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Stable or unstable?
An x-ray CT inversion problem with a specific data set may be stable or
unstable. In the context on continuum data

I We will call a problem stable if it can be stably inverted in some
Sobolev space.

I for example filtered back projection for the 2D Radon transform is a
stable inverse of the Radon transform with complete data in the
right Sobolev spaces.

I It is not stable in L2 of course.

I So what is unstable?

I The Fourier slice theorem connects the FT of a 2D image and its
Radon Transform.

I Paley-Weiner says FT of a compactly supported function is analytic

I Some limited data problems for the 2D Radon transform can be
interpreted as analytic continuation....

I but of course this is unstable!

I Typically when a continuum problem is discretized a stable problem
will have singular values that decay like a negative power while
unstable problem faster than any negative power.



Under, correctly or over determined
We will say a problem is correctly determined if there is just enough data
to guarantee a unique solution even if it is unstable. Over determined if a
subset of data gives a correctly determined problem and under
determined if the solution is not unique.
Examples

I For 2D the [0, π) sinogram data parallel beam or for fan beam the
[0, π + θfan) data are correctly determined

I Some choices of 4D data in 3D x-ray CT, for example laminography
with an open set of projection angles, are overdetermined even
though highly unstable (Payley-Weiner again)

I For a source trajectory that does not satisfy Tuy’s conditions
Grangeat’s formula, cone beam data may still give a unique
reconstruction, so correctly determined or over determined but
unstable

I For a helical source trajectory with the Tam-Danielson [Tam]
window of cone beam data, there is a stable reconstruction. So his
is stable and correctly determined.

I Circular scan cone beam data does not satisfy [Tuy]’s condition so
there is no stable reconstruction.

I ....note that means that [FDK] cannot be exact as it is stable.
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Tam-Danielson window

The Tam-Danielson window for a helical source trajectory is a subset of
the detector plane.



Types of limited data tomography
There are stable exact methods for some 2D problems with missing data.
Others are unstable or underdetermined. See [Quinto] for an introduction.
Lines in the plane given by the angle θ and distance from origin s. Density f ,
Radon transform Rf (θ, s)

I In limited angle tomography, the data is only known for certain values of
θ. This might occur in medical applications when a patient is attached to
some apparatus, or in non-destructive testing when some views are
obscured by some device used for live loading.

I The exterior problem concerns the case where the data Rf (θ, s) is known
only for |s| > a for some a > 0. Eg object near centre too dense for the
x-rays to penetrate.



Types of limited data tomography: interior

I The interior problem,data of the form Rf (θ, s) for |s| < a, and some
a > 0. Eg the detector width too small to cover the entire object being
scanned.

We will consider examples of two algorithms

I Λ-tomography which produces an image of a large area of the domain but
only gets jump changes right.

I Two step Hilbert Transform method which gives an exact reconstruction
on part of the domain.



Reconstruction formulae
R is the Radon transform and R# its adjoint the backprokection operator.
The Reisz potential is the operator Iαf (x) = (2π)−n/2

∫
Rn e ix·ω|ω|n−1−α f̂ (ω)dω

where the hat denotes Fourier transform and n is the dimension.
The Radon Transform can be inverted using the formula

f =
1

2
(2π)−1I−αR#Iα−1Rf

for any α < 2. For α = 0 this is Filtered Back Projection

f =
1

2
(2π)−1R#I−1Rf

here I−1 is the ramp filter applied to the s variable.
The basis of Lambda tomography [Smith] is to take α = −1.

√
−∆f = R# I−2 R f .

where ∆ is the Laplacian. The name is derived from Λ =
√
−∆, which is a

pseudo differential operator of order one, and so preserves discontinuities of f .
On the right I−2 = −d2/ds2 this filter is a local operation, and only the rays on
each side of a given ray is needed to calculate it.



Crocodile fossil Lambda tomography

To illustrate Λ-tomography we applied the method to X-ray data of part of a
fossilised crocodile, data courtesy of Paul Tafforeau, ESRF. On the left is the
filtered backprojection reconstruction and on the right the Λ-tomography
reconstruction. Actually with complete data. Note the discontinuities show up
well in Λ-tomography but the values are wrong and homogeneous regions
become smoothly varying.



Two step Hilbert transform method

In the interior problem we call Region A the part of the domain in which we
measure all the lines through each point

The two step Hilbert transform method [Noo] is an exact reconstruction
formula for part of region A.

If parts of region A lie outside the object then the method gives and exact

reconstruction along any straight line inside A that intersects both edges of the

object. The method involves differentiation of the data, back projection and

then inversion of a truncated Hilbert transform in one variable.



Two step Hilbert on composite

A composite sample with a simulated dense block on one end. On the left

reconstructed with Filtered Backprojection, and on the right with the two step

Hilbert transform method. Reconstruction by David Szotten, experiment in

collaboration with Jim Bennett Yu-Chen Hung and Francisco Garcia-Pastor

(Materials Science, Manchester)



Source trajectories

For parallel beam tomography, we can consider the problem as 2D slices
(apart from regularisation between slices). So in three dimensions the
most interesting case is cone beam tomography, where we measure lines
going through some curve the source trajectory. Two important question
considering teh sufficiency of data and stability of reconstruction

I What are good and bad source trajectories?

