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Abstract. Many attempts have been made to represent families of 2D
shapes in a simpler way. These approaches lead to so-called structures
as the Symmetry Set (SS) and a subset of it, the Medial Axis (MA).
In this paper a novel method to represent the SS as a string is presen-
ted. This structure is related to so-called arc-annotated sequences, and
allows faster and simpler query algorithms for comparison and database
applications than graph structures, used to represent the MA.
Example shapes are shown and their data structures derived. They show
the stability and robustness of the SS and its string representation.

1 Introduction

In 2D shape analysis the simplification of shapes into a skeleton-like structure
is widely investigated. The Medial Axis (MA) skeleton presented by Blum [1]
is commonly used, since it is an intuitive representation that nowadays can be
calculated in a fast and robust way. In so-called Shock Graphs, an MA skeleton
is augmented with information of the distance from the boundary at which
special skeleton points occurs, as suggested by Blum. Many impressive results
on simplification, reconstruction and database search are reported, see e.g. [2,3,
4,5,6,7,8].

The MA is a member of a larger family, the Symmetry Set (SS) [9], exhibit-
ing nice mathematical properties, but more difficult to compute than the MA.
It also yields distinct branches, i.e. unconnected ”skeleton” parts, which makes
it hard to fit into a graph structure (like the MA) for representation. In section
2 the definitions of these sets and related properties are given.

To overcome the complexity of the SS with respect to the MA, we introduce
in section 3 a sequentional data structure containing both the symmetry set and
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the evolute of the shape, resulting in a representational structure that is less
complex and more robust than the MA-based structure, a graph. It is related
to the so-called arc-annotated sequence [10,11], and allows faster and simpler
query algorithms for comparison of objects and all kinds of object database
applications.

Examples are given on a convex shape, showing the stability and robustness
of the new data structure, in section 4, followed by the conclusions in section 5.

2 Background on Shapes

In this section we give the necessary background regarding properties of shapes,
the Medial Axis, the Symmetry Set, and the labeling of points on these sets. For
more details, see e.g. [9,6].

Let S(x(t), y(t)) denote a closed 2D shape and (.)t = ∂(.)
∂t , then N (t) =

(−yt, xt)/
√

x2
t + y2

t denotes its unit normal vector, and κ(t) = (xtytt − ytxtt)/√
x2

t + y2
t

3
is its curvature. The evolute E(t) is given by the set S + N/κ. Note

that as κ can traverse through zero, the evolute moves ”through” (minus) infinity.
This occurs by definition only for concave shapes. An alternative representation
can be given implicitly: S(x, y) = {(x, y)|L(x, y) = 0} for some function L(x, y).
Then the following formulae can be derived for N (x, y) and κ(x, y): N (x, y) =

(Lx, Ly)/
√

L2
x + L2

y and κ(x, y) = −(L2
xLyy − 2LxLyLxy +L2

yLxx)/
√

L2
x + L2

y

3

Although the curve is smooth and differentiable, the evolute contains non-smooth
and non-differentiable cusp points, viz. those where the curvature is zero or takes
a local extremum, respectively.

2.1 Medial Axis and Symmetry Set

The Medial Axis (MA) is defined as the closure of the set of centers of circles
that are tangent to the shape at at least two points and that contain no other
tangent circles: they are so-called maximal circles. The Symmetry Set SS is
defined as the closure of the set of centers of circles that are tangent to the
shape at at least two points [9,12,13,14]. Obviously, the MA is a subset of the
SS [14].

This is illustrated in Figure 1a. The two points p1 and p2 lie on a maximal
circle and give rise to a MA and SS point. The points p1 and p4 give rise to a
SS point.

To calculate these sets, the following procedure can be used, see Figure 1b:
Let a circle with unknown location be tangent to the shape at two points. Then
its center can be found by using the normalvectors at these points: it is located
at the position of each point minus the radius of the circle times the normal
vector at each point.

To find these two points, the location of the center and the radius, do the
following: Given two vectors pi and pj (Figure 1b, with i = 1 and j = 2)
pointing at two locations at the shape, construct the difference vector pi − pj .
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Fig. 1. a) Point p1 contributes to two tangent circles and thus two SS points. Only
the inner circle contributes to the MA. b) Deriving the Medial Axis and Symmetry
Set geometrically. See text for details.

