
 Summary of the Major Achievements             March 22, 2015 

The project is divided into 5 scientific tasks A: “Catalogue” of Prior Information, B: Incorporation of Prior In-
formation, C: Sparse Approximation, D: Large-Scale Algorithms, and E: Software, Test, and Validation. Our 
work covers all 5 tasks, and many research activities relate to more than one of them. A common theme is 
that we consider underdetermined problems with few projections or measurements; with enough data any 
classical reconstruction method can give good reconstructions, while in the limited-data case it is essential 
to use prior information to compensate for the lack of data. 

The Role of Sparsity in CT (tasks B and C; joint work with Univ. of Chicago, Technical Univ. of Braunschweig) 

Reliable imaging from few projections (to reduce X-ray dose) is an important example of how a prior (here, 
sparsity) can significantly improve CT reconstruction.  We published a trilogy of papers which, using exten-
sive carefully designed computer simulations, determine the critical amount of data needed for accurate 
reconstruction of sparse images. We established a so-called phase-transition phenomenon, i.e., how the 
critical amount of data depends on the image sparsity. An underlying theory known as Compressed Sensing 
(CS) exists only for special randomized sampling setups involving Gaussian matrices, however our results 
demonstrate similar behavior in CT.  Our preliminary results show that phase transitions can accurately 
predict the sufficient amount of data in large-scale CT. 

The figure on the right shows that in parallel-beam CT, the frac-
tion of accurately reconstructed images at a given sparsity ab-
ruptly changes from 0 to 1 once a critical number of measure-
ments is reached. Surprisingly, this agrees almost perfectly with 
the theoretical phase transition for Gaussian matrices. Ongoing 
work seeks to extend the CS theory to explain such observa-
tions, and involve further investigation of how to use the phase 
transition to accurately predict the sufficient amount of data in 
real-world CT scanners. 

Sparsity Priors in EIT (tasks B, C, and D; joint work with Helsinki Univ. and Univ. of Eastern Finland) 

Precise localization and correct intensity in computational EIT is a challenging problem. In two submitted 
papers we demonstrate (by simulations) that prior information about sparsity of the solution greatly im-
proves the reconstruction, and that our 1-norm prior works better than a total variation prior. The improve-
ments are especially pronounced for situations where only partial boundary data are available. 

We use a Tikhonov formulation where the sparsity is enforced via a spatially varying regularization parame-
ter. This also allows the use of spatial information that can be found directly from the data via factorization 
and monotonicity methods. Our studies involve both 2D and 3D problems in a FEM formulation, and for the 

latter situation we developed large-
scale simulation code for the continu-
um model and the complete elec-
trode model. Our algorithms were 
tested on real data showing that they 
are superior to the classical methods. 
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Training Images as Priors (tasks A and B; joint work with Tufts Univ. and Univ. of Helsinki) 

Some priors take the form of cross-section images of the object, and this information must be used in a 
fast, reliable, and computationally efficient manner. We developed an algorithmic framework for this: From 
a set of training images we use techniques from machine learning to form a dictionary that captures the de-

sired features, and we then compute a recon-
struction with a sparse representation in this dic-
tionary. Simulations show that for textural images 
our approach is superior to other methods used 
for limited-data situations. 

Our main contribution is a careful study of how to 
stably compute a dictionary through a regularized 
non-negative matrix or tensor factorization, and 
how this dictionary affects the reconstruction 

quality. We also demonstrate the advantage of using a tensor formulation of the problem, which is more 
natural for working with dictionaries of images than a standard matrix formulation, and which leads to 
much sparser representations because tensors better allow for identifying spatial coherence in the training 
images. The figure shows that our method outperforms total variation that fails to capture the texture. 

Large-Scale Reconstruction Methods (tasks D and E; joint work with DTU Computing Center, CWI in Am-
sterdam, Linköping Univ., and Iran Univ. of Science and Technology) 

This work has two aspects – as support for our other HD-Tomo activities, and as research in its own right. 
We wish to highlight the following achievements: 

• We developed and implemented a new, efficient, and robust algorithm for incorporating subspace 
priors in a Krylov subspace iterative method, improving on an existing and flawed approach. 

