
Reflector Antenna Optimization using
One-Sided Least-Squares
Anders Eltved1, Oscar Borries2, Martin S. Andersen1

1DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark, {aelt,mskan}@dtu.dk
2TICRA, Copenhagen, Denmark, ob@ticra.com

Abstract—Numerical optimization is commonly used for the
design of reflector antennas that produce a contoured beam. The
optimization problems that arise in this context are generally
nonlinear and difficult to solve to global optimality. Different
problem formulations lead to different properties and challenges.
We demonstrate that the popular minimax approach can have
many local minima and that a local optimization method with a
poor initialization may result in a bad design. As an alternative
to the minimax approach, we propose a one-sided least-squares
formulation. We outline a trust-region method for finding a local
minimum, and we illustrate the merits of the new approach with
some numerical examples. In particular, our preliminary results
indicate that our method is often less sensitive to the initial design
than the minimax method. Finally, we investigate the use of the
one-sided least-squares model as a means to find an initial guess
for the minimax approach, and our results show that it sometimes
leads to a better local minimum, and hence improves the design.

I. INTRODUCTION

Numerical optimization plays an important role in the de-
sign of reflector antennas for modern communication satellites.
For contoured beams, optimization is used to produce the
desired coverage by means of surface shaping. A common
design goal is to produce a system that meets a set of specified
goals in the coverage, e.g., ensuring some level of performance
in the entire coverage region.

The performance of a reflector system can be simulated
by applying Physical Optics (PO) which is sometimes aug-
mented with the Physical Theory of Diffraction (PTD) to
take the effects of diffraction from the reflector edges into
account. With PO/PTD, it is possible to optimize the antenna
design by evaluating the gain, the cross-polar performance,
and other relevant quantities across the coverage region as
the optimization variables are modified. The objective is to
design a system that meets some specified goals at given
points in the coverage region. To this end, some measure of
system performance is needed, i.e., the objective function of
the minimization problem must be chosen. A common way to
measure the performance of an antenna system is by its worst-
case performance, i.e., the performance at the point in the
coverage region where the gain is furthest from the specified
goal. This leads to a so-called minimax problem which seeks
to optimize the worst-case performance; see e.g. [1], [2], [3].
It is a nonlinear optimization problem which means that it is
generally too computationally expensive to solve it to global
optimality. Thus, in practice, local optimization is used to find

a local minimum. This approach often depends on the antenna
designer providing a suitable initial design as a starting point
for the local optimization. Unfortunately, the quality of the
design obtained via the minimax approach is sensitive to the
initialization, and for some systems it can be hard to come up
with a good initial design.

To address the sensitivity of the minimax approach to
the starting point, we propose a different measure of the
performance of a particular design. The result is a one-sided
nonlinear least-squares (one-sided LS) problem in which all
points in the coverage that do not attain their goal enter into the
cost function. In other words, the cost function takes all points
where the goal is not met into account instead of only the worst
point. The resulting problem is still a nonlinear optimization
problem, so we will be satisfied with a local minumum. Even
so, our results indicate that in practice, the modified problem
is much less sensitive to the initial design when compared to
the minimax approach. We also explore the use of the one-
sided LS problem as a means to find an initial design for
the minimax approach. In all of our test cases, this strategy
resulted in improved worst-case performance.

The outline of the paper is as follows. In Section II,
we formulate the design optimization problem and present
a simple case to demonstrate the differences between the
minimax approach and the proposed approach that is based
on a one-sided nonlinear LS formulation. In Section III, we
describe how to locally optimize the one-sided LS problem
and how it can be used to initialize the minimax algorithm.
We present some numerical results and a short discussion in
Section IV, and Section V contains final remarks.

II. METHODOLOGY

A. Problem Formulation

We start by defining m functions f1, . . . , fm where fi :
Rn → R represents the performance associated with the ith
position in the coverage region as a function of a vector of
n design variables. For each of the m positions, we have a
given performance goal gi, and we introduce m scalar weights
w1, . . . , wm that may be used to emphasize important goals
and de-emphasize less important goals. Furthermore, we define
a residual function

ri(x) = wi(gi − fi(x)) (1)



for each of the m positions, where x denotes the vector of
design variables to be optimized. The elements of x may
represent the parameters in a shaped surface, the position or
excitation of feeds and arrays, etc.