Given the two unit normal vectors Ni and Nj at these locations, construct the
vector Ni + Nj . If the two constructed vectors are non-zero and perpendicular,

(pi − pj).(Ni ± Nj) = 0, (1)

the two locations give rise to a tangent circle. The radius r and the center of the
circle are given by

pi − rNi = pj ± rNj (2)

and for the MA one only has to make sure that the circle is maximal. In the
remainder of this paper we focus on the SS.

2.2 Classification of Points on the Symmetry Set

It has been shown by Bruce et al. [12] that only five distict types of points can
occur for the SS, and by Giblin et al. [13,14] that they are inherited by the MA.

– An A2
1 point is the ”common” midpoint of a circle tangent at two distinct

points of the shape.
– An A1A2 point is the midpoint of a circle tangent at two distinct points of

the shape but located at the evolute.
– An A2

1A
2
1 point is the midpoint of two circles tangent at two pairs of distinct

points of the shape with different radii.
– An A3

1 point is the midpoint of one circle tangent at three distinct points of
the shape.

– An A3 point is the midpoint of a circle located at the evolute and tangent
at the point of the shape with the local extremal curvature.
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2.3 Properties of the Symmetry Set

Since the SS is defined locally, global properties of it are not widely investigated
and difficult to derive. Banchoff and Giblin [15] have proven an invariant to
hold for the number of A3, A1A2, and A3

1 points, both for the continuous case
as the piecewise one. These numbers hold if the shape changes in such a way
that the SS changes significantly. At these changes, called transitions [16], a
so-called non-generic event for a static SS occurs, for instance the presence of a
circle tangent to four points of the shape. Sometimes the number of A3, A1A2,
and A3

1 points changes when the SS goes through a transition. For the MA
part it implies e.g. the birth of a new branch of the skeleton. A list of possible
transitions, derived from [16] is given in section 3.3.

3 A Linear Data Structure for the Symmetry Set

One of the main advantages of the SS is the possibility to represent it as a
linear data structure. In general, such a structure is faster to query (according
to e.g. [10,11]) than graph structures - the result of methods based on the MA.
The fact that the SS is a larger, more complicated set than the MA turns out
to be advantageous in generating a simpler data structure. In this section the
structure is described, together with the stability issues. Examples are given in
section 4. Details on the implementations are given in [17].

3.1 Construction of the Data Structure

The data structure contains the elements described in the previous sections: The
SS, its special points and the evolute. They are combined in the following way
(see also [17]) for an arbitrary planar shape:

1. Parameterize the shape.
2. Get the order of the cusps of the evolute by following the parameterization.
3. Find for the SS the A3 points: they form the end of individual branches.
4. Relate each cusp of the evolute to an A3 point.
5. Link the cusps that are on the same branch of the SS.
6. Augment the links with labels, related to the other special points that take

place when traveling from one cusp point to the other along the SS-branch.
7. Assign the same label to different branches if an events involves the diffe-

rent branches: the crossings at A3
1 (three identical labels) and A2

1/A
2
1 (two

identical labels) points. The latter can be left out, since they occur due to
projection.

8. Insert moth branches (explained below) between two times two cusps as void
cusps.

9. Done.

Moth branches [16] are SS branches without A3 points. They contain four
A1A2 points, that are located on the evolute. Each point is connected by the SS
branch to two other points along the moth.
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The data structure thus contains the A3 points in order, links between pairs of
them and augments along the links. Alternatively, one can think of a construction
of a set of strings (the links), where each string contains the special points of
the SS along the branch represented by the string. Figure 3 gives an example of
the SS and evolute of a shape, and the derived datastructure.

3.2 Modified Data Structure

Since the introduction of void cusps due to moth branches violates the idea of
using only the A3 points as nodes, a modified structure can be used as well.
In this structure the nodes contain A3 and A1A2 points. These can be lined
up easily, since the A1A2 points are located on the evolute between A3 points.
The linked connections made (strings) are now the subbranches of the SS. The
augmentation now only consists of the crossings of subbranches (either at A3

1,
or at both A3

1 and A2
1/A

2
1). This is shown in the bottom row of Figure 3.

3.3 Transitions

In this section the known transitions of the SS [16] in relation to the proposed
data structure is presented. The similar thing has been done in the work on
comparision of different Shock Graphs, yielding meaningful possible changes of
the SG [13,4,5,6,7].

