Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

Philip Bille
IT University of Copenhagen

Rolf Fagerberg
University of Southern Denmark

Inge Li Gørtz Technical University of Denmark

Approximate String Matching

- The *edit distance* between two strings is the minimum number of insertions, deletions, and substitutions needed to convert one string to the other. E.g., edit-distance("cocoa", "cola") = 2.
- Let P and Q be strings and let k (integer > 0) be an error threshold.
- The approximate string matching problem is to find all ending positions of substrings in Q whose edit distance to P is at most k.

Results

Time	Space	Reference	
O(um)	O(m)	[Sellers1980]	
O(uk)	O(m)	[LV1989]	
$O\left(\frac{uk^4}{m} + u\right)$	O(m)	[CH2002]	

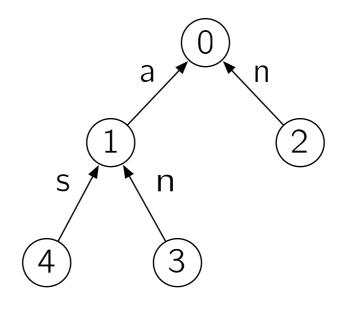
$$|P| = m$$
 and $|Q| = u$

Ziv-Lempel 1978 compression

$$Q = \text{ananas}$$

$$Z = (0,a)(0,n)(1,n)(1,s)$$

$$Z = \begin{bmatrix} Z_0 & Z_1 & Z_2 & Z_3 & Z_4 \end{bmatrix}$$



Approximate String Matching on ZL78 compressed texts

- Let P be a string and Z be a ZL78 compressed representation of a string Q.
- Given P and Z, the compressed approximate string matching problem is to solve the approximate string matching for P and Q without decompressing Z.
- Goal: Do it more efficiently than decompressing Z and using the best (uncompressed) approximate string matching algorithm.

Applications

- Textual data bases (e.g. DNA sequence collections) issues:
 - Save space = keep data in compressed form.
 - Search efficiently.
- Solution: Compressed string matching algorithms.

Results

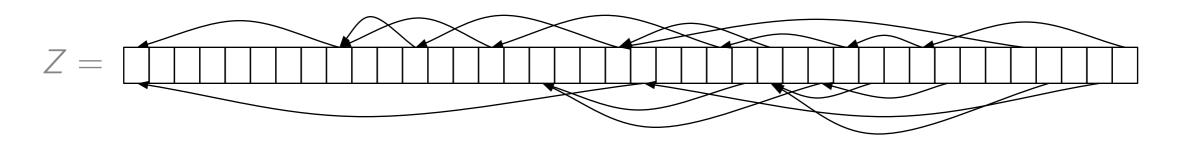
- Let |P| = m and |Z| = n.
- Kärkkäinen, Navarro, and Ukkonen [KNU2003]:
 - O(nmk + occ) time and O(nmk) space.
- Our result (Theorem 1): For any parameter $\tau \geq 1$:
 - $O(n(\tau + m + t(m, 2m + 2k, k)) + occ)$ expected time and
 - $O(n/\tau + m + s(m, 2m + 2k, k)) + occ)$ space.

Example Results

Time	Space	Reference	
O(nmk + occ)	O(nmk)	[KNU2003]	
O(nmk + occ)	$O\left(\frac{n}{mk} + m + occ\right)$	$LV + \tau = mk$	This paper
$O(nk^4 + nm + occ)$	$O\left(\frac{n}{k^4+m}+m+\mathrm{occ}\right)$	$CH + \tau = k^4 + m$	

$$|P| = m$$
 and $|Z| = n$

Selecting Compression Elements

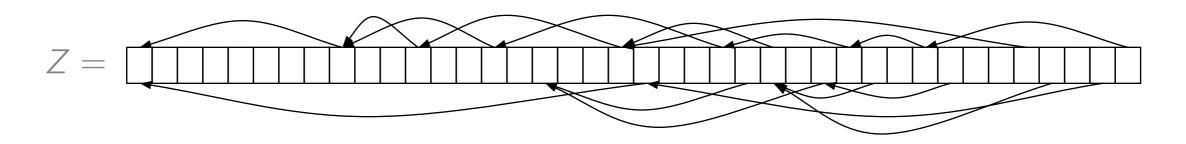


• For parameter $\tau \geq 1$, select a subset C of the compression elements of Z such that:

•
$$|C| = O(n/\tau)$$
.