With the definition of the residual functions given in (1), the
antenna design problem can be expressed as a multi-objective
optimization problem

minimize
x∈Rn

(r1(x), . . . , rm(x))

subject to Cx+ d ≥ 0

where the elementwise inequality Cx+d ≥ 0 (with C ∈ Rp×n

and d ∈ Rp) represents p constraints on the design variables
(e.g., restricting the maximum curvature of the produced
surface such that the reflector can be manufactured in practice).
We obtain a single-objective problem by introducing a cost
function r0 : Rm → R

minimize
u∈Rm,x∈Rn

r0(u)

subject to ui ≥ ri(x), i = 1, . . . ,m

Cx+ d ≥ 0,

(2)

where u is a vector of m auxiliary variables. The minimax
problem is a special case of (2) in which the cost function is
defined as

r0(u) = max
i
ui. (3)

This function is convex, but it is not everywhere differentiable.
As we will illustrate later in the paper, the resulting problem
may have many local minima if any of the residual functions
are non-convex. As an alternative to the max objective (3), we
propose a one-sided least-squares objective of the form

r0(u) =

m∑
i=1

max {0, ui}2 . (4)

Recall that a negative residual function implies that the as-
sociated goal is met, and hence only positive residuals are
penalized. Unlike the max objective function (3), the one-
sided LS objective is continuously differentiable, and as we
demonstrate next, it may overcome some of the difficulties
with the max function.

B. The Importance of Initialization

To compare the two cost functions (3) and (4) and to demon-
strate the challenges with the minimax approach, we present
a simple case where the design objective is to position a feed.
The case is based on a simple offset reflector antenna system
where the surface has been shaped to provide a good contoured
beam for a feed positioned at the focal point of the system.
We then move the feed away from the focal point, allowing
us to test whether algorithms designed for the two different
formulations can move the feed back to the focal point. The
position of the feed may be described by the variables (x, y, z)
(i.e., n = 3) with box constraints ‖(x, y, z)‖∞ ≤ 41.6955λ
(corresponding to p = 6 inequality constraints) where λ
denotes the wavelength. We have m = 897 residual functions.

The focal point is the optimal position of the feed in the
minimax formulation since the reflector has been shaped for
this position. The focal point is

(xs, ys, zs) = (−3.5944, 5.2119,−3.7741)λ, (5)

where we note that the symmetry plane of the system is y =
5.2119λ. Thus, for now, we only consider movement in the
xz-plane. We will refer to the focal point (5) as the minimax
optimum, since this is the point of interest for the optimization.

To compare the two formulations, we now focus on the
cost functions restricted to the xz-plane and centered at the
position (5). Figure 1 includes a contour plot for both the
one-sided LS cost function (4) and the max cost function
(3). The one-sided LS cost function is well-behaved in the
sense that there appears to be a single minimum whereas
the max cost function has multiple local minima with widely
different function values. Comparing the contours of the two
functions, it is evident that a local optimization algorithm is
more likely to terminate in a poor local minimum with the
minimax approach if the initial guess is not sufficiently close
to the global minimum or a “good” local minimum. This case
illustrates that the minimax formulation can be sensitive to
the initial guess, and it also suggests that the one-sided LS
formulation may be less sensitive to initialization.

III. IMPLEMENTATION

We now turn to the implementation of a trust-region method
for local minimization of the one-sided LS problem (prob-
lem (2) with the cost function (4)), followed by a description
of an initialization strategy for the minimax algorithm based
on the one-sided LS algorithm.

A. One-Sided Least-Squares Algorithm

The one-sided least-squares problem is a special case of a
general nonlinear least-squares problem of the form

minimize
x∈Rn

‖R(x)‖22
subject to Cx+ d ≥ 0,

(6)

where R : Rn → Rm denotes a vector-valued function with
elements Ri(x) = max{0, ri(x)}. The function R is non-
differentiable (because of the max-function) and the problem
has constraints, so we cannot use the usual nonlinear least-
squares methods such as the Gauss-Newton or Levenberg-
Marquardt [4], [5] method. Using the epigraph formulation
ui ≥ Ri(x), i = 1, . . . ,m, we arrive at the equivalent problem

minimize
x∈Rn,u∈Rm

‖u‖22

subject to Cx+ d ≥ 0

ui ≥ ri(x), i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.

(7)

The problem has a convex quadratic objective function, but the
inequality constraints ui ≥ ri(x) may be non-convex. Solvers
such as IPOPT [6] and SNOPT [7] can be used to optimize
(7), but these solvers require second-order derivatives which
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Fig. 1. Contours of (a) one-sided LS objective and (b) worst-case (minimax) objective.

unfortunately are not available in our application. Furthermore,
function evaluations are often quite costly, so we wish to avoid
finite-difference approximations of second-order information.