– At an A4
1 transition a collision of A3

1 points appears. Before and after the
transition six lines, four A3

1 points and three A2
1/A

2
1 occur. The result on the

MA is a reordering of the connection of two connected Y-parts of the skele-
ton. For the SS, however, the Y-parts are the visible parts of SS branches
going through A3

1 points. So for the SS representation nothing changes.
– At an A1A3 transition, a cusp of the evolute (and thus an endpart of a SS

branch including a A3 point) intersects a branch of the SS and an A3
1 point

as well as two A1A2 points are created or annihilated. The A3
1 point lies on

the A3 containing branch, while the other branch contains a “triangle” with
the A3

1 and the A1A2’s as cornerpoints: the strings A3[1]−a and b change to
A3[1]−A2

1/A
2
1[1]−A3

1[1]−a and b1 −A3
1[1]−A1A2[1]−A2

1/A
2
1[1]−A1A2[2]−

A3
1[1] − b2, vice versa.

– The A4 transition corresponds to creation or annihilation of a swallowtail
structure of the evolute and the creation or annihilation of the enclosed SS
branch with two A3 and two A1A2 points: the string A3[1] − A2

1/A
2
1[1] −

A1A2[1] − A1A2[2] − A2
1/A

2
1[1] − A3[2].

– At an A2
1A2 transition two non-intersecting A1A2-containing branches meet

a third SS branch at the evolute, creating two times three different branches
intersecting at two A3

1 points. Or the inverse transition occurs: the strings
a, b1 − A1A2[1] − b2 and c1 − A1A2[2] − c2 become a1 − A3

1[1] − A3
1[2] − a3,

b1 − A3
1[1] − A1A2[1] − A2

1/A
2
1[1] − A3

1[2] − b2 and c1 − A3
1[1] − A2

1/A
2
1[1] −

A1A2[2] − A3
1[2] − c2, vice versa.
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– The A2
2 moth transition describes the creation or annihilation of a SS branch

containing only four A1A2 and no A3 points. These points lie pairwise on
two opposite parts of the evolute. each point is connected via the SS to
the two points on the opposite part of the evolute: the strings A1A2[1] −
A2

1/A
2
1[1] − A1A2[3] − A1A2[2] − A2

1/A
2
1[1] − A1A2[4], if the pairs 1,2 and 3,4

are one the same part of the evolute.
– When going through an A2

2 nib transition, two branches of the SS, each
containing an A1A2 point, meet and exchange a subbranch. The strings
a−A1A2[1]− b and c−A1A2[2]−d become a−A1A2[1]− c1 −A2

1/A
2
1[1]− c2

and b1 − A2
1/A

2
1[1] − b2 − A1A2[2] − d.

Stability. The possible transitions as given above invoke only deletion, insertion
or reordering of special points or branches on the data structure in an exact
and pre-described manner. It is therefore a robust and stable description of the
original shape.

Arc-annotated sequences. The structure as described above is strongly re-
lated to the so-called arc-annotated sequences used for RNA sequence matching
and comparison. It allows the elementary edit-distance - with the insert, delete
and replacement operations - as a measure of (dis)similarity between two RNA
structures. The operations are directly related to the transitions as described
above. For more details on this structure, the reader is referred to [10,11].

Not for the MA. The string representation is not suitable for the MA: Since
the MA is a subset of the SS, of the string only a subset of the A3 points are
part of the MA (less or equal than half of the number of points). But worse, the
connections between two A3 points can consist of unconnected segments. This is
due to the fact that at the SS all local extrema of the curvature are taken into
account, in contrast to the MA.

4 Example: The Cubic Oval

As example shape the closed part of a cubic oval is taken, which is implicitly
given by f(x, y; a, b) = 2bxy + a2(x − x3) − y2 = 0 and x ≥ 0. Although this is a
very simple shape, it clearly shows all the possible points of the SS and yields
a data structure that can be visually verified. Complicated shapes (e.g. those
from ”Shape Indexing of Image Databases (SIID)” [4]) generate strings that are
too complicated to discuss in detail without having seen the elementary building
blocks of the string structure.

Figure 2a shows this shape for a = 1.025 and b = 0.09, 0.15, 0.30. Changing
one of these parameters, one is likely to encounter one of the transitions described
above. On this shape with these values for the parameters, six extrema of the
curvature occur, while the curvature doesn’t change sign and the shape is thus
convex. Firstly the case a = 1.025 and b = 0.09 is considered [12].
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Fig. 2. a) The cubic oval for a = 1.025 and b = .09 (thick, dashed), b = .15 (interme-
diate thickness, dashed), and b = .30 (thin, continuous). The evolute and the SS of he
cubic oval for a=1.025 and b) b=.09 c) b=.15 d) b=.30

4.1 Symmetry Set

The two extra extrema of the curvature, compared to the ellipse, arise from a
perturbation of the shape involving an A4 transition1. A direct consequence is
that a new branch of the SS is created. In Figure 3b the complete SS with the
evolute is visualized. The newly created branch has the shape of a swallowtail,
as expected from the A4 transition.

