
University of California

Los Angeles

Chordal Sparsity in Interior-Point Methods for

Conic Optimization

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Martin Skovgaard Andersen

2011

c© Copyright by

Martin Skovgaard Andersen

2011

The dissertation of Martin Skovgaard Andersen is approved.

Alan J. Laub

Luminita A. Vese

Kung Yao

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2011

ii

To my loving family

iii

Table of Contents

1 Introduction . 1

1.1 Conic Optimization with Sparse Matrix Cones 1

1.2 Sparse Inverse Approximation . 7

1.3 Notation . 8

2 Optimization with Sparse Matrix Cones 9

2.1 Cone Programs with Matrix Inequalities 9

2.2 Sparse Matrix Cones . 11

2.2.1 Nonsymmetric Sparse Matrix Cones 12

2.2.2 Related Work . 13

2.3 Chordal Sparsity . 15

2.3.1 Chordal Graphs and Matrices 16

2.3.2 Examples of Chordal Sparsity 18

2.3.3 Clique Trees . 22

2.3.4 Maximum Determinant Positive Definite Completion . . . 23

2.4 Chordal Matrix Algorithms . 26

2.4.1 Cholesky Factorization . 26

2.4.2 Value and Gradient of Dual Barrier 27

2.4.3 Hessian and Inverse Hessian of Dual Barrier 28

2.4.4 Value and Gradient of Primal Barrier 29

2.4.5 Hessian and Inverse Hessian of Primal Barrier 30

iv

2.4.6 Step-length Calculation . 30

2.5 Chordal Embedding, Restriction, and Decomposition 32

2.5.1 Chordal Embedding of Nonchordal Sparsity Patterns . . . 32

2.5.2 Chordal Restriction . 34

2.5.3 Chordal Decomposition . 35

2.6 Summary . 39

3 Nonsymmetric Interior-Point Methods 41

3.1 Primal and Dual Path-following Methods 41

3.1.1 Central Path . 43

3.1.2 Search Directions . 45

3.1.3 Feasible Start Path-Following Method 47

3.2 Newton System . 48

3.2.1 Primal Scaling Methods 48

3.2.2 Dual Scaling Methods . 53

3.2.3 Complexity . 54

3.3 Initialization From Infeasible Starting-points 55

3.3.1 Phase I . 56

3.3.2 Self-dual Embedding . 56

3.4 Implementation . 59

3.4.1 Algorithm Outline . 59

3.4.2 Numerical Stability . 61

3.5 Numerical Experiments . 63

v

3.5.1 SDPs with Band Structure 64

3.5.2 Matrix Norm Minimization 68

3.5.3 Overlapping Cliques . 74

3.5.4 Robust Convex Quadratic Optimization 76

3.5.5 Sparse SDPs from SDPLIB 81

3.5.6 Nonchordal SDPs . 87

3.6 Summary . 91

4 Applications in Nonlinear Programming 93

4.1 Sparse Approximate Inverses . 94

4.1.1 Optimization Approach . 95

4.1.2 Block-arrow Completion 97

4.1.3 Band Completion . 100

4.2 Applications in Machine Learning 103

4.2.1 Approximate Support Vector Machine Training 108

4.2.2 Numerical Experiments . 114

4.2.3 Other Applications . 123

4.3 Summary . 126

5 Conclusions . 128

A Chordal Matrix Algorithms . 133

A.1 Cholesky Factorization . 134

A.2 Gradient of Dual Barrier . 134

vi

A.3 Hessian of Dual Barrier . 135

A.4 Factors of Hessian of Dual Barrier 136

A.5 Gradient of Primal Barrier . 138

A.6 Complexity . 138

References . 140

vii

List of Figures

1.1 Matrix norm constraints: iteration cost 5

2.1 Band SDP: iteration cost . 13

2.2 Chordal and nonchordal graphs 17

2.3 Band structure . 19

2.4 Block-arrow structure . 19

2.5 Example of 2-tree structure . 19

2.6 Split graph . 21

2.7 General chordal structure . 22

2.8 Clique tree with running intersection property 24

