 𝑀2 and 𝐾2 shall be inside the “Bind” message. Here, 𝑀2 can be

treated as a key encrypted by 𝐾2.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

26

Of course, intruder may have following abilities:

𝑖𝑘𝑛𝑜𝑤𝑠(𝐾3). 𝑖𝑘𝑛𝑜𝑤𝑠(𝐾1). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝐾2)) => 𝑏𝑖𝑛𝑑(𝑁2, 𝐾1, 𝐾3). 𝑏𝑖𝑛𝑑(𝑁2, 𝐾3, 𝐾1);

This rule reflects that if intruder gains two keys (𝐾1 and 𝐾3 are different keys), he is able to

generate the “Bind” message, and if he only gains one key (𝐾1 and 𝐾3 is same), then he still

can generate similar “Bind” message like bind(𝑛2, 𝑘3, 𝑘3). Finally, applied all the modification,

we have our modeling file, lost_key_att_countered.aif, could be found in appendix 9. And the

verification by ProVerif shows the absence of attacks.

CHAPTER 6

Further improvement and Conclusion

We have presented the AIF framework for analyzing the key management APIs which is the

subset of a fixed version API of PKCS#11, i.e. the version used by Eracom. This work was inspired

by the similar work of G.Steel [8] who modeled the API system in bounded number of steps that

participants can perform. Our work shows that this API system can be modeled and verified with

unbounded number of steps. The other advantage we have is that the AIF modeling of security

protocol does not have monotonically growth of states. To discover attacks, we translate the AIF

modeling to first-order Horn clauses, and input it to verification tool Proverif. After the analysis of

the intruder model, we design/suggest rules as a counter-measure and apply the rules in AIF. By

this work flow, we experienced some intruder models and expanded our modeling step by step,

and finally we verified the security properties of the API system.

 For further improvement, first thing we can do is to extend our modeling to asymmetric

cryptography, e.g. using a pair of keys to encrypt and decrypt, some basic rules could be:

= ,𝐾- => 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝑖𝑛𝑣(𝐾)));

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁1, 𝐾)). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾));

𝑖𝑘𝑛𝑜𝑤𝑠(ℎ(𝑁2, 𝑖𝑛𝑣(𝐾))). 𝑖𝑘𝑛𝑜𝑤𝑠(𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾)) => 𝑖𝑘𝑛𝑜𝑤𝑠(𝑀);

Generating a key pair: public key 𝐾 and private key 𝑖𝑛𝑣(𝐾), the asymmetric encryption can be

expressed as 𝑎𝑠𝑒𝑛𝑐(𝑀, 𝐾) that can only be decrypted by the private key. Since our analysis only

covered one subset of PKCS#11, i.e. the key management API, which means we could expand our

modeling to more crucial subset, such as session management API and object management API.

Moreover, except the PKCS#11 API system, our analysis method could be adapted to many

complex API versions, such as the Secure Vehicle Communication system SeVeCom [6] which

already being proved by using AIF, or the IBM Common Cryptographic Architecture that has

proofs of security in bounded model and we may try to turn it to unbounded.

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

27

References

1. S. Mödersheim, “Abstraction by Set-Membership – Verifying Security Protocols and Web

Services with Databases”, in CSS 2010. Available at http://www2.imm.dtu.dk/~samo/

2. David Basin, Sebastian Mödersheim, Luca Viganò, “OFMC: A symbolic model checker for

security protocols”, Department of Computer Science, ETH Zurich, 2004. Available at

http://www.avispa-project.org/papers/ofmc-jis05.pdf, get latest module of OFMC from

http://www2.imm.dtu.dk/~samo/

3. Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Prolog Rules”. In 14th

IEEE Computer Security Foundations Workshop (CSFW-14), pages 82-96, Cape Breton, Nova

Scotia, Canada, June 2001. IEEE Computer Society, available at

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

4. RSA Laboratories, PKCS #11 Base Functionality v2.30: Cryptoki – Draft 4 available at

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf

5. J. Clulow. On the security of PKCS#11. Available at

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.3442

6. S. Mödersheim, “Verifying SeVeCom Using Set-based Abstraction”, in 7th wireless

Communications and Mobile Computing Conference (IWCMC).

Available at http://www2.imm.dtu.dk/~samo/

7. Alessandro Armando, Roberto Carbone, Luca Compagna. SATMC: A SAT-Based Model

Checker for Security-Critical Systems. In the Proceedings of the 20th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS

2014), April 5-13, 2014, Grenoble, France, Springer, pp. 31-45.

8. G.Steel, “Analysing PKCS#11 Key management APIs with Unbounded Fresh Data”, University

of Oldenburg, 2009.

9. E. Tsalapati. Analysis of PKCS#11 using AVISPA tools. Master thesis, University of Edinburgh,

2007.

10. C. Cremers, “The Scythe Tool: Verification, falsification, and analysis of security protocol,” in

Computer Aided Verification. Springer, 2008, pp 414-418.

11. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Drielsma, P. Heam, O.

Kouchnarenko, J. Mantovani et al., “The AVISPA tool for the automated validation of

internet security protocols and applications," in Computer Aided Verification. Springer, 2005,

pp. 281-285.

http://www.di.univr.it/?ent=persona&lang=en&id=3847

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

28

Appendix

Appendix 1

key_separation.aif

Problem: KEY_SEPARATION;

Types:

TOKEN :{token1};

K1,K2: value;

M: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/1;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1));

=[K2]=>K2 in wrap(token1).K2 in decrypt(token1).iknows(h(K2));

% ======================wrap================

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2)) =>

iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1);

% ======================decrypt================

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) =>

iknows(M).K2 in decrypt(token1);

iknows(senc(M,K2)).iknows(K2)=>iknows(M);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

29

Appendix 2

attack_unset.aif

Problem: ATTACK_UNSET;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2: value;

M: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/1;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1));

=[K2]=>K2 in wrap(token1).iknows(h(K2));

% ======================wrap================

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2))

=> iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1);

% ======================set wrap================

K2 notin decrypt(token1).iknows(h(K2))=>K2 in wrap(token1);

% ======================unset wrap================

K2 in wrap(token1).iknows(h(K2))=> iknows(i);

% ======================set decrypt================

K2 notin wrap(token1).iknows(h(K2))=>K2 in decrypt(token1);

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

30

% ======================unset decrypt================

K2 in decrypt(token1).iknows(h(K2))=> iknows(i);

% ======================decrypt================

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) =>

iknows(M).K2 in decrypt(token1);

iknows(senc(M,K2)).iknows(K2)=>iknows(M);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Appendix 3

attack_unset_revised.aif

Problem: ATTACK_UNSET;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2: value;

M: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/1;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1]=>K1 in sensitive(token1).K1 in extract(token1).iknows(h(K1));

=[K2]=>K2 in wrap(token1).iknows(h(K2));

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

31

% ======================wrap================

iknows(h(K1)).K1 in extract(token1).K2 in wrap(token1).iknows(h(K2))

=> iknows(senc(K1,K2)).K2 in wrap(token1).K1 in extract(token1);

% ======================set wrap================

K2 notin decrypt(token1).iknows(h(K2))=>K2 in wrap(token1);

% ======================set decrypt================

K2 notin wrap(token1).iknows(h(K2))=>K2 in decrypt(token1);

% ======================decrypt================

K2 in decrypt(token1).iknows(h(K2)).iknows(senc(M,K2)) =>

iknows(M).K2 in decrypt(token1);

iknows(senc(M,K2)).iknows(K2)=>iknows(M);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Appendix 4

system_phase2.aif

Problem: SYSTEM_PHASE2;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2,N1,N2,Nnew: value;

M: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

unwrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/2;

private inv/1;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

32

Facts:

iknows/1, attack/0;

Rules:

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in

sensitive(token1);

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1);

% =====set wrap=====

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) =>

N2 in wrap(token1);

% =====set unwrap===

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1);

% =====unwrap, generate new handler======

iknows(senc(M,K2)).N2 in unwrap(token1).iknows(h(N2,K2)).=[Nnew]=>

iknows(h(Nnew,M)).N2 in unwrap(token1);

% ======================wrap================

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1);

% =====set decrypt===

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1);

% ======================decrypt================

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M,K2)) =>iknows(M);

iknows(senc(M,K2)).iknows(K2)=>iknows(M);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

33

Appendix 5

Partial output of verifying system_phase2.aif

Appendix 6

re_import_att_bind_attributes.aif

Problem: RE_IMPORT_ATT;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2,N1,N2,Nnew: value;

M1,M2: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

unwrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/2, bind/2;

private inv/1;

Facts:

iknows/1, attack/0;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

34

Rules:

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in

sensitive(token1);

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1);

% =====set wrap=====

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in

wrap(token1);

% =====set unwrap===

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1);

% =====unwrap, generate new handler======

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in

unwrap(token1).M1 in sensitive(token1);

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin

sensitive(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=>

iknows(h(Nnew,M2)).N2 in unwrap(token1);

% ======================wrap================

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1));

% =====set decrypt===

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1);

% ======================decrypt================

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1);

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

35

Appendix 7

system_verified.aif

Problem: RE_IMPORT_ATT;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2,N1,N2,Nnew: value;

M1,M2: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

unwrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/2, bind/2;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in

sensitive(token1);

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1);

% =====set wrap=====

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in

wrap(token1);

% =====set unwrap===

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1);

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

36

% =====unwrap, generate new handler======

%-----------the senstive attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in

unwrap(token1).M1 in sensitive(token1);

%-----------the wrap attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in wrap(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in

unwrap(token1).M1 in wrap(token1);

%-----------the decrypt attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in decrypt(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in

unwrap(token1).M1 in decrypt(token1);

