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Approximate String Matching

e The edit distance between two strings is the minimum number of insertions,

deletions, and substitutions needed to convert one string to the other. E.qg.,
edit-distance(“cocoa”, “cola”) = 2.

e Let Pand Q be strings and let k (integer > 0) be an error threshold.

e The approximate string matching problem is to find all ending positions of
substrings in Q whose edit distance to P is at most k.
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Approximate String Matching on ZL78 compressed
texts

e et P be a string and Z be a ZL78 compressed representation of a string Q.

e Given Pand Z, the compressed approximate string matching problem is to
solve the approximate string matching for Pand @ without decompressing Z.

e Goal: Do it more efficiently than decompressing Z and using the best
(uncompressed) approximate string matching algorithm.



Applications

e Textual data bases (e.g. DNA sequence collections) issues:

e Save space = keep data in compressed form.

e Search efficiently.

e Solution: Compressed string matching algorithms.



Results

e let|P|=mand|Z| = n.
e Karkkainen, Navarro, and Ukkonen [KNU2003]:
e O(nmk + occ) time and O(nmk) space.
e Our result (Theorem 1): For any parameter 7 = 1.
o O(n(T + m+t(m,2m+ 2k, k)) + occ) expected time and

e O(n/T+ m+s(m,2m+ 2k, k)) + occ) space.
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Selecting Compression Elements

e For parameter T > 1, select a subset C of the compression elements of Z
such that:

e |C| = O(n/T).

e From any compression element z;, the distance (minimum number of
references) to any compression element in C is at most 27.



Selecting Compression Elements

e Maintain C using dynamic perfect hashing while scanning Z from left-to-right.

e |nitially, set C = {z}.

e To process element z;+1 follow references until we encounter y ¢ C:

¢ |[f the distance/ from Zi+1 to y is less than 27 we are done.

e Otherwise (/ = 271), insert element the element at distance 7 into C.



Selecting Compression Elements

e _emma: For any parameter 7 > 1, C is constructed in

e O(nT) expected time and

e O(n/T) space.



Computing Matches

Q=--- phrase(z;_1) phrase(z;)

e Strategy:

® Process / from left-to-right.

e At z we compute all matches ending in the substring encoded by z;.



Computing Overlapping Matches

rsuf(zi_1) rpre(z;)

Q=--- phrase(z;_1) phrase(z;)

e Let|uj, u; + I, — 1] be the positions in Q of phrase(z;).

e Goal: Find all overlapping matches for z;, i.e., the matches starting before u;
and ending in [u;, u; + [} — 1].

e Decompress substrings rpre(z;) and rsuf(zj_1) of length m + k around v

e Run favorite (uncompressed) approximate string matching algorithm to find
matches of P in rsuf(z_1) - rpre(z;). Add offset to these to get the
overlapping matches for z.



Computing the Relevant Prefix and Suffix

m + k

e For parameter 7 > 1, select a subset C of the compression elements of 7
according to Lemma 1.

e For each element in C at distance more than m + k from Zo add “shortcut” to
element at distance m + k.



Computing the Relevant Prefix

m + k

¢ Follow references to nearest element in C.
e Follow shortcut if present.

e Compute the relevant prefix by decompressing length M + K substring.



Computing the Relevant Suffix

m + k

e Follow references to decompress substring of length m + k.

e [f the phrase is shorter than m + k, recursively apply to z,_; until we have m + k
characters.



Analysis

e Time = preprocess + n(find nearest element + decompress + match) =

O(nt +n(T+ m+t(m,2m+ 2k, k))

e Space = preprocess + decompress + match =

O(n/T4+ m+s(m,2m+ 2k, k))



Computing Internal Matches

rsuf’(z;)

phrase(z;_1) phrase(z;)

e Goal: Find all internal matches for z;, i.e., all matches starting and ending
within [u;, u; + [, — 1].

e Compute and store all the internal match sets indexed by compression
elements using dynamic perfect hashing.

e Decompress substring rsuf’(z;) of length min(/;, m + k)ending at v; + /; — 1.

¢ [nternal matches for z =
(internal matches for reference(z)) | ] (matches of P in rsuf’(z;)



Analysis

e Time = n (decompress + match + internal matches) =

O(n(m—+t(m, m+ k, k)) 4+ occ)

e Space = decompress + match + total number of internal matches =

O(m+ s(m, m+ k, k) 4+ occ)



Putting the Pieces Together

e Merging overlapping and internal matches we get all matches for z; ending
within [u;, u; + [, — 1].

e Implies Theorem 1: For any parameter 7 > 1:

e O(n(T+ m+t(m,2m+ 2k, k)) + occ) expected time and

* O(n/T+ m+s(m,2m+ 2k, k)) + occ) space.

e Does not hold for ZLW compressed texts, unless 2(n) space is used.

e For €2(n) space the bounds hold in the worst-case and work for both ZL78
and ZLLW.



Regular Expression Matching

e A reqular expression is a generalized pattern composed from simple
characters using union, concatenation, and Kleene star.

e Given a regular expression R and a string Qthe regular expression matching
problem is to find all ending positions of substrings in Qthat matches a string
In the language generated by .



Regular Expression Matching

o Let|R| =m and |Q| = u.

e Classic solution [Thompson1968]: O(um) time and O(m)space.

e Several improvements based on the Four-Russian technique or word-level
parallelism [Myers1992, NR2004, BFC2005, Bille2006].



Compressed Regular Expression Matching

o Let|R| = m and|Z]| = n.

e Navarro [Navarro2003] simplified and without word-level parallel techniques:
e O(nm” + occ - mlog m) time and O(nm?) space.

e Our result (Theorem 2): For any parameter + > 1:
e O(nm(m+ 1)+ occ- mlogm) time and
* O(nm?/T + nm) space.

e E.g. 7= m gives O(nm* + occ - mlog m) time and O(nm) space.



Remarks

e Compressed strings are large and therefore (2(n) space space may not be
feasible for large texts.

e QOur result for compressed approximate string matching is one of the very few
algorithms for compressed matching that uses o(n) space.

® More sublinear space compressed string matching algorithms are needed!