2.9 k-semiseparable matrix . 26

2.10 Minimum degree ordering of a chordal graph 34

3.1 Band SDP: time per iteration . 66

3.2 Matrix norm SDP: time per iteration 70

3.3 Sparsity pattern with overlapping cliques 74

3.4 Sparsity pattern associated with robust least-squares problem . . 80

3.5 Aggregate sparsity patterns for nonchordal test problems 88

4.1 Block-arrow completion preconditioner (exp. decay rate) 101

4.2 Block-arrow completion preconditioner (spectrum with gap) . . . 102

4.3 Band completion preconditioner (exp. decay rate) 104

4.4 Band completion preconditioner (spectrum with gap) 105

viii

4.5 Cross-validation accuracy for approximation SVM 116

ix

List of Tables

3.1 DIMACS error measures for control6 from SDPLIB 62

3.2 Random band SDPs: iteration times (variable n) 65

3.3 Random band SDPs: iteration times (variable m) 67

3.4 Random band SDPs: iteration times (variable w) 68

3.5 Random matrix norm SDPs: iteration times (variable p) 70

3.6 Random matrix norm SDPs: iteration times (variable r) 71

3.7 Random matrix norm SDPs: iteration times (variable d) 72

3.8 Random matrix norm SDPs: iteration times (variable q) 73

3.9 Random SDPs with overlapping cliques: iteration times 75

3.10 Random QCQPs: iterations times 78

3.11 Robust least square: iteration times 81

3.12 Problem statistics for SDPLIB problems. 83

3.13 Statistics for chordal embeddings of selected SDPLIB problems . . 84

3.14 SDPLIB problems: iteration times 86

3.15 Problem statistics for nonchordal problems 87

3.16 Statistics for chordal embeddings of nonchordal problems 89

3.17 Nonchordal SDPs: iteration times 90

4.1 Average training time and error rates for approximation SVM . . 117

4.2 CPU time and number of support vectors at each stage 120

4.3 Test error rate and total CPU time for multistage method 121

4.4 Test error rates and number of support vectors 122

x

4.5 CPU time for three stages and libsvm 123

xi

List of Abbreviations and Symbols

Abbreviations

AMD approximate minimum degree

CC completion classifier

EDM Euclidean distance matrix

GP Gaussian process

KKT Karush-Kuhn-Tucker

LMI linear matrix inequality

LP linear program

MAP maximum a posteriori

MCS maximum cardinality search

MD minimum degree

ND nested dissection

PCA principal component analysis

PCG preconditioned conjugate gradients

QP quadratic program

RBF radial basis function

SDP semidefinite program

SOC second-order cone

SOCP second-order cone program

SVM support vector machine

xii

Sets of matrices and vectors

R set of real numbers

Rn
+ set of nonnegative real n-vectors

Rm×n set of real m× n matrices

Sn set of symmetric matrices of order n

Sn
+ set of positive semidefinite matrices of order n

Sn
++ set of positive definite matrices of order n

Sn
V set of symmetric matrices of order n with sparsity pattern V

Sn
V,+ set of positive semidefinite matrices in Sn

V

Sn
V,++ set of positive definite matrices in Sn

V

Sn
V,c+ set of positive semidefinite completable matrices in Sn

V

Sn
V,c++ set of positive definite completable matrices in Sn

V

xiii

Symbols

1 vector or matrix of ones (its size is context-dependent)

0 vector or matrix of zeros (its size is context-dependent)