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin sensitive(token1).M1 notin

wrap(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1);

% ======================wrap================

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1));

% =====set decrypt===

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1);

% ======================decrypt================

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1);

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

37

Appendix 8

lost_key_att.aif

Problem: LOSS_KEY_ATT;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2,K3,N1,N2,N3,Nnew: value;

M1,M2: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

unwrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/2, bind/2;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in

sensitive(token1);

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1);

=[K3,N3]=>iknows(h(N3,K3)).N3 in extract(token1).N3 in decrypt(token1).K3 in

decrypt(token1).iknows(K3);

% =====set wrap=====

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in

wrap(token1);

% =====set unwrap===

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1);

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

38

% =====unwrap, generate new handler======

%-----------add the wrap attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in wrap(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in

unwrap(token1).M1 in wrap(token1);

%-----------add the senstive attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in sensitive(token1).iknows(h(N2,K2)).N2

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in

unwrap(token1).M1 in sensitive(token1);

%-----------add the decrypt attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 in decrypt(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in

unwrap(token1).M1 in decrypt(token1);

iknows(senc(M2,K2)).iknows(bind(M1,M2)).M1 notin wrap(token1).M1 notin

sensitive(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1);

% ======================wrap================

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1));

% ======================bind generation================

iknows(K3).iknows(h(N2,K2))=>iknows(bind(N2,K3));

% =====set decrypt===

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1);

% ======================decrypt================

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1);

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

39

Appendix 9

lost_key_att_countered.aif

Problem: LOSS_KEY_ATT;

Types:

D : {i}; % Dishonest Agents

TOKEN :{token1};

K1,K2,K3,N1,N2,N3,Nnew: value;

M1,M2: untyped;

Sets:

extract(TOKEN),

wrap(TOKEN),

unwrap(TOKEN),

decrypt(TOKEN),

sensitive(TOKEN);

Functions:

public senc/2, h/2,bind/3;

private inv/1;

Facts:

iknows/1, attack/0;

Rules:

=[K1,N1]=>N1 in sensitive(token1).N1 in extract(token1).iknows(h(N1,K1)).K1 in

sensitive(token1);

=[K2,N2]=>iknows(h(N2,K2)).N2 in wrap(token1).N2 in extract(token1);

=[K3,N3]=>iknows(h(N3,K3)).N3 in extract(token1).N3 in decrypt(token1).K3 in

decrypt(token1).iknows(K3);

% =====set wrap=====

N2 notin sensitive(token1).N2 notin decrypt(token1).iknows(h(N2,K2)) => N2 in

wrap(token1);

% =====set unwrap===

N2 notin sensitive(token1).iknows(h(N2,K2)) => N2 in unwrap(token1);

Design and Analysis of PKCS#11 key management with AIF 8/24/2014

40

% =====unwrap, generate new handler======

%-----------add the wrap attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in wrap(token1).iknows(h(N2,K2)).N2

in unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).Nnew in wrap(token1).N2 in

unwrap(token1).M1 in wrap(token1);

%-----------add the senstive attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in

sensitive(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=>

iknows(h(Nnew,M2)).Nnew in sensitive(token1).N2 in unwrap(token1).M1 in

sensitive(token1);

%-----------add the decrypt attr copy-------------

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 in

decrypt(token1).iknows(h(N2,K2)).N2 in unwrap(token1).=[Nnew]=>

iknows(h(Nnew,M2)).Nnew in decrypt(token1).N2 in unwrap(token1).M1 in

decrypt(token1);

iknows(senc(M2,K2)).iknows(bind(M1,M2,K2)).M1 notin wrap(token1).M1 notin

sensitive(token1).M1 notin decrypt(token1).iknows(h(N2,K2)).N2 in

unwrap(token1).=[Nnew]=> iknows(h(Nnew,M2)).N2 in unwrap(token1);

% ======================wrap================

iknows(h(N1,K1)).N1 in extract(token1).N2 in wrap(token1).iknows(h(N2,K2))

=> iknows(senc(K1,K2)).N1 in extract(token1).N2 in wrap(token1).iknows(bind(N1,K1,K2));

% ======================bind generation================

iknows(K3).iknows(h(N2,K2))=>iknows(bind(N2,K3,K3));

iknows(K3).iknows(K1).iknows(h(N2,K2))=>iknows(bind(N2,K1,K3)).iknows(bind(N2,K3,K

1));

% =====set decrypt===

Nnew notin wrap(token1).iknows(h(Nnew,K2)) => Nnew in decrypt(token1);

% ======================decrypt================

Nnew in decrypt(token1).iknows(h(Nnew,K2)).iknows(senc(M1,K2)) =>iknows(M1);

iknows(senc(M1,K2)).iknows(K2)=>iknows(M1);

% ======================attacks================

K1 in sensitive(token1).iknows(K1)=>attack;

