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Overview

Tomography is the mathematics, science, and engineering
used to reconstruct internal information about an object from
indirect data.

X-ray Computed Tomography (X-ray CT) reconstructs the
internal structure of the body from X-ray images.
Advantages: Fast, accurate, excellent with bone, lungs, etc., and
for nondestructive testing.

Thermoacoustic Tomography (TAT) uses radio waves (PAT:
laser light) to indirectly image a small part of the body
(more later).
Advantages: Is sensitive to tumors in soft tissue, can combine
the resolution of ultrasound with contrast of EM imaging.

Motion-Compensated CT: CT when the body moves during
the scan.
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Limited Data Tomography: When some data are missing.

Example:
Limited angle X-ray CT [A. Louis, X. Pan, G. Wang. . . ]
the scanner cannot move all the way around the object–it
images the object from lines in a limited range of directions.
Where: Dental CT, „electron microscope tomography.

Limited angle data over “somewhat” vertical lines.
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Goals of this talk:

1 Determine what features of the body will be easy to
reconstruct from limited CT data, and which will be difficult.

2 Understand, geometrically, how this depends on the data.
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The Model of X-ray CT and the Goal

f a function in the plane representing the density of an object
L a line in the plane over which the photons travel.
The X-ray (Radon) Line Transform:

Tomographic Data „ Rf pLq “
ż

xPL
f pxqds

–The ’amount’ of material on the line the X-rays traverse.

The goal: Recover a picture of the body (values of f pxq), from
X-ray CT data over a finite number of lines.

With complete data (lines throughout the object in fairly evenly
spaced directions), good reconstruction methods exist (e.g.,
Filtered Backprojection [Natterer, Natterer-Wübbling]).
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Parallel Beam Geometry („fan beam but simpler):
The angle: ϕ P r0,2πs, θpϕq “ pcospϕq, sinpϕqq

The line over which X-rays travel: Lpϕ,pq is the line
perpendicular to ϕ and p units from the origin (in opposite
direction if p ă 0)

φ 
p L(φ ,p)

The object: f is the density function of an object in the plane.

Tomographic data: Rf pϕ,pq “
ż

xPLpϕ,pq
f pxqds is given when

X-rays travel along the line Lpϕ,pq.
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Limited Angle Tomography, ϕ´1r´π{4, π{4s

FBP reconstruction: ε =0
°

Brain phantom (left) [radiopedia.org], FBP reconstruction [Frikel, Q 2013]

Which features of the object are visible in the reconstruction?
Which are invisible?
Are there added artifacts?
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Big Question

1 The features of the object are (partly) characterized by the
singularities of the object.

2 What are singularities?
Practically: Density jumps, boundaries between regions,
discontinuities of f .
Mathematically: Where the function is not C8 smooth.
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function of the unit disk.Ñ
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Characterization of Visible Singularities

Theorem (Microlocal Regularity Theorem [Q 1993])

Singularities of f produce singularities of Rf :
Let L0 “ Lpϕ0,p0q be a line in the plane.

If a singularity of f is tangent to L0, it will cause a
singularity in the data, Rf pϕ,pq at pϕ0,p0q.
Other singularities of f not tangent to L0 do not cause
singularities in the data Rf pϕ,pq at pϕ0,p0q.

This is proven using a precise definition of singularity and math
related to the Fourier transform (Fourier Integral Operators).

In terms of wavefront sets: If some wavefront direction of f is
perpendicular to Lpϕ0,p0q, then Rf has WF above pϕ0,p0q.
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The Moral:

1 The Microlocal Regularity Theoremùñ If f has a singularity
tangent to the line L0, then Rf will have a singularity at L0.
In this case, the singularity should be “easy” to reconstruct
stably from limited data as long as L0 is in the data set.

2 If a singularity of f is not tangent to any line in the data set,
then, it will be harder to see in the data
and harder to reconstruct stably from that limited data (it
could be “blurred out”).

Moral for limited data CT: If the line L0 is in a limited data set,
then singularities of f tangent to L0 should be “easy” to
reconstruct from that data.
Singularities of f not tangent to any line in the data set will be
harder to reconstruct (less stable).