Since the extrema of the curvature alternate along the shape, a maximum and
a minimum are created. As a prerequisite of the A4 transition, the evolute is self-
intersecting. Furthermore, the evolute contains six cusps. A direct consequence
is that the new branch of the SS that is created, since branches always start in
the cusps, must be essentially different from the two other branches, since the
original branches start in cusps that both arise from either local maxima of the
curvature, or minima. The newly created branch, however, has endpoints due to
a minimum and a maximum of the curvature, so its behaviour must be different.
Since real intersections - A3

1 points - always involve 3 segments, a close-up is
needed there.

The newly created branch introduces besides the A3 and A2
1/A

2
1 points the

other types of special points, viz. the A3
1 and A1A2 points, as shown in Figure 3a.

The points are marked with dots on top of them. There are six A3 points on the
cusps of the evolute, four A1A2 points on the evolute close to the selfintersection
part, three A2

1/A
2
1 points and one A3

1 point. The latter can be seen in more detail
in the close-up in Figure 3b. It is close to two A1A2 points and an A2

1/A
2
1 point.

4.2 Data Structure

To obtain the data structure, the first cusp of the evolute (A3 of the SS), is the
one in the middle at the bottom. The others are taken clockwise. Then the SS
consists of the branches 1 − 3, 2 − 4, and 5 − 6. Branch 1 − 3 intersects 2 − 4 at
the first A2

1/A
2
1 point. The close-up of the branch 4 − 5, Figure 3 toprow right,

gives insight in the behaviour around this part of the SS.
The branches 2 − 4 and 5 − 6 each contain two A1A2 points. Both branches

intersect at an A3
1 point, which is close to the two A1A2 points of branch 2 − 4:

1 For b = 0 and a = .5 an egg-shape is obtained with a SS similar to the ellipse,
although the vertical branch is curved.
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Fig. 3. Top: a) The evolute and the SS of the oval for b = 0.09. The contour with
points is the evolute. The point A3[1], a cusp point of the evolute and an endpoint of
an SS branch, is located at the bottom in the middle, while A3[3] is located at the top
in the middle. b) Close-up, showing the A3

1 point and the branch A3(5) (bottom left)
- A3(6) (top right). Middle: String representation of the SS. Bottom: Modified string
representation.
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At this point two subbranches of branch 2 − 4 (the ones combing the A3’s with
the A1A2’s) and branch 4 − 5 intersect. Just above this point, branch 5 − 6
intersects a subbranches of branch 2 − 4 (the one combing the A1A2’s) in the
second A2

1/A
2
1 point. Finally, two subbranches of branch 2−4 (the ones combing

the A3’s with the A1A2’s) intersect at the third A2
1/A

2
1 point.

So the data structure is given by the string and the links of Figure 3, middle
row. The modified data structure is given by the string and the links of Figure 3,
bottom row. The latter representation clearly decreases the number of augments,
but increases the number of points along the string, and thus the number of links.
The difference along the string between A3 points and A1A2 points is due to the
number of links starting and ending at a point. An A3 point has one link, an
A1A2 point two. Note that ignoring the projective A2

1/A
2
1 points, the second

data structure contains only A3
1 points as augments.

The dashed horizontal line is in fact the evolute of the shape for both re-
presentations. It is cut between the points A3[1] and A1A2[3]. Therefore the
representation is independent of starting point, since the two ends of the string
are connected (and thus forming the evolute). It can be cut almost everywhere
(albeit not at A3 and A1A2 points).

4.3 Transitions

When b is increased the shape modifies according to Figure 2a. The symmetry
set changes also when b is increased, as shown in Figure 2b-d. At two stages
a ”significant” change takes place: one of the aforementioned transitions. In
the following sections the resulting symmetry sets and data structures after the
transitions are given. Note that it is non-generic to encounter exactly a situation
at which a transition occurs, it is only clear that transitions have been traversed.