To minimize (7) locally, we propose to use a trust-region
method [8]. This requires a model of the problem that serves
as a surrogate within a trust-region. At the kth iteration, we
obtain a convex model by linearizing the residual functions
ri(x) around xk, resulting in the trust-region problem

minimize
∆x∈Rn,u∈Rm

‖u‖22

subject to C∆x+ dk ≥ 0

u ≥ rk + Jk∆x

u ≥ 0

δk ≥ ‖∆x‖∞ ,

(8)

where δk > 0 is the trust-region radius, and

dk = Cxk + d, rk = r(xk),

Jk =
[
∇r1(xk) . . . ∇rm(xk)

]T
.

(9)

The problem (8) is a linearly constrained convex quadratic
program (since the ∞-norm is linearly representable), and we
can express it in standard form as

minimize
y∈Rm+n

1

2
yTHy

subject to AT y ≥ b
(10)

with

y =

[
u

∆x

]
, H =

[
2Im×m 0m×n
0n×m 0n×n

]
,

AT =


0p×m C
Im×m −Jk

Im×m 0m×n
0n×m −In×n
0n×m In×n

 , b =


−dk
rk

0m
−δ̄k
−δ̄k

 ∈

Rp

Rm

Rm

Rn

Rn

 .
(11)

We use an interior-point method (IPM) to solve (10) which
yields a step ∆x. IPMs are iterative methods, and the main
computation in each iteration is the solution of the linear
system

(H +ADAT )∆y = v, (12)

where D is a diagonal matrix and v is a vector. The matrix on
the left-hand side of (12) is of order n+m, so factorizing this
matrix costs O((n+m)3). However, under the assumption that
n < m (i.e., we have fewer variables than functions), we can
use the approach described in [9] which takes advantage of the
structure in H , A, and b. With this approach, the complexity of
one interior-point iteration becomes O(n2(m + p)). In other
words, the cost grows linearly with the number of residual
functions.

B. Initialization Strategy

As demonstrated with the feed positioning case in Sec-
tion II-B, the quality of a local minimum obtained with the
minimax formulation can be more sensitive to the initial guess
than with the one-sided LS formulation. However, the two
formulations yield different solutions in general, and the so-
lutions obtained with the minimax approach may be preferred
over those obtained with the one-sided LS approach. In the
following, we assume that a minimax solution is of interest,
and we wish to investigate the use of a (locally optimal) one-
sided LS solution as initialization for the minimax algorithm.
We begin by optimizing the one-sided LS cost function starting
from the provided initial guess, and then the (locally optimal)
solution is used as initial guess for the minimax algorithm.

To avoid many costly function evaluations, we also consider
initialization with a crude, approximate local solution to the
one-sided LS problem. Solving the one-sided LS problem
accurately may require a lot of function evaluations, but high
accuracy may not be necessary to obtain a good initial guess
for the minimax algorithm. We will assume that the user
chooses a maximum number of iterations, and half of these



TABLE I
COMPARING COST FUNCTIONS USING THE DIFFERENT FORMULATIONS
AND ALGORITHMS FOR FEED POSITIONING. THE LEFT COLUMN IS THE
MINIMAX COST FUNCTION AND HAS UNIT DB. THE RIGHT COLUMN IS

THE ONE-SIDED LS COST FUNCTION AND HAS UNIT DB2 .

maxi ri(x)
∑

i max{0, ri(x)}2
Minimax algorithm 35.790 332,020

One-sided LS algorithm 5.517 12,772

Minimax optimum 4.151 13,493

will be assigned to computing an initial guess using the one-
sided LS algorithm, and the other half will be assigned to
the minimax algorithm. For example, if the user specifies a
maximum of 500 function calls, we will stop the one-sided
LS algorithm after 250 iterations (or earlier if the stopping
criteria are met), and then we run the minimax algorithm with
no more than 250 iterations.

We conclude this section by mentioning that our implemen-
tation of the one-sided LS algorithm may be improved by
removing constraints in the trust-region subproblem (8) that
will remain inactive within a given trust-region. This would
most likely reduce the computation time, but since we assume
that function evaluations are costly, the added complexity of
eliminating constraints may not be worthwhile.

IV. NUMERICAL RESULTS

We begin by revisiting the case described in Section II-B
before we move on to a more complicated case of surface
shaping of a reflector with two feeds. Note that we have chosen
not to report the computational time of the algorithms used to
produce the results since this is insignificant compared to the
time it takes to evaluate the objective function.

A. Feed Positioning

Recall that for the case described in Section II-B, the focal
point coincides with the minimax optimum. We then moved
the feed out of position to see if the optimization algorithm
can bring it back. We now compare the performance of the
minimax and one-sided LS algorithms using the same initial
guess.

(x, y, z) = (0, 0, 0). (13)

Note that the contours in Figure 1 are centered at the focal
point (5), and the initial guess is outside the top right corner
at another depth (a different y) than the slice shown in the
contour plots. With this initial guess, the minimax algorithm
stops after 5 iterations, and the one-sided LS algorithm stops
after 38 iterations.

Table I shows the value of the cost functions in the different
formulations at the obtained local optimums as well as the
value at the known minimax optimum. We see from the table
that the minimax algorithm does not perform well with this
initial guess; the maximal residual is 31.64 dB higher than at
the focal point. On the other hand, the one-sided LS algorithm
yields a solution of comparable magnitude to the minimax
optimum; the largest residual is 1.37 dB from the largest
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Fig. 2. Histogram of residuals at optimum in the two different formulations.
Smaller residual values (left) are more desirable.

residual value at the minimax optimum. However, the sum
of the squared positive residuals, which is what the one-
sided LS formulation seeks to minimize, is lower than at the
minimax optimum. This suggests that a comparison based on
the numbers in Table I is insufficient to show the qualitative
difference between the two approaches. Therefore, we consider
all residuals by plotting a histogram of these in Figure 2. The
histograms show a clear difference in the solutions. The value
of the worst residual is lower for the minimax optimum, but
many residuals take a value close to this. For the one-sided
LS solution, some residuals have better performance (lower
value) at the expense of others.

We now investigate our initialization strategy from Sec-
tion III-B, i.e., we use the output from the one-sided LS
algorithm as initialization for the minimax algorithm. With this
approach, the minimax algorithm used 5 iterations (in addition
to 38 iterations for the one-sided LS algorithm) and reached
the minimax optimum that is listed in the last row of Table I
and shown in green in Figure 2. In other words, the one-sided
LS algorithm took us from the initial position to the position
represented by the blue histogram, and the minimax algorithm
took us from the point represented by the blue histogram to
the point represented by the green histogram.

The histograms in Figure 2 are qualitatively different; with
the minimax solution we can guarantee a certain minimum
gain for all points in the coverage, while the one-sided LS
solution has a better average gain for the points in the
coverage.

In this particular case, all residuals are positive which
suggests that we could have used a standard nonlinear least-
squares algorithm instead of the one-sided LS algorithm.
However, if we were to reduce some or all of the goals by, say,
4 dB (which corresponds to subtracting 4 from all residuals),
the one-sided LS formulation could still be used with a desired
behavior, but a standard nonlinear LS formulation would



penalize negative residuals. Moreover, if there exists a design
for which all residuals are negative, the one-sided LS cost
function (4) and its gradient become zero which means that
we have reached a global minimum. However, we could then
increase the goals to aim for a better design, or we could use
the one-sided LS solution as an initial guess in the minimax
algorithm.

B. Surface Shaping

As a second case, we consider the radiation from a reflector
illuminated by two feeds, intended to produce two separate
hemisphere beams. The case is illustrated in Figure 3. We
note that this is a so-called super-coverage antenna, intended
to be able to provide dual-hemisphere coverage from a position
either over the Atlantic Ocean or over the Pacific Ocean.

The surface of the reflector is discretized using 355 spline
variables, and since we also optimize the xy-position of the
feeds in the focal plane, the total number of variables in
this case is n = 359. The coverage region is discretized
using m = 658 residuals. To ensure that the reflector can
be manufactured, we include p = 2512 constraints such that
the surface curvature is at most 0.1 m.

The initial guess for the feed positions is determined by
the spacing between the two intended beams, while the initial
guess for the reflector surface is determined by defocusing the
reflector until an area the size of the coverage is sufficiently
illuminated.

We optimize by applying the initialization strategy, starting
with 250 iterations with the one-sided LS algorithm, followed
by 250 iterations with the minimax algorithm. We end up with
a maximum residual of 7.444 dB. As a reference, if we just
perform 500 iterations with the minimax algorithm, we end
up with a significantly higher maximum residual of 8.557 dB.

The solution based on the initialization strategy is illustrated
in Figure 4. Clearly, the beams are not as precisely shaped as
for standard single-coverage shaped beams, due to the intended
super-coverage of the antenna.

V. CONCLUSIONS

We have proposed a new approach to reflector antenna
design based on one-sided least-squares, and we have demon-
strated its usefulness as (i) an alternative to worst-case op-
timization and (ii) as an initialization method for worst-case
optimization. The problem can be optimized locally using a
trust-region method, and compared to the minimax algorithm,
our one-sided LS algorithm appears to be less sensitive to the
initial guess, easing the demand on the end-user to provide
a good initial design. Moreover, we have demonstrated that
the use of the one-sided LS formulation for finding an initial
design for the minimax algorithm may result in improved
designs as well as fewer iterations.
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