The Moral:

1 The Microlocal Regularity Theoremùñ If f has a singularity
tangent to the line L0, then Rf will have a singularity at L0.
In this case, the singularity should be “easy” to reconstruct
stably from limited data as long as L0 is in the data set.

2 If a singularity of f is not tangent to any line in the data set,
then, it will be harder to see in the data
and harder to reconstruct stably from that limited data (it
could be “blurred out”).

Moral for limited data CT: If the line L0 is in a limited data set,
then singularities of f tangent to L0 should be “easy” to
reconstruct from that data.
Singularities of f not tangent to any line in the data set will be
harder to reconstruct (less stable).



The Moral:

1 The Microlocal Regularity Theoremùñ If f has a singularity
tangent to the line L0, then Rf will have a singularity at L0.
In this case, the singularity should be “easy” to reconstruct
stably from limited data as long as L0 is in the data set.

2 If a singularity of f is not tangent to any line in the data set,
then, it will be harder to see in the data
and harder to reconstruct stably from that limited data (it
could be “blurred out”).

Moral for limited data CT: If the line L0 is in a limited data set,
then singularities of f tangent to L0 should be “easy” to
reconstruct from that data.
Singularities of f not tangent to any line in the data set will be
harder to reconstruct (less stable).



The Moral:

1 The Microlocal Regularity Theoremùñ If f has a singularity
tangent to the line L0, then Rf will have a singularity at L0.
In this case, the singularity should be “easy” to reconstruct
stably from limited data as long as L0 is in the data set.

2 If a singularity of f is not tangent to any line in the data set,
then, it will be harder to see in the data
and harder to reconstruct stably from that limited data (it
could be “blurred out”).

Moral for limited data CT: If the line L0 is in a limited data set,
then singularities of f tangent to L0 should be “easy” to
reconstruct from that data.
Singularities of f not tangent to any line in the data set will be
harder to reconstruct (less stable).



The Moral:

1 The Microlocal Regularity Theoremùñ If f has a singularity
tangent to the line L0, then Rf will have a singularity at L0.
In this case, the singularity should be “easy” to reconstruct
stably from limited data as long as L0 is in the data set.

2 If a singularity of f is not tangent to any line in the data set,
then, it will be harder to see in the data
and harder to reconstruct stably from that limited data (it
could be “blurred out”).

Moral for limited data CT: If the line L0 is in a limited data set,
then singularities of f tangent to L0 should be “easy” to
reconstruct from that data.
Singularities of f not tangent to any line in the data set will be
harder to reconstruct (less stable).



Limited Angle Reconstruction Revisited

FBP reconstruction: ε =0
°

Reconstruction for lines with ϕ P r´π{4, π{4s [Frikel, Q 2013]. ÝÑ

As predicted, the visible singularities are tangent to lines in
the data set. They are the “„vertical” boundaries.
Singularities not tangent to lines in the data set–the
“„horizontal” boundaries–are blurred.
But, what about the streaks.....?
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The Added Artifacts for data with φ P r´π{4, π{4s

Note how the singularities of f tangent to lines at the ends of
the angular range, Lp˘π{4,pq, generate added artifacts all
along the lines tangent to them.
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Added Artifacts for data with ϕ P r´π{4, π{4s

Theorem ([Frikel Q 2013])
For limited angle tomography, added artifacts will occur on lines
at the end of the angular range

–from X-rays at the start and end of the scan–
that are tangent to some singularity in the object.
If data are given for ϕ between a and b, then artifacts will occur
on lines with ϕ “ a and ϕ “ b when those lines are tangent to a
singularity (boundary) of the object.
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Our (simple practical) Artifact Reduction Procedure

Assume the limited angle data are given for ϕ P ra,bs.

modified data “ rκpϕqRf s pϕ,pq

where κ is a smooth cutoff function equal to zero off of ra,bs
and equal to one on most of ra,bs.

FBP reconstruction: ε =40
°

then there will be no added streak artifacts and most visible
singularities will be recovered [Frikel Q 2013,2015].
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Hybrid imaging: Thermoacoustic Tomography (TAT)

Pulsed electromagnetic (EM) radiation (radio waves (PAT:
laser light)) is beamed into a part of the body (e.g., breast).
The body heats up and generates sound pressure waves
that are measured by acoustic transducers.
Sometimes TAT/PAT transducers are collimated to a plane
and they move along the unit circle [Razansky 2009, Elbau
2012].

