
COST/HD-Tomo Training School January 19, 2017

The Fanbeam Projection of a Point

Consider the (directional) projection of a point (x0, y0) along the vector (x0 − xs, y0 − ys) onto
a horizontal detector plane with center (xd, yd) (cf. the illustration in Figure 1). The projection
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Figure 1: Fanbeam geometry: directional projection of a point.

(xd + t0, yd) can be expressed as the intersection of the detector plane and the line that passes
through (xs, ys) and (x0, y0), i.e., there exists a scalar α 6= 0 such that[

xd + t0
yd

]
= α

[
xs
ys

]
+ (1− α)

[
x0
y0

]
.

The second of these two equations implies that

α =
yd − y0
ys − y0

,

and from the first equation we can obtain the position t0 on the detector plane

t0 = α(xs − x0) + x0 − xd =
yd − y0
ys − y0

(xs − x0) + x0 − xd.

Rewriting this expression yields

t0 =
yd − ys + ys − y0

ys − y0
(xs − x0) + x0 − xd

=

(
yd − ys
ys − y0

+ 1

)
(xs − x0) + x0 − xd

= (xs − xd)− (ys − yd)
xs − x0
ys − y0

.

Now if we rotate (x0, y0) by an angle of −θ around origo (equivalently, rotate the source and
the detector counterclockwise around the origo by θ), we obtain the following expression for the
position on the detector plane

t0(θ;xs, ys, xd, yd, x0, y0) = (xs − xd)− (ys − yd)
xs − x0 cos(θ)− y0 sin(θ)

ys + x0 sin(θ)− y0 cos(θ)
(1)

as a function of the source position (xs, ys), the detector center (xd, yd), and the point (x0, y0).
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Model Calibration

The expression for the position of the projection of a point as a function of the rotation angle
θ can be used to calibrate our forward model. To this end, we will place a pin (or something
that resembles a “point”) in our X-ray CT scanner and collect a number of projections from,
say, m different angles. If we let p̂i(t) denote the projection at angle θi, we can estimate the
projection centroid as

ρ̂i =

∫ w/2

−w/2
t p̂i(t) dt∫ w/2

−w/2
p̂i(t) dt

≈
∑r

j=1 tjbij∑r
j=1 bij

(2)

where w is the width of the detector, t1, . . . , tr are the detector pixel positions (the pixel centers),
and bij is the sinogram pixel corresponding to detector pixel i and projection angle θj . This is
illustrated in Figure 2.

-4 -3 -2 -1 0 1 2 3 4
Detector position [cm]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Si
no

gr
am

 in
te

ns
ity

0 50 100 150 200 250 300 350
Projection angle [degrees]

-4

-3

-2

-1

0

1

2

3

4

D
et

ec
to

r p
os

iti
on

 [c
m

]

Figure 2: Centroid estimation from pin projections: (left) a single projection and the estimated
centroid marked with a red asterisk; (right) sinogram with centroid estimates overlaid as a
dashed red curve.

To calibrate the geometry, we will formulate a nonlinear least-squares problem

minimize (1/2)
m∑
i=1

(t0(θi;β)− ρ̂i)2

with variables β = (xs, ys, xd, yd, x0, y0). In other words, our model t0(θi;β) should (approxi-
mately) aggree with the centroid estimate ρ̂i. We will use the so-called Levenberg–Marquardt
(LM) method to “solve” (i.e., find a local minimum) our nonlinear least-squares problem. The
LM method is an iterative method, and each iteration requires the solution of a regularized
(linear) least-squares problem

β(k+1) = argmin
β

{
(1/2)‖Jt0(β(k))(β − β(k))− r(β(k))‖22 + (γ/2)‖β − β(k)‖22

}
= β(k) + argmin

u

{
(1/2)‖Jt0(β(k))u− r(β(k))‖22 + (γ/2)‖u‖22

}
(3)

where r(k) is a residual vector with elements

r
(k)
i = ρ̂i − t0(θi;β(k)), i = 1, . . . ,m

and Jt0(β(k)) is the m× 6 Jacobian matrix with rows ∇βt0(θi;β(k))T .
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Exercises

1. Verify that the gradient of t0(θ;β) (with respect to β) can be expressed as

∇βt0(θ;β) =



yd−yθ0
ys−yθ0

−(xs − xθ0)
yd−yθ0

(ys−yθ0)2

−1

xs−xθ0
ys−yθ0

−(ys − yd)y0−xs sin(θ)−ys cos(θ)
(ys−yθ0)2

(ys − yd)x0−xs cos(θ)+ys sin(θ)
(ys−yθ0)2


where xθ0 = x0 cos(θ) + y0 sin(θ) and yθ0 = −x0 sin(θ) + y0 cos(θ). The MATLAB function
below computes the function values t0(θi;β) and the Jacobian matrix:

function [t0,J] = t0eval(theta,beta)

% Computes function values and Jacobian matrix

% for fanbeam calibration problem. The input beta

% is the vector (xs,ys,xd,yd,x0,y0).

assert(iscolumn(theta),'theta must be a column vector');

assert(length(beta)==6,'beta must be a vector of length 6');

x0t = beta(5)*cosd(theta)+beta(6)*sind(theta);

y0t = -beta(5)*sind(theta)+beta(6)*cosd(theta);

g = beta(1)-x0t;

h = beta(2)-y0t;

t0 = beta(1)-beta(3)-(beta(2)-beta(4)).*g./h;

J = zeros(length(theta),6);

J(:,1) = (beta(4)-y0t)./h;

J(:,2) = -(beta(1)-x0t).*(beta(4)-y0t)./h.^2;

J(:,3) = -1;

J(:,4) = g./h;

J(:,5) = -(beta(2)-beta(4)).*...

(beta(6)-beta(1)*sind(theta)-beta(2)*cosd(theta))./h.^2;

J(:,6) = (beta(2)-beta(4)).*...

(beta(5)-beta(1)*cosd(theta)+beta(2)*sind(theta))./h.^2;

end

2. Download the zip-file ExWeek3Day4 data.zip from the course website and load one of
the three mat-files. Each of the mat-files contains a regular sinogram, a pin calibration
sinogram, the nominal geometry, and the projection angles. Compute a reconstruction
with the nominal geometry and inspect both the reconstruction (x) and the residual image
(Ax − b). Does the residual image tell you anything useful about your reconstruction
model?

3. Estimate the geometry (β) using the LM method. Use the nominal geometry (included
in the mat-file) as an initial guess.

4. Check that your estimate geometry is consistent with the calibration sinogram, i.e., plot
t0(θ; β̂) where β̂ denotes your estimated parameters and check that it is consistent with
the calibration sinogram.
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5. Use fanbeamtomolinearmod.m (included in the zip-file) or ASTRA to compute a new
reconstruction with your refined geometry. With fanbeamtomolinearmod.m (a modified
version of fanbeamtomolinear.m) you can input the source and detector positions as
follows:

gs = ys/(ys-yd)*dw; % grid size in cm

Ac = fanbeamtomolinearmod(N,theta,p,[ys,xs]/gs,[dw,xd]/gs,(ys-yd)/gs);

Ac = (gs/N)*Ac;

Here R=ys is the vertical distrance from origo to the source and sd=ys-yd is the vertical
distance from the source to the detector.

6. Inspect both the reconstruction (x) and the residual image (Ax − b) obtained with the
refined geometry. Compare with the reconstruction and residual image obtained with the
nominal geometry. Is there a noticeable difference?

7. (Optional) Analyze the expression t0(θ;β). Does the parameter vector β uniquely de-
termine the geometry? In other words, if β and β′ are two parameter vectors and
t0(θ;β) = t0(θ;β

′), does that imply that β = β′?
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