
New Algorithms For
Regular Expression

Matching
ICALP 2006
Philip Bille

IT University of Copenhagen

Regular Expressions

• The regular expressions (regexs) are
defined recursively:

• A character is a regex.
• If and are regexs then so is

• the concatenation ,
• the union , and
• the kleene star .

S T

α ∈ Σ

ST

S|T

S
∗

Regular Expressions

• The language of a regex is
defined by:

•

L(R) R

L(α) = {α}

L(S|T) = L(S) ∪ L(T)

L(ST) = L(S)L(T)

L(S∗) = {ε} ∪ L(S) ∪ L(S)2 ∪ · · ·

Example

•
R = ac|a∗

b

L(R) = {ac, b, ab, aab, aaab, . . . , }

Regex Matching

• For regex and string the regex
matching problem is to decide if

• Classical solution: Convert R into a non-
deterministic finite automata (NFA) and
simulate it. E.g. Thompson [1968].

R Q

Q ∈ L(R)

Thompson’s Algorithm

α
N(T)ε ε ε

N(S)

N(ST)

N(S)
ε

N(T)
ε

ε

ε

N(S|T)

N(S)

ε

ε

ε ε

N(S∗)

N(α)

Thompson NFA

ba
ε

ε

a cε ε

ε ε

ε

ε

ε

ε ε ε
ε

ε

• Thompson-NFA (TNFA) for
• accepts iff there is path from

to that “spells” out .
• iff accepts .

R = ac|a∗
b

N(R) QQ ∈ L(R)

N(R) Q
Q

θ

φ

Properties of TNFAs

• Linear number of states and transitions.
• Incoming transitions to a state have the

same label.
• States with an incoming transition

labeled (-states) have exactly 1
predecessor.

α ∈ Σ α

Simulating TNFAs

• Let be TNFA with states. To test
acceptance we use the following
operations. Let be a state-set.

• : Find set of states reachable
from S via a single -transition.

• : Find set of states reachable
from via a path of -transitions.

• time for both operations.

Move(S, α)

Close(S)

A

S

O(m)

α

ε

m

S

Simulating TNFAs

• Let be a string of length
• The state-set simulation of on

produces state-sets

• iff .
• time and space.

A Q
S0, S1, . . . , Sn

S0 := Close({θ})

Si := Close(Move(Si−1, Q[i]))

Q n

Q ∈ L(R) φ ∈ Sn

O(nm) O(m)

[Tho68]

[Mye92],
[BFC05]

This
paper

Time Space Reference

Results











O(nm log w

w
+ m log w) if m > w

O(n log m + m log m) if
√

w < m ≤ w

O(min(n + m2, n log m + m log m)) if m ≤
√

w.

O

(

nm

log n
+ (n + m) log n

)

O(nm)

O(n)

O(m)

O(m)

Practical Issues

• Previous algorithms based on “Four-
Russian” technique.
• Large tables.
• Many expensive cache-misses.

• New solution based on fast bitwise and
arithmetic operations.

Simple Algorithm for
small TNFAs

• Suppose A is a TNFA with
states.

• Order the states such that the (unique)
predecessor of -state is .

• Represent state-set as bit string

• where iff in state-set.

m = O(
√

w)

α i i − 1

S = s1s2 . . . sm

si = 1 i

and is an -state.

Move Operation

• Precompute for each the string

• where iff is an -state
• is computed as:

α ∈ Σ

Dα = d1 . . . dm

di = 1 i α

Move(S, α)

S
′ := (S >> 1) & Dα

i ∈ S
′

i − 1 ∈ S i αiff

Close Operation

• Precompute the string

• where iff is -reachable from .
• and 3 constants:

I = (10m)m

X = 1(0m)m−1

C = 1(0m−1)m−1

ei,j = 1 i jε

E = 0e1,1 . . . e1,m0e2,1 . . . e2,m0 · · · 0em,1 . . . em,m

Close Operation

• is computed as:Close(S)

Y := (S × X) & E

Z := ((Y | I) − (I >> m)) & I

S
′ := ((Z × C) << w − m(m + 1)) >> w − m

Example

• Suppose and let
• proceeds as follows:

S = s1s2s3m = 3

Close(s1s2s3)

Step 1:

iff and is -reachable from . j ∈ Syi,j = 1 i jε

Y := (S × X) & E

y1,1y1,2y1,3 y3,3y2,2y2,3y2,1 y3,1y3,20 0 0

e1,1e1,2e1,3 e2,1e2,2e2,30 0 0 e3,1e3,2e3,3

s1 s2 s30s1 s2 s30s1 s2 s30

s1 s2 s3

0

0 0

0 0 0

s1 s2 s30
0

0 0

0 0 0

s1 s2 s30

1 0 0 1 00 0 10S × X = s1s2s3 ×

Y =

&

· · ·

· · ·

0

Step 2: Z := ((Y | I) − (I >> m)) & I

y1,1 y1,2y1,3 y3,3y2,2 y2,3y2,1 y3,1 y3,20 0 0

1 0 0 0 1 1 0 0 00 0 0

y1,1y1,2y1,3 y3,3y2,2y2,3y2,1 y3,1y3,21 1 1

1000 1 10 00 0 0 0

z1 z2 z3∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 0 1 1 0 0 00 0 0

z1 z2 z30 0 0 0 0 00 0 0

Y

|I

−(I >> 3)

& I
Z =

zi = 1 iff is -reachable.i ε

Step 3:
S
′ := ((Z × C) << w − m(m + 1)) >> w − m

Z × C

0 0 0z3

=

z2

×

0 0 0z1 z1 z2z1 z3z2 z3

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0

1001001z1000z2000z3

Step 3:
S
′ := ((Z × C) << w − m(m + 1)) >> w − m

Z × C

0 0 0z3

=

z2

×

0 0 0z1 z1 z2z1 z3z2 z3

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0

1001001z1000z2000z3

Step 3:
S
′ := ((Z × C) << w − m(m + 1)) >> w − m

Z × C

0 0 0z3

=

z2

×

0 0 0z1 z1 z2z1 z3z2 z3

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0
0

0

0 0 z3z2 0z1 0 0 0

1001001z1000z2000z3

Shifting gives S
′
= z1z2z3

Result

• Lemma For TNFAs with
states we can support and
in time using space and
preprocessing.

• For string and regex of lengths
and resp. regex matching
can be solved in time and
space.

m = O(
√

w)
Move Close

O(m2)O(m)O(1)

O(m2 + n)

⇒ Q R n

O(m)
m = O(

√

w)

Another Algorithm

• Main bottleneck: Need an length
string to represent the transitive closure
of -transitions.

• Idea: Compute a “good” separator for
TNFAs and use a Divide-and-Conquer
strategy.

Ω(m2)

ε

PO
PI

θPI
θPO

φPO
φPI

• There exists two states and
whose removal partitions a TNFA into
two subgraphs, and , of roughly
equal size.

• Any path from to goes through

• Any path from to goes through

θPI
φPI

PI PO

PO PI θPI

PI PO φPI

• Determine which of and are
-reachable

• Update the state-set.
• Recurse in parallel on and .

θPI
φPI

PI PO

ε

Recursive Closure

• levels of recursion, each level
can be handled in parallel in time.

• Lemma For TNFAs with
states we can support and
in time using space
and preprocessing.

• For string and regex of lengths
and resp. regex matching
can be solved in
time and space.

O(log m)
O(1)

Q R n

m = O(w)

O(log m)
O(m log m)

O(m)

m = O(w)
Move Close

⇒

O(m)
O(n log m + m log m)