Annihilation of the A3
1 point. When b increases to 0.15, branch 4−5 releases

branch 2−6, see the top row of Figure 4, annihilating the involved special points.
This is a typical example of an A1A3 transition. The data structures are now
given by the string and the links of Figure 4, middle and bottom row.

Creation of an A3
1 point. When b increases further to b = 0.30, again an A1A3

transition occurs, this time the other way round. Now branch 4 − 5 intersects
branch 1 − 3, creating the necessary involved special points, see the top row of
Figure 5. The data structures are now given by the string and the links of Figure
5, middle and bottom row.

Stability. One can verify that the structure obtained for b = 0.09 and b = 0.30
are not identical up to rotational invariance, due to the ordering of the cusps
of the evolute. With respect to the MA representation, the first A3

1 point does
not contribute to the MA, since the MA consists of the connected component
with the smallest radius. For b = 0.09, this is only a curve (the vertical oriented
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Fig. 4. Top: a) The evolute and the SS of the oval for b = 0.15. The contour with
points is the evolute. The point A3[1], a cusp point of the evolute and an endpoint of
an SS branch, is located at the bottom in the middle, while A3[3] is located at the
top in the middle. b) Close-up, showing that the A3

1 point has disappeared from the
branch A3(5) (middle left) - A3(6) (top right). Middle: String representation of the SS.
Bottom: Modified string representation.
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Fig. 5. Top:a) The evolute and the SS of the oval for b = 0.30. The contour with
points is the evolute. The point A3[1], a cusp point of the evolute and an endpoint of
an SS branch, is located at the bottom in the middle, while A3[3] is located at the top
in the middle. b) Close-up, showing again an A3

1 point at the branch A3(5) (middle
left) - A3(6) (top right). Middle: String representation of the SS. Bottom: Modified
string representation.
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one of the SS). For b = 0.30, however, the swallowtail intersects this part and
the MA-skeleton now contains an extra branch, pointing from the A3

1 point to
the left. This event is known as an instability of the MA, although it satisfies
the known transitions. Regarding it as instability may come from the fact that
the number of branches of the MA is not related to the number of extrema of
the curvature of the shape, in contrast to the SS. Changing the shape without
changing the number of extrema of the curvature, the MA may gain or loose
branches. The MA of Figure 3 and 4 is just A3[1] − A3[3], but for Figure 5 it is
formed by the 3 linesegments A3[1] − A3

1[1], A3
1[1] − A3[3], and A3[5] − A3

1[1].

5 Conclusions

In this paper a new linear data structure representing a shape using its the
symmetry set (SS) is presented. This structure depends on the ordering of the
cusps of the evolute - related to the local extrema of the curvature of the shape,
as well as the A3 points on the SS. The A3 points are also the endpoints of
the branches of the SS. Cusps of the evolute that are connected by the SS are
linked in this data structure. Special points on the SS (where it touches the
evolute, the A1A2 points, as well as intersection points - both real and those due
to projection) are augmented on these links. A modified data structure takes all
the points with evolute interaction - the A3 and the A1A2 points - into account,
again in order along the evolute.

Although the SS is a larger set than the Medial Axis (MA) - even containing
it - the representing string structure - related to the arc annotated sequence - is
in complexity simpler than that for the MA, which yields a graph structure. This
allows (at least with respect to the theoretical complexity) faster algorithms for
the comparison of different shapes, as well as (large) database queries. Obviously,
a comparision study between these methods is needed, since lower computational
complexity doesn’t imply absolute faster query times.

The richer complexity of the SS prevents it from so-called instabilities that
occur in the MA. These ”instabilities” are due to parts of the SS that ”sud-
denly”, i.e. due to certain well-known transitions for the SS, become visible. Here
the underlying SS influences the MA, an argument for taking into account the
complete SS.

The only way to derive the SS is by means of a direct implementation of its
geometric definition. The complexity of the obtained algorithm is quadratic in
the number of points on the shape.

Examples of the data structures and the visualization methods are given
on an example shape. Stability issues are discussed in relation to the known
transitions, the significant changes of the SS. Their description is translated in
terms of the data structures, showing its stability and robustness. The proposed
method is also applicable to real shapes, like outlines.

Obviously, still some theoretical questions with respect to the data structure
and the SS are open. Although these questions are very interesting from both a
theoretical and practical point of view, they don’t influence the derivation and
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use of the proposed data structure in it self, but may result in a speed-up of
algorithms due to advanced label-checking and verification.
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