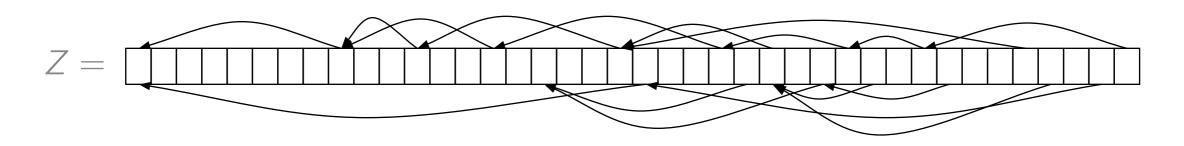
• From any compression element z_i , the distance (minimum number of references) to any compression element in C is at most 2τ .

Selecting Compression Elements



- Maintain C using dynamic perfect hashing while scanning Z from left-to-right.
- Initially, set $C = \{z_0\}$.
- To process element Z_{i+1} follow references until we encounter $y \in C$:
 - If the distance / from Z_{i+1} to y is less than 2τ we are done.
 - Otherwise ($I = 2\tau$), insert element the element at distance τ into C.

Selecting Compression Elements



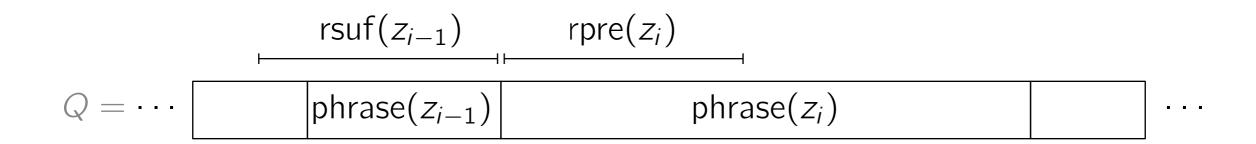
- Lemma: For any parameter $\tau \geq 1$, C is constructed in
 - $O(n\tau)$ expected time and
 - $O(n/\tau)$ space.

Computing Matches

$$Q = \cdots$$
 phrase (z_{i-1}) phrase (z_i) \cdots

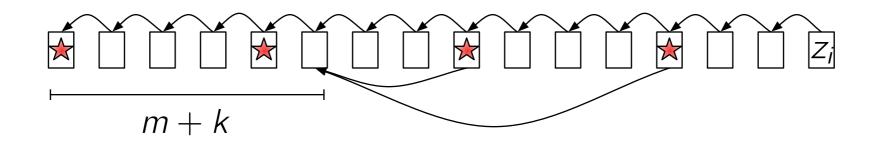
- Strategy:
 - Process Z from left-to-right.
 - At z_i we compute all matches ending in the substring encoded by z_i .

Computing Overlapping Matches



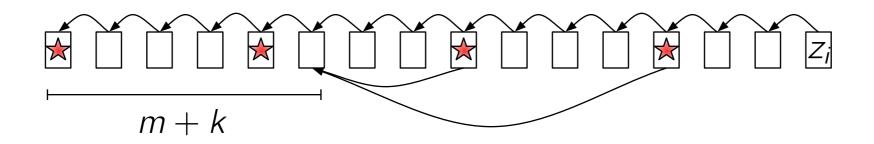
- Let $[u_i, u_i + l_i 1]$ be the positions in Q of phrase (z_i) .
- Goal: Find all *overlapping matches* for z_i , i.e., the matches starting before u_i and ending in $[u_i, u_i + l_i 1]$.
- Decompress substrings rpre(z_i) and rsuf(z_{i-1}) of length m + k around u_i .
- Run favorite (uncompressed) approximate string matching algorithm to find matches of P in $rsuf(z_{i-1}) \cdot rpre(z_i)$. Add offset to these to get the overlapping matches for z_i .

