NEW ALGORITHMS FOR REGULAR EXPRESSION MATCHING

ICALP 2006 PHILIP BILLE IT UNIVERSITY OF COPENHAGEN

REGULAR EXPRESSIONS

- The *regular expressions* (regexs) are defined recursively:
- A character $\alpha \in \Sigma$ is a regex.
- If S and T are regexs then so is
 - the concatenation *ST*,
 - the union S|T, and
 - the kleene star S^* .

REGULAR EXPRESSIONS

- The *language* L(R) of a regex R is defined by:
- $L(\alpha) = \{\alpha\}$ L(ST) = L(S)L(T) $L(S|T) = L(S) \cup L(T)$ • $L(S^*) = \{\epsilon\} \cup L(S) \cup L(S)^2 \cup \cdots$

EXAMPLE

 $R = ac|a^*b$ • $L(R) = \{ac, b, ab, aab, aaab, \dots, \}$

REGEX MATCHING

- For regex R and string Q the regex matching problem is to decide if $Q \in L(R)$
- **Classical solution:** Convert R into a *nondeterministic finite automata* (NFA) and *simulate* it. E.g. Thompson [1968].

THOMPSON'S ALGORITHM

THOMPSON NFA

- Thompson-NFA (TNFA) for $R = ac|a^*b$
- N(R) accepts Q iff there is path from θ to φ that "spells" out Q.
- $Q \in L(R)$ iff N(R) accepts Q.

PROPERTIES OF TNFAS

- Linear number of states and transitions.
- Incoming transitions to a state have the same label.
- States with an incoming transition labeled $\alpha \in \Sigma$ (α -states) have exactly 1 predecessor.

SIMULATING TNFAS

- Let *A* be TNFA with *m* states. To test acceptance we use the following operations. Let *S* be a state-set.
- Move(S, α): Find set of states reachable from S via a single α-transition.
- Close(S): Find set of states reachable from S via a path of ϵ -transitions.
- O(m) time for both operations.

SIMULATING TNFAS

- Let Q be a string of length n
- The state-set simulation of A on Q produces state-sets S₀, S₁,..., S_n
 S₀ := Close({θ})
 - $S_i := \mathsf{Close}(\mathsf{Move}(S_{i-1}, Q[i]))$
- $Q \in L(R)$ iff $\phi \in S_n$.
- O(nm) time and O(m) space.

RESULTS

Time	Spa	ce	Reference
O(nm)		O(m)	[Tho68]
$O\left(\frac{nm}{\log n} + (n+m)\log n\right)$	$\log n$	O(n)	[Mye92], [BFC05]
$\begin{cases} O(n\frac{m\log w}{w} + m\log w) \\ O(n\log m + m\log m) \\ O(\min(n + m^2, n\log m + m\log m)) \end{cases}$	$ \begin{array}{l} \text{if } m > w \\ \text{if } \sqrt{w} < m \leq w \\ \text{if } m \leq \sqrt{w}. \end{array} \end{array} $	O(m)	This paper

PRACTICAL ISSUES

- Previous algorithms based on "Four-Russian" technique.
 - Large tables.
 - Many expensive cache-misses.
- New solution based on fast bitwise and arithmetic operations.

SIMPLE ÅLGORITHM FOR SMALL TNFAS

- Suppose A is a TNFA with $m = O(\sqrt{w})$ states.
- Order the states such that the (unique) predecessor of α -state *i* is i 1.
- Represent state-set as bit string

$$S = s_1 s_2 \dots s_m$$

• where $s_i = 1$ iff *i* in state-set.

MOVE OPERATION

- Precompute for each $\alpha \in \Sigma$ the string $D_{\alpha} = d_1 \dots d_m$
- where $d_i = 1$ iff *i* is an α -state
- $Move(S, \alpha)$ is computed as:
 - $S' := (S >> 1) \& D_{\alpha}$ $i \in S' \text{ iff } i - 1 \in S \text{ and } i \text{ is an } \alpha \text{-state.}$

CLOSE OPERATION

- Precompute the string $E = 0e_{1,1} \dots e_{1,m} 0e_{2,1} \dots e_{2,m} 0 \dots 0e_{m,1} \dots e_{m,m}$
- where $e_{i,j} = 1$ iff *i* is ϵ -reachable from *j*.
- and 3 constants:

$$I = (10^{m})^{m}$$
$$X = 1(0^{m})^{m-1}$$
$$C = 1(0^{m-1})^{m-1}$$

CLOSE OPERATION

• Close(S) is computed as:

$$Y := (S \times X) \& E$$

$$Z := ((Y | I) - (I >> m)) \& I$$

$$S' := ((Z \times C) << w - m(m+1)) >> w - m$$

EXAMPLE

- Suppose m = 3 and let $S = s_1 s_2 s_3$
- $Close(s_1s_2s_3)$ proceeds as follows:

STEP 1: $Y := (S \times X) \& E$

 $y_{i,j} = 1$ iff $j \in S$ and i is ϵ -reachable from j.