I Which of the rays intersecting the object do we measure? (detector
size)

as a general rule If you don’t measure rays making glancing blows to
singularities you can’t stably find that singularity (singularity is
usually a surface of discontinuity).



Tuy’s condition

More specifically a curve external to the object satisfies the Tuy condition
if any plane through the object intersects the curve cleanly.

For a example a helix, or circle and line, satisfy Tuy’s condition whereas a
circle does not.



..source trajectories cont.

[Finch] now tells us
All the rays intersecting a closed curve external to the object are
sufficient for reconstruction, but the reconstruction is stable if and
only iff Tuy’s condition is satisfied
Eg circular scan trajectory unstable, helix stable.
More specifically the microlocal methods of eg [Finch1] show that the
reconstruction is unstable “in the direction” in which you do not have
Tuy data (ie no glancing blows).
Clearly to make a stable reconstruction we have to impose constraints (a
priori knowledge) on the smoothness in these directions.



Cone beam reconstruction algorithms

Here are some examples of algorithms.
g(a, θ) := Xf (a, θ) =

∫
f (a + tθ)dt

I Feldkamp-Davis-Kress [FDK] is the most widely used algorithm. It is
an extension of fan beam filtered back projection to approximately
correct for out of plane effects. Also used for helical scan data.

I Tuy’s formula [Natterer p174]. a(λ) source trajectory.

f (x) =
1

i(2π)3/2

∫
S2

1

a′(λ) · θ
d

dλ
g(a(λ), ·)̂ (φ)dφ

Note this needs every ray intersecting the support of f and the
source curve.
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Cone beam reconstruction algorithms cont

Katsevich’s exact reconstruction algorithm [NPH] uses slightly more data
than the Tam-Danielson window.

The shaded area shows the TD window the larger area including the
“κ-lines” is needed, but not the whole sensor.



Cone beam reconstruction algorithms cont

Katsevich’s reconstruction algorithm still involves backprojecting filtered
data. But for each point x and source point a(λ) the filter is taken along
the κ-lines ξ(λ, x , γ).

f (x) =
1

2π

∫
1

||x − a(λ)||
PV

2π∫
0

∂

∂q
g(a(q), ξ(λ, x , γ))

∣∣∣∣
q=λ

dγdλ

sin γ

There are other forms more suitable for computation eg [NPH].



Why do lab cone beam CT systems still use FDK?

and indeed only circular trajectories?



Why do lab cone beam CT systems still use FDK? cont

One reason is that Katsevich has a reputation for being unstable,
although it is stable in the Sobolev sense (one derivative)

Actually the problem is more likely that it uses closer to an exactly
determined data set.
This means if the geometry is slightly wrong it produces plausible sharp
but wrong images, where as FDK blurs images with inconsistent data.
One solution [Varslot] is to correct the geometry by ‘focusing’ inexact
reconstructions. Another would be to use the data outside the TD-κ
window as a consistencey check.



Why do lab cone beam CT systems still use FDK? cont

One reason is that Katsevich has a reputation for being unstable,
although it is stable in the Sobolev sense (one derivative)
Actually the problem is more likely that it uses closer to an exactly
determined data set.

This means if the geometry is slightly wrong it produces plausible sharp
but wrong images, where as FDK blurs images with inconsistent data.
One solution [Varslot] is to correct the geometry by ‘focusing’ inexact
reconstructions. Another would be to use the data outside the TD-κ
window as a consistencey check.



Why do lab cone beam CT systems still use FDK? cont

One reason is that Katsevich has a reputation for being unstable,
although it is stable in the Sobolev sense (one derivative)
Actually the problem is more likely that it uses closer to an exactly
determined data set.
This means if the geometry is slightly wrong it produces plausible sharp
but wrong images, where as FDK blurs images with inconsistent data.

One solution [Varslot] is to correct the geometry by ‘focusing’ inexact
reconstructions. Another would be to use the data outside the TD-κ
window as a consistencey check.



Why do lab cone beam CT systems still use FDK? cont

One reason is that Katsevich has a reputation for being unstable,
although it is stable in the Sobolev sense (one derivative)
Actually the problem is more likely that it uses closer to an exactly
determined data set.
This means if the geometry is slightly wrong it produces plausible sharp
but wrong images, where as FDK blurs images with inconsistent data.
One solution [Varslot] is to correct the geometry by ‘focusing’ inexact
reconstructions. Another would be to use the data outside the TD-κ
window as a consistencey check.



4D spatial data

I Image volume is a function of 3 variables

I the set of lines in space is 4 dimensional

I ..so when sources are used on a sample of a surface rather than
curve we have 4D data

I In this case we have John’s equation

I g(x , y) =
∫
f (x + t(y − x)) dt ∂2g

∂x1∂y2
− ∂2g

∂x2∂y1
= 0

I explicit consistency relation on data allows us to check for and
reduce errors.