Computing the Relevant Prefix and Suffix



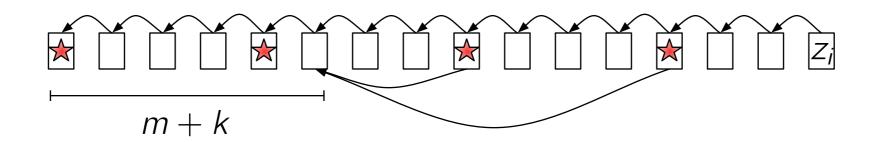
- For parameter $\tau \geq 1$, select a subset C of the compression elements of Z according to Lemma 1.
- For each element in C at distance more than m + k from Z_0 add "shortcut" to element at distance m + k.

Computing the Relevant Prefix



- Follow references to nearest element in C.
- Follow shortcut if present.
- Compute the relevant prefix by decompressing length m + k substring.

Computing the Relevant Suffix



- Follow references to decompress substring of length m + k.
- If the phrase is shorter than m + k, recursively apply to z_{i-1} until we have m + k characters.

Analysis

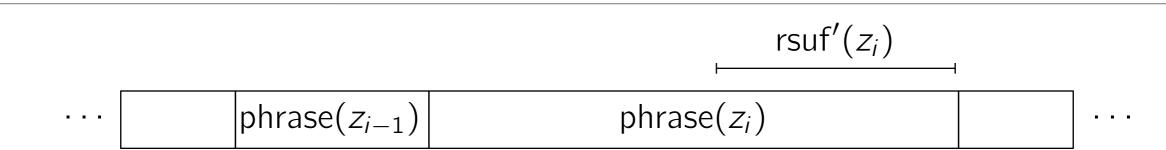
• Time = preprocess + n(find nearest element + decompress + match) =

$$O(n\tau + n(\tau + m + t(m, 2m + 2k, k)))$$

Space = preprocess + decompress + match =

$$O(n/\tau + m + s(m, 2m + 2k, k))$$

Computing Internal Matches



- Goal: Find all *internal matches* for z_i , i.e., all matches starting and ending within $[u_i, u_i + l_i 1]$.
- Compute and store all the internal match sets indexed by compression elements using dynamic perfect hashing.
- Decompress substring rsuf'(z_i) of length min(l_i , m + k) ending at $u_i + l_i 1$.
- Internal matches for z_i = (internal matches for reference(z_i)) () (matches of P in $rsuf'(z_i)$)

Analysis

• Time = n (decompress + match + internal matches) =

$$O(n(m+t(m,m+k,k))+occ)$$

• Space = decompress + match + total number of internal matches =

$$O(m+s(m,m+k,k)+occ)$$

Putting the Pieces Together

- Merging overlapping and internal matches we get *all* matches for z_i ending within $[u_i, u_i + l_i 1]$.
- Implies Theorem 1: For any parameter $\tau \geq 1$:
 - $O(n(\tau + m + t(m, 2m + 2k, k)) + occ)$ expected time and
 - $O(n/\tau + m + s(m, 2m + 2k, k)) + occ)$ space.
- Does not hold for ZLW compressed texts, unless $\Omega(n)$ space is used.
- For $\Omega(n)$ space the bounds hold in the worst-case and work for both ZL78 and ZLW.

Regular Expression Matching

- A regular expression is a generalized pattern composed from simple characters using union, concatenation, and Kleene star.
- Given a regular expression R and a string Q the regular expression matching problem is to find all ending positions of substrings in Q that matches a string in the language generated by R.

Regular Expression Matching

- Let |R| = m and |Q| = u.
- Classic solution [Thompson1968]: O(um) time and O(m) space.
- Several improvements based on the Four-Russian technique or word-level parallelism [Myers1992, NR2004, BFC2005, Bille2006].

Compressed Regular Expression Matching

- Let |R| = m and |Z| = n.
- Navarro [Navarro2003] simplified and without word-level parallel techniques:
 - $O(nm^2 + occ \cdot m \log m)$ time and $O(nm^2)$ space.
- Our result (Theorem 2): For any parameter $\tau \geq 1$:
 - $O(nm(m+\tau) + occ \cdot m \log m)$ time and
 - $O(nm^2/\tau + nm)$ space.
- E.g. $\tau = m$ gives $O(nm^2 + occ \cdot m \log m)$ time and O(nm) space.

Remarks

- Compressed strings are large and therefore $\Omega(n)$ space space may not be feasible for large texts.
- Our result for compressed approximate string matching is one of the very few algorithms for compressed matching that uses o(n) space.
- More sublinear space compressed string matching algorithms are needed!