• We established a link between incremental gradient (first-order) optimization methods and classical 
row-action methods. This enables us to incorporate priors such as TV and to handle other problems – 
for example, with a new step length strategy the ART algorithm can solve problems with Poisson noise. 

• We studied the convergence and implementation of row-action methods. In particular we obtained 
rigorous insight into the semi-convergence of ART, and – through implementations of several block 
algorithms on multi/many-core computers – we decided which algorithm to include in our software.  

Simultaneous Reconstruction and Segmentation (task A and B) 

We develop formulations and algorithms for si-
multaneous reconstruction and segmentation, 
where our prior takes the form of a hidden Mar-
kov measure field for the segmentation classes, 
and we show the stabilizing effect of this combi-
ned approach. Experiments with real data (see the 
figure) show that our approach is better able to 
identify thin structures in the image than the clas-
sical approach, where reconstruction and segmentation are two separate processes.  
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Novel and/or unconventional methodologies 

At the midway point of the project, it is clear that the most important themes for our research are associa-
ted with the following analytical and computational state-of-the-art techniques: 

• Various aspects of sparsity as a means to impose priors about “simplicity” on the reconstruction, either 
through an analysis operator such as TV or through synthesis via sparse representation/approximation. 

• Variational formulations and convex optimization to formulate and solve the computational large-scale 
optimization problems through first-order methods. 

• Elements of machine learning to extract and represent priors that do not conform to a strictly analyti-
cal or variational formulation. 

• Techniques for specific non-Gaussian noise models where priors from reference data provide well-
defined denoising models and stable algorithms 

Inter and cross disciplinary developments 

HD-Tomo has initiated two other research projects in tomography: a project with DTU Physics on 6D recon-
structions in materials science, and a Danish research grant for impedance tomography with hybrid data. 
Also we started collaboration with the ASTRA software developers on block algebraic iterative methods. 

Knowledge and technology transfer 

Knowledge transfer takes the classical forms of courses, workshops, and conference attendance. 
• Workshop: Sparse Tomo Days, March 26-28. 
• Five seminars by Prof. Bill Lionheart: Sufficient Data for Stable Reconstruction, Ray Transforms, EIT for 

Beginners, Rich Tomography, and Inverse Problems in Security Screening. 
• Online short-course Algebraic Iterative Reconstruction Methods. 
• PhD course Discrete Inverse Problems. 

The PI, Per Christian Hansen, was invited speaker at: 
• The COST workshop Advanced X-Ray Tomography: Experiment, Modeling, and Algorithms, Feb. 10-14, 

2014. 
• Householder Symposium on Numerical Linear Algebra, Spa, Belgium, June 8-13, 2014. 
• Oberwolfach Workshop on Mathematics and Algorithms in Tomography, August 10-16, 2014. 

Others 

A formatted version of the report with hyperlinks and several figures is attached as a pdf file. 
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Publishable Brief Summary of the Main Achievements of the Project 

Tomography is the science of “seeing inside objects” – we send signals through an object, and from mea-
surements of the response we compute a 3D representation of the object’s interior. In computed tomo-
graphy (CT), we use the computer to synthesize an object’s 3D structure from the measurements by solving 
millions of equations. A decisive factor behind the human vision system to recognize objects is the ability to 
use prior information – an organized accumulation of experience with other objects. The key to high-quality 
CT reconstruction is to get the computer to do the same, by means of advanced mathematics. 

In the HD-Tomo project we develop the enabling mathematical technology and next-generation algorithms 
for high-definition tomography – sharper images with more reliable details – by using and further develop-
ing the most recent and sophisticated advances in mathematics. Our goal is to make it possible to incorpo-
rate many different types available prior information in a flexible way. 