These transducers measure the sound pressure over time
and, by solving the wave equation (with constant sound
speed), this can be reduced to the integrals over circles of
the initial value of the acoustic pressure, f .
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Transducer
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Laser pulse
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Limited Data PAT: When transducers cannot scan all around
the object (e.g., because of specimen holder), so data are
given only for centers θpϕq for a ď ϕ ď b.
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Limited Data PAT: When transducers cannot scan all around
the object (e.g., because of specimen holder), so data are
given only for centers θpϕq for a ď ϕ ď b.



Limited data PAT reconstructions

Simulated data, ϕ P r25˝,155˝s Real data, ϕ P r´45˝,225˝s

Why is the circle not completely imaged?
Why are there streak artifacts in both reconstructions?
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PAT data are „averages over circles.

Theorem (Frikel Q 2015)
Visible singularities of f are tangent to circles in the data set
Invisible singularities are tangent to NO circle in the data set.

θ(b) θ(a)

Acquisition curveb
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“visible singularity”
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Theorem ([Frikel Q 2015])
Added artifacts occur when a circle at the ends of the data set
(center θpaq or θpbq) is tangent to a singularity of f .
The singularity spreads along the entire circle!
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Limited view reconstructions revisited

(g) f (h) Λg “ M˚
´

´ d2

dr2 g
¯

Lambda reconstruction for range of view r25˝,155˝s. Note the
added artifacts are along circles centered at θp25˝q and

θp155˝q.



Real data reconstructions, ϕ between ´45˝ to 225˝

No artifact reduction With artifact reduction Difference Image

Paper phantom with ink as acoustic absorber1.
1 Data by courtesy of Prof. Daniel Razansky (Institute of Biological and
Medical Imaging, Helmholtz Zentrum München).

The added artifacts are exactly as predicted–they occur on
circles at the ends of the data set
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Summary

The Paradigm: f is the function to be reconstructed.
If the tomography problem is modeled by a transform that
averages over curves (e.g., X-ray CT, TAT/PAT, Motion
compensated CT), then:

1 If a curve in the data set is tangent to a singularity of f then
it should be stably reconstructed.

2 If no curve in the data set is tangent to a singularity, it will
be difficult to reconstruct.

3 Artifacts can be spread along curves at the end of the data
set when those curves are tangent to some singularity of f .

Our reconstructions are of filtered backprojection type. Other
reconstruction methods might reconstruct the invisible
singularities better, but invisible singularities will always
be difficult to reconstruct (highly ill-posed).
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The Proof and The Final Word

[Q 1993, Frikel Q 2013, Frikel Q 2015, Hahn Q 2016] use the
following keys.

1 Singularity: Fourier transform and the wavefront set.
2 Fourier Integral Operator (FIO): the X-ray and TAT/PAT

transforms are elliptic FIO (Radon transforms are elliptic
FIO [Guillemin] FIO ) and they do precise things to
singularities.

3 This math works for man tomographic inverse problems
including higher dimensional ones (e.g., sonar, 3-D
ultrasound) under certain conditions.

4 When these conditions don’t hold, one can still use the
basic framework (discussions at DTU: Borg, Frikel,
Jørgenson, Lauze, Q).

Final word: Invisible singularities and added artifacts are
intrinsic to limited data tomography and they can be understood
using the geometry of the data set.
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The reconstruction operator for Limited angle CT

BΦf “ R˚
ˆ

b

´d2{dp2χra,bsRf
˙

where R˚ is the X-ray backprojection operator.
In [FrQu2013], we prove that BΦ is a singular
pseudodifferential operator, and we use a theorem of
Hörmander to characterize the added artifacts. ΨDOs .

