NEW ALGORITHMS FOR
REGULAR EXPRESSION
MATCHING

ICALP 2006
PHILIP BILLE
IT UNIVERSITY OF COPENHAGEN



REGULAR EXPRESSIONS

e The reqular expressions (regexs) are
defined recursively:

e A character & € X is a regex.
e If Sand 1’ are regexs then so is
o the concatenation ST,

9 =hane.

e the kleene star SX

e the union S




REGULAR EXPRESSIONS

e The language L(R) of a regex R is
defined by:

L(a) = {o}
L(ST) = L(S)L(T)
L(S|T) = L(S) U L(T)
Sc — LU L (S)U B(SED



EXAMPLE

R = acla™b
o L(R)={ac,b,ab,aab,aaab,...,}



REGEX MATCHING

e For regex R and string () the regex
matching problem is to decide if Q) € L(R)

¢ (Classical solution: Convert R into a non-
deterministic finite automata (NFA) and
simulate it. E.g. Thompson [1968].



THOMPSON’S ALGORITHM




THOMPSON NFA

&p&&@o\
o~o~o~o~o~o/

o Thompson-NFA (TNFA) for R = acla™b

e N(R) accepts (Q iff there is path from 6
to ¢ that “spells” out ().

e () € L(R)iff N(R) accepts Q.



PROPERTIES OF TNFAS

e [inear number of states and transitions.

e Incoming transitions to a state have the
same label.

e States with an incoming transition
labeled « € > (o-states) have exactly 1
predecessor.



SIMULATING TNFAS

Let A be TNFA with m states. To test
acceptance we use the following
operations. Let S be a state-set.

Move(.S, a): Find set of states reachable
from S via a single a-transition.

Close(.S): Find set of states reachable
from S via a path of e-transitions.

O(m) time for both operations.



SIMULATING TNFAS

e Let()be a string of length n

e The state-set simulation of A on @
produces state-sets Sg, 91, .. .,9n

So := Close({6})

S; := Close(Move(S;_1,Q|i]))
e () € L(R)iff ¢ € 5.
e O(nm)time and O(m)space.



|

RESULTS

Time

O(nm)

Space

c><”m’+cn+nnkgn)

logn

O(n™eY | 1y log w)

w

O(nlogm + mlogm)
O(min(n + m?,nlogm + mlogm))

it m > w
if vw <m <w

if m < y/w.

O(m)

Reference

[Thoo68]

[Myeog2],
[BFCosl

This
paper



PRACTICAL ISSUES

e Previous algorithms based on “Four-
Russian” technique.

e [arge tables.
e Many expensive cache-misses.

e New solution based on fast bitwise and
arithmetic operations.



SIMPLE ALGORITHM FOR
SMALL TNFAS

Suppose A is a TNFA with m = O(y/w)
states.

Order the states such that the (unique)
predecessor of «-state ¢ is 7 — 1.

Represent state-set as bit string
M=o s i echn

where s, = 1 iff ¢in state-set.



MOVE OPERATION

e Precompute for each o € X the string
e = s Uy
e where d; = 1 iff; isan «-state
e Move(S, a) is computed as:
S — (S>> 1 B
1€ S’ iff { —1€& S and iis an a-state.



CLOSE OPERATION

e Precompute the string

i — 061,1 R 61,m0€2,1 i Gg,m() s Oem,l - Cmom

e wheree; ; = 1 iff ¢ is e-reachable from j.

e and 3 constants:
[ = (10m)™
e 02"
AN A




CLOSE OPERATION

o Close(5)is computed as:

=5 < X)) & E
Z=((Y|I)—{I>>m)) &I
(7 < O0) << w—m(m+ 1)) >> w



EXAMPLE

e Suppose m = 3 and let S = 515253

e Close(s1s9s3) proceeds as follows:



STEP 1:Y = (Sx X)&FE
BREAE=—1515253 x 1 0 0 O 1 0 0+ 0Nl
0 S1 S2 S3
0 0 O
0 0
0
0 S1 S2 S3
0 0 O
0 0
0

0o Sy &8
081 S9 83081 S92 83081 SS9 S3
& 0erre12e130€ez1€20e230€31€32€33
Y = 0Y1,1Y1,2Y1.30Y2,1Y2,2Y2.30Y3,1Y3,2Y3.3

yy s — Liff g € S and 1is e-reachablefrom 7.



STEP 2: Z=(Y|I)—(I>>m)) &I

Y 0Y1,1Y1,2Y1.30Y2.1Y2.2Y2.30Y3,1Y3,2Y3.3
] 0 0 01 0 0 01 O ONs

LYy1,1Y1,2Y1,31Y2,1Y2,2Y2.31Y3,1Y3.2Y3,3
Bee - 3) 00 0 100 0 100 05

<1 3k A Pr SR e SR S5 2 Shae e
el 00 0 0 1 0 0 0 105 siS
Z=z10 0 0220 0 020 0 0

z; = 1 iff 7 is e-reachable.



STEEP 3:
= ((Z X C) <<w—m(m+1)) >> w1

Z x C = 210002200023 x1 0 0 1 0 0 1
210 0 0 220 0 0 23
0
0

zt 0 0 0 22 0 0 0 =23

ammiEegE0r 22 0 0 0 23
RSS20 () 21 22 23 (0 22 Z23 (e




STEEP 3:
= ((Z X C) <<w—m(m+1)) >> w1

O
-
—

7 x C = z100025000z3 x1 0 0 1
1. 0 0 0 20 0 0 =23

zt 0 0 0 22 0 0 0 =23

SR ) 22 0 0.0 2

20 0 %12 0Q %2290 22 0 0 2




STEEP 3:
= ((Z X C) <<w—m(m+1)) >> w1

O
-
—

7 x C = z100025000z3 x1 0 0 1
1. 0 0 0 20 0 0 =23

zt 0 0 0 22 0 0 0 =23

0
SR ) 22 0 0.0 2

20 0 %12 0Q %2290 22 0 0 2

Shifting gives S = 212923




RESULT

e Lemma For TNFAs withm = O(y/w)
states we can supportMove and Close
in O(1)time using O(m)space and O (m?)
preprocessing.

e — For string () and regex Rof lengths 7
and m = O(y/w) resp. regex matching
can be solved in O(m2 + n)time and O(m)
space.



ANOTHER ALGORITHM

e Main bottleneck: Need an Q(mQ)length
string to represent the transitive closure
of e-transitions.

e Jdea: Compute a “good” separator for
TNFAs and use a Divide-and-Conquer
strategy.



 There exists two states §p, and ¢ p;
whose removal partitions a TNFA into
two subgraphs, P; and Fp, of roughly

equal size.
e Any path from Pp to Pr goes through 0p,

e Any path from P to Pp goes through Op,



RECURSIVE CLOSURE

e Determine which of fp, and ¢p; are
e-reachable

e Update the state-set.

e Recurse in parallel on Prand Fp.



e O(logm) levels of recursion, each level
can be handled in parallel in O(1) time.

e Lemma For TNFAs with m = O(w)
states we can support Move and Close
in O(logm) time using O(m) space
and O(m log m) preprocessing.

e — For string ()and regex R of lengths 7
and m = O(w) resp. regex matching
can be solved in O(nlog m + mlogm)
time and O (m) space.