Highlight 1: Sparsity and Low-Dose CT 

In medical CT and materials science we want to minimize the X-ray dose and shorten the measurement 
time, resulting in problems with limited and noisy data. To compensate for this we may assume that the 
desired tomographic image is “simple” – in mathematical terms, sparse – and use methods from com-
pressed sensing to compute reliable reconstructions. We demonstrate that the amount of data sufficient 
for accurately reconstructing sparse CT images using these methods depends in a simple way on the image 
sparsity: To each sparsity corresponds a certain critical number of measurements at which the fraction of 
fully reconstructed images abruptly changes from 0 to 1. This so-called phase-transition behavior for CT is 
new insight that will further stimulate the analysis and use of compressed sensing in CT. 

Highlight 2: Improved Localization in Electrical Impedance Tomography (EIT) 

EIT can be used for industrial process monitoring, and due to constraints on the measurement geometry we 
may have only partial data available. To overcome this challenge we incorporate the fact that the objects of 
interest stand out from the background, and this allows us to compute 3D reconstructions with superior lo-
calization and contrast compared to other EIT methods. Our software has been verified on data from tank 
experiments done at University of Eastern Finland. Ongoing research seeks to quantify (through an eigen-
function analysis) the obtainable resolution and the optimal measurement configurations. 

Highlight 3: Training Images and Machine Learning 

Certain priors take the form of cross-section images of the object, providing a set of so-called training im-
ages which the reconstruction should resemble. We developed a mathematical and computational frame-
work – based on machine learning techniques involving matrices and tensors – to use such training images 
in a fast, reliable, and computationally efficient manner. Simulations show that for textural images our 
approach is superior to other methods used for limited-data situations. 

Highlight 4: Algorithms and Software 

Incorporation of prior information in 3D tomographic reconstructions as described above requires the de-
velopment of new large-scale algorithms and software. We focus on computational methods, such as row-
action methods, that lend themselves to utilization of many-core and GPU computers. In addition to the 
software development we derive theoretical results for the fast convergence of these methods. 
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Major Problems/Difficulties 

Scientific/Technical problems 

There are not scientific or technical problems. 

Support provided by the Host Institution 

The support provided by the host institution (DTU) is excellent. 

Others 
• Even with international postings, it has been surprisingly difficult to find suited PhD students with a 

high enough level of mathematics for this project. 
• The Danish immigration authorities have a very long processing time, resulting in a delay of 3–4 months 

between a position is accepted and the person is able to move to Denmark and start working. 

The Research Group 

The Assistant Professors, Post Docs, and PhD students, were all hired after international postings, in order 
to create the best team.  All team members are affiliated with the Section for Scientific Computing at the 
Dept. of Applied Mathematics and Computer Science (DTU Compute) at the Technical University of 
Denmark. 

Permanent faculty 
• Assistant Professor Martin S. Andersen 
• Assistant Professor Yiqiu Dong 
• Professor Per Christian Hansen - Principal Investigator 
• Associate Professor Kim Knudsen 

Post Docs 
• Lauri Harhanen, Post Doc project: Formulation and Application of Priors in Spectral CT (start May 1, 

2015). 
• Jakob Sauer Jørgensen, Post Doc project: Computations with Sparse Representations (started 

August 1, 2013) 

PhD students (all PhD projects last 3 years) 
• Hari Om Aggrawal, PhD project: Priors for Temporal Tomographic Image Reconstruction (starts 

April 1, 2015). 
• Henrik Garde, PhD project: Prior Information in Inverse Boundary Problems (started March 1, 

2013). 
• Rasmus Dalgas Rasmussen, PhD project: Segmentation-Driven Tomographic Reconstruction 

(started September 1, 2014). 
• Mikhail (Mike) Romanov, PhD project: Statistical Priors in Variational Reconstruction Methods 

(started November 1, 2012) 
• Federica Sciacchitano, DTU Compute. PhD project: Image Reconstruction under Non-Gaussian 

Noise (started September 1, 2013). 
• Marie Foged Schmidt, PhD project: Prior-Driven Diffusion Regularization for Inverse Problems 

(started December 2014). 
• Sara Soltani, PhD project: Training Sets in Large-Scale Reconstruction Methods (started September 

1, 2012) 
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