I Examples include laminography and electron CT with a two axis tilt
stage, and systems with multiple switched sources .. such as RTT.



The Rapiscan RTT
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Standard approach to linear inverse problems

In any linear inverse problem we can reduce to solving the ill-conditioned
equation

Ax = b, x ∈ Rn,b ∈ Rm,A ∈ Rm×n,

Typically m > n.
As A is ill-conditioned we solve instead a regularized problem

xTik = arg minx ‖Ax− b‖2 + ‖Lx‖2

This is equivalent to finding the least squares solution of the augmented
problem

xTik = arg minx

∥∥∥Ãx− b̃
∥∥∥2

where

Ã =

[
A
L

]
, b̃ =

[
b
0

]



Iterative solution

I For matrices that are very large, and usually very sparse, iterative
methods are preferred to direct solution of the least squares problem.

I Each iteration typically involves the application of the matrix and its
transpose to vectors and these operations are implemented without
storing the matrix. We refer to these operations as forward
projection and back projection when A is the matrix of an x-ray
transform.

I Slowly convergent methods, such as Landweber (SIRT) or Kaczmarz
(ART) are often employed but the iteration stopped before the
residual error falls below the data error.

I ..but in this case choice of algorithm determines solution!!

I Systematic methods choose the regularisation penalty term and then
use a quickly converging iterative algorithm such as CGLS

I The Tomography Toolbox [ASTRA] has a CGLS implementation
using GPUs you can use.

I Algebraic iterative methods can handle any source or measurement
configuration.



CGLS

CGLS is a version of Conjugate gradient for non-square matrices
conversing to the least squares solution x (k) → A†b.

Given initial guess x (0), set

r (0) = b − Ax (0)

p(0) = s(0) + AT r (0)

γ0 = ‖s(0)‖2
2

k = 0
while ‖r (k)‖ > acceptable error
q(k) = Ap(k)

αk = γk/‖q(k)‖2

x (k+1) = x (k) + αkp
(k)

r (k+1) = r (k) − αkq
(k)

s(k+1) = AT r (k+1)

γk+1 = ‖s(k+1)‖2
2

βk = γk+1/γk
p(k+1) = s(k+1) + βkp

(k)

k = k + 1
Note that in each iteration only one multiplication of a vector by A and
one by AT is needed.



Choice of regularization

I There is a systematic Bayesian approach in which regularization is
interpreted as aprior distribution [Kaipio].

I In this context we need a strong enough prior so that the instability
is removed in the augmented system. Severely illposed problems, or
more noisy data need stronger priors.

I Incorporating the distribution of errors, including correlated errors,
on your data means that you don’t try so hard to fit more erroneous
data!

I with systematic regularization at least you know what you assumed.
You can then ask how robust your conclusions are with respect to
choice of prior.

I Even though parallel beam CT decouples planes, smoothing priors
couple them [Hahn].



Over and under determined

In algebraic iterative methods the first thing we often do with the data is
back-project.

kerAT = (rangeA)⊥

so we project on to consistent data.
To a large extent this handles inconsistency due to small errors well.
In limited data problems where A has a large null space, the component
in the null space will be determined by the prior.
Algebraic iterative methods can handle

I irregularly spaced projection angles

I missing data

I (several levels) of“zoom” data

I arbitrary trajectories



Spatio-temporal regularization

When a system is changing quickly relative to the scan speed but in a
way that time steps are highly correlated one can use algebraic iterative
methods where the regularization couples space and time.
The time series of images is assembled as a a single vector, each
projection is taken as a block of rows in the augmented matrix and a
regularization matrix L couples space and time.
As a 2D+Time example letting n be the number of image pixels in the x
and y directions, and letting p be the number of frames, L might have
the following Kronecker product decomposition:

L = αs Ip ⊗ In ⊗Dn + αs Ip ⊗Dn ⊗Dn + αtDp ⊗ In ⊗Dn

where Dn is a difference operator in one dimension and In is the n × n
identity while αs and αt are special and temporal regularization
parameters.



Oil-water fast tomography

Rapiscan RTT20 data from [Thompson]



GPU implementation

Recent GPUs are making algebraic iterative methods viable as far as
computational time Typical timings for our CGLS code with the GPU
based Siddon type forward/back projector, 720 cone beam projections of
size 512× 512 into a reconstruction volume of 512× 512× 512 voxels.
Around 20 iterations are typical (with no regularization).

I Forward projection: 5.95 seconds
I Matched back projection: 7.4 seconds
I Total time per iteration: 14.65 seconds (so time for all other CGLS

vector operations = 1.3s)
I Specifications of system

I CPU: 2x 8-core Intel Xeon E5-2687W @ 3.1GHz
I RAM: 64GB
I GPU: nVidia Quadro 6000 (448 cores, 6GB RAM, Fermi architecture)
I OS: Windows 7 professional 64 bit

Data from Will Thompson.
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