AT transpose of the matrix A

A† Moore-Penrose pseudo-inverse of the matrix A

〈·, ·〉 an inner product

‖ · ‖2 Euclidean norm of a vector, or the spectral norm of a matrix

‖A‖F Frobenius norm of the matrix A

tr(A) trace of the matrix A

PV (A) projection of the matrix A on the sparsity pattern V

A •B inner product between symmetric matrices A and B

G(A) sparsity graph associated with the sparse symmetric matrix A

diag(a) diagonal matrix with diagonal entries read from the vector a

diag(A) vector with elements read from the diagonal of A

dom f domain of the function f

intK interior of the set K

a �K b generalized inequality (a− b ∈ K)

a ≻K b strict generalized inequality (a− b ∈ intK)

a � b vector inequality: means that a− b ∈ Rn
+

A � B matrix inequality: means that A− B ∈ Sn
+ or A− B ∈ Sn

V,+

A �c B matrix inequality: means that A− B ∈ Sn
V,c+

∇f gradient of f : vector with first-order partial derivatives of f

∇2f Hessian of f : matrix with second-order partial derivatives of f

Tadj adjoint of the linear operator T : satisfies 〈T (x), y〉 = 〈x, Tadj(y)〉

xiv

Acknowledgments

This dissertation is the culmination of five years of research and study at

UCLA. I recognize that this would not have been possible without the help and

support of many people.

First, I gratefully acknowledge the funding sources that made my doctoral

research possible. My research was supported in part by the Denmark–America

Foundation (GN Store Nord Scholarship), Marie & M. B. Richter’s Fund, Berg

Nielsen’s Scholarship, Otto Mønsted Ph.D. Scholarship, Knud Højgaard’s Fund,

Reinholdt W. Jorck’s Fund, The Augustinus Fund, Thomas B. Thrige’s Fund, and

the U.S. National Science Foundation grants ECS-0524663 and ECCS-0824003.

I am sincerely grateful to my advisor, Lieven Vandenberghe, who has been

a great mentor to me in so many ways. Lieven has contributed immensely to

my development as a scholar and as a teacher, and for that I cannot thank him

enough. Without his guidance and inspiration, this dissertation would never have

come together. It has been a great pleasure to work with and learn from Lieven.

My committee members, Alan Laub, Kung Yao, and Luminita Vese, also

deserve a special thanks. Alan Laub in particular has been a great source of

inspiration. He is a great teacher who brings both rigor and clarity to the class-

room, and I thank him for providing me with a solid foundation in numerical

linear algebra.

In addition to my committee members, I would like to thank Joachim Dahl

at MOSEK. His efforts and invaluable assistance with the Chompack software

package have been a tremendous help. I am very grateful to Lin Xiao and John

Platt at Microsoft Research for the many helpful and inspiring conversations

xv

during a summer internship at Microsoft Research in 2010. I would also like to

thank Anders Hansson at Linköping University for an insightful discussion and

helpful suggestions during his short visit to UCLA in Spring 2010. Further, I

give my special thanks to my former advisor, Søren Holdt Jensen at Aalborg

University. My studies at UCLA simply would not have been possible without

his thoughtful mentorship.

I wish to express my warm thanks to my colleagues and friends for their moral

support and the many helpful technical discussions. I am especially grateful to

John Lee, Zhang Liu, Shalom Ruben, and Jitkomut Songsiri for their friendship

and the good times shared. I also want to thank the Electrical Engineering

Department staff—and in particular Deeona, Mandy, Brenda, Gershwin, and

Jose—for their assistance.

My wonderful family deserves my deepest gratitude for all their love and

support. I thank my loving parents, Preben & Kirsten, who have always been

there for me and encouraged me throughout all stages of my life. I thank my

siblings, Nana & Jesper, for being supportive, kind, and patient. I thank Henrik

and Alice & Tim for their kind and warm hospitality. Finally, I give my deepest

expression of love and appreciation to Cassie, my amazing friend and kæreste:

thank you for your unwavering love and friendship!

xvi

Vita

1980 Born, Silkeborg, Denmark.

2001–06 M.S., Electrical Engineering
Institute of Electronic Systems
Aalborg University, Denmark.

2007–09 Teaching Assistant
Electrical Engineering Department
University of California, Los Angeles (UCLA).

2007–11 Research Assistant
Electrical Engineering Department
University of California, Los Angeles (UCLA).

Publications

M. S. Andersen, J. Dahl, L. Vandenberghe. “Implementation of nonsymmetric
interior-point methods for linear optimization over sparse matrix cones.” Math-
ematical Programming Computation, 2:167–201, 2010.