VΦ “
 

sθpϕq
ˇ

ˇs ‰ 0, ϕ P p´Φ,Φq
(

BΦf pxq “
1

2π

ż

ξPVΦ

eix ¨ξ 1 F f pξqdξ

The symbol of BΦ as a pseudodifferential operator is
ppx , ξq “ 1VΦ

pξq, which is elliptic on VΦ, so BΦ recovers
singularities of f in VΦ. But it is not smooth, so the operator
is singular Therefore, BΦ adds the singularities described
in the theorem.
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Observations about the artifact reduction procedure

If κ is the smooth function supported in p´Φ,Φq and equal to
one on p´Φ` ε,Φ´ εq, then we prove that

BΦ,κf “
1

2π

ż

ξPVΦ

eix ¨ξ κ

ˆ

ξ

}ξ}

˙

F f pξqdξ

Note that the symbol of BΦ as a pseudodifferential operator
is ppx , ξq “ κ

´

ξ
}ξ}

¯

, which is elliptic, at least on
Vp´Φ`ε,Φ´εq. Therefore, BΦ recovers most of the visible
singularities of f .
Furthermore, since the symbol is smooth, BΦ,κ is a
standard pseudodifferential operator and does not adds
singularities.
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Fourier Integral Operators

Z and X are open subsets of Rn:

F pf qpzq “
ż

xPX ,ωPRn
eiφpz,x ,ωqppz, x , ωqf pxqdx dω

Phase Function: φpz, x , ωq (e.g.,) linear in ω, smooth.
Amplitude: ppz, x , ωq smooth, increases like p1` }ω}qs

Canonical Relation:
C “ tpz, Bzφpz, x , ωq; x ,´Bxφpz, x , ωqq|Bωφpz, x , ωq “ 0u

C
ΠLÖ Œ

ΠR

Z ˆ pRnzt0uq X ˆ pRnzt0uq

WF relation: WFpF pf qq Ă ΠL

´

Π´1
R pWFpf qq

¯

.
What it means: FIO change singularities in specific ways
determined by the geometry of C. Back
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Pseudodifferential operators

Ppf qpzq “
ż

eipz´xq¨ωppz, x , ωqf pxqdx dω

Phase Function: φpz, x , ωq “ pz ´ xq ¨ ω is linear in ω, smooth.
Amplitude: ppz, x , ωq increases like p1` }ω}qs (order „ s).
Canonical Relation:

C “ tz, Bzφpz, x , ωq; x ,´Bxφpz, x , ωqq|Bωφpz, x , ωq “ 0u
“ tpz, ω, z, ωq

ˇ

ˇz P Rn, ω P Rnzt0uu “ ∆, the diagonal

C
ΠLÖ Œ

ΠR

X ˆ pRnzt0uq X ˆ pRnzt0uq

WF relation: WFpPpf qq Ă ΠL

´

Π´1
R pWFpf qq

¯

“ WFpf q.
What it means: ΨDO do not move wavefront set. Back
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Limited Angle Operators

Limited Angular Range: Φ P p0, π{2q
ϕ P r´Φ,Φs : θpϕq “ pcospϕq, sinpϕqq
Lines: Lpϕ,pq perpendicular to ϕ and p units from the origin,
ϕ P r´Φ,Φs, p P R.

The filter: Λpgpϕ,pq “ 1?
2π

ş8

p“´8 e´iτpp´sq |τ |gpϕ, sqds dτ
(like a derivative).

Limited Angle Filtered Back Projection Operator:

f pxq “
1

4π
R˚ pΛpRf q pxq BΦf pxq :“

1
4π

R˚
`

Λp1r´Φ,ΦsRf
˘

pxq

Where 1r´Φ,Φspφq is 1 on the interval r´Φ,Φs and 0 elsewhere.
It sets data outside the known region to zero.
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Microlocal Analysis of BΦ

Data over lines: Lpϕ,pq for ϕ P r´Φ,Φs
Visible Singularities: VΦ, those perpendicular to lines in the
data set (corresponding to “side” boundaries of the object).

Theorem (Frikel, Q 2013)

Let f P E 1pR2q. Then
BΦf shows the visible singularities of f (those
perpendicular to lines in the data set),

WFpf q X VΦ Ă WF pBΦpf qq Ă pWFpf q X VΦq YAΦpf q.

The singularities BΦf are either visible singularities of f
or added artifacts that spread from singularities of f with
angles at first and last lines in the data set, ϕ “ ˘Φ Those
artifacts spread on lines perpendicular to the original
singularity.
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