STEP 2: Z := ((Y | I) - (I >> m)) & I

Y $0 y_{1,1} y_{1,2} y_{1,3} 0 y_{2,1} y_{2,2} y_{2,3} 0 y_{3,1} y_{3,2} y_{3,3}$ |I| $1 \ 0$ $0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$ () $1 y_{1,1} y_{1,2} y_{1,3} 1 y_{2,1} y_{2,2} y_{2,3} 1 y_{3,1} y_{3,2} y_{3,3}$ -(I >> 3) $0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$ ()1 $z_1 * * * z_2 * * * z_3 * * *$ & I 1 0 0 0 1 0 0 1 0 0 1 0 0 0 $Z = \overline{z_1} \ 0 \ 0 \ 0 \ z_2 \ 0 \ 0$ $0 \ z_3 \ 0$ $\mathbf{0}$ 0

 $z_i = 1$ iff *i* is ϵ -reachable.

STEP 3: $S' := ((Z \times C) << w - m(m+1)) >> w - m$

$$Z \times C = \frac{z_1 000 z_2 000 z_3 \times 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1}{z_1 \quad 0 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad 0 \quad z_3} \\ \begin{array}{c} & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\$$

STEP 3: $S' := ((Z \times C) << w - m(m+1)) >> w - m$

$$Z \times C = \frac{z_1 000 z_2 000 z_3 \times 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1}{z_1 \quad 0 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad 0 \quad z_3}$$

$$z_1 \quad 0 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad 0 \quad z_3 \quad 0$$

$$0 \quad 0 \quad z_1 \quad z_2 \quad 0 \quad 0 \quad z_3 \quad 0$$

$$z_1 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad z_3 \quad 0$$

$$z_1 \quad 0 \quad 0 \quad z_1 \quad z_2 \quad 0 \quad z_1 \quad z_2 \quad z_3 \quad 0 \quad z_2 \quad z_3 \quad 0 \quad 0 \quad z_3$$

STEP 3: $S' := ((Z \times C) << w - m(m+1)) >> w - m$

$$Z \times C = \frac{z_1 000 z_2 000 z_3 \times 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1}{z_1 \quad 0 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad 0 \quad z_3}$$

$$z_1 \quad 0 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad 0 \quad z_3$$

$$0$$

$$z_1 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad z_3$$

$$0$$

$$z_1 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad z_3$$

$$z_1 \quad 0 \quad 0 \quad z_2 \quad 0 \quad 0 \quad z_3$$

$$z_1 \quad 0 \quad 0 \quad z_1 \quad z_2 \quad 0 \quad z_1 \quad z_2 \quad z_3 \quad 0 \quad z_2 \quad z_3 \quad 0 \quad 0 \quad z_3$$

Shifting gives $S' = z_1 z_2 z_3$

RESULT

- Lemma For TNFAs with $m = O(\sqrt{w})$ states we can support Move and Close in O(1)time using O(m)space and $O(m^2)$ preprocessing.
- \Rightarrow For string Q and regex R of lengths nand $m = O(\sqrt{w})$ resp. regex matching can be solved in $O(m^2 + n)$ time and O(m)space.

ANOTHER ALGORITHM

- Main bottleneck: Need an Ω(m²) length string to represent the transitive closure of *ε*-transitions.
- Idea: Compute a "good" separator for TNFAs and use a Divide-and-Conquer strategy.

- There exists two states θ_{P_I} and ϕ_{P_I} whose removal partitions a TNFA into two subgraphs, P_I and P_O , of roughly equal size.
- Any path from P_O to P_I goes through θ_{P_I}
- Any path from P_I to P_O goes through ϕ_{P_I}

RECURSIVE CLOSURE

- Determine which of θ_{P_I} and ϕ_{P_I} are ϵ -reachable
- Update the state-set.
- Recurse in parallel on P_I and P_O .

- O(log m) levels of recursion, each level can be handled in parallel in O(1) time.
- Lemma For TNFAs with m = O(w) states we can support Move and Close in O(log m) time using O(m) space and O(m log m) preprocessing.
- \Rightarrow For string Q and regex R of lengths nand m = O(w) resp. regex matching can be solved in $O(n \log m + m \log m)$ time and O(m) space.