M. S. Andersen, J. Dahl, L. Vandenberghe. “Linear matrix inequalities with
chordal sparsity patterns and applications to robust quadratic optimization.” In
Proceedings of the IEEE International Symposium on Computer-Aided Control
System Design (CACSD), Sept. 2010.

M. S. Andersen, J. Dahl, Z. Liu, L. Vandenberghe. “Interior-point methods for
large-scale cone programming,” to appear in: S. Sra, S. Nowozin, S. J. Wright
(editors) Optimization for Machine Learning, MIT Press, 2011.

xvii

Abstract of the Dissertation

Chordal Sparsity in Interior-Point Methods for

Conic Optimization

by

Martin Skovgaard Andersen

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2011

Professor Lieven Vandenberghe, Chair

Conic optimization is an extension of linear optimization in which the linear

inequality constraints are replaced with vector inequalities defined by convex

cones. The two most important examples, second-order cone programming and

semidefinite programming, are used in a wide range of applications and form the

basis of modeling tools for convex optimization. In fact, most convex constraints

encountered in practice can be formulated as conic inequalities with respect to

the second-order or semidefinite cone.

Second-order cone programs and semidefinite programs can be solved in poly-

nomial time using interior-point methods. However, methods for exploiting struc-

ture in semidefinite programming problems are not as well-developed as those for

linear optimization, and despite its powerful modeling capabilities, the semidefi-

nite cone does not always provide an efficient representation of convex constraints.

We therefore consider methods for linear cone programs with two types of sparse

matrix cones: the cone of positive semidefinite matrices with a given chordal

sparsity pattern and its dual cone, the cone of chordal sparse matrices that have

a positive semidefinite completion. These cones include not only the nonnega-

xviii

tive orthant, the second-order cone, and the semidefinite cone as special cases,

but also a number of useful lower-dimensional, intermediate cones which are gen-

erally not self-dual. Our results show that the sparse matrix cone approach is

advantageous for many problems with sparse, chordal sparsity patterns, and for

problems that have an efficient chordal embedding. For problems with band or

block-arrow structure, for example, the cost of a single interior-point iteration

grows only linearly in the order of the matrix variable instead of quadratically or

worse for general-purpose semidefinite programming solvers.

We also explore other applications in nonlinear optimization. By combining

interior-point methods and results from matrix completion theory, we formu-

late an approximation method for large, dense, quadratic programming problems

that arise in support vector machine training. The basic idea is to replace the

dense kernel matrix with the maximum determinant positive definite comple-

tion of a subset of the entries of the kernel matrix. The resulting approximate

kernel matrix has a sparse inverse, and this property can be exploited to dramat-

ically improve the efficiency of interior-point methods. If the sparsity pattern is

chordal, the sparse inverse and its Cholesky factors are easily computed by effi-

cient recursive algorithms. The completion technique can also be applied to other

dense convex optimization problems arising in machine learning, for example, in

Gaussian process classification.

xix

CHAPTER 1

Introduction

1.1 Conic Optimization with Sparse Matrix Cones

Conic optimization (also called cone programming) is an extension of linear op-

timization in which the componentwise vector inequalities are replaced by linear

inequalities with respect to nonpolyhedral convex cones. A cone linear program

(cone LP or conic LP) is an optimization problem of the form

minimize cTx

subject to Ax �K b.
(1.1)

The optimization variable is x, and the inequality Ax �K b is a generalized in-

equality, which means that b − Ax ∈ K, where K is a closed, pointed, convex

cone with nonempty interior. In linear programming, K is the nonnegative or-

thant and the cone inequality is interpreted as componentwise inequality. If K

is a nonpolyhedral cone, the problem is substantially more general than an LP.

In fact, any convex optimization problem in the common format

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(1.2)

where fi are real-valued convex functions, can be formulated as a cone LP [NN94].

An important difference between (1.2) and the cone programming format (1.1) is

the way nonlinearities are represented. In (1.2), the convex functions fi(x) can

1

be both nonlinear and nondifferentiable whereas the cone LP (1.1) has a linear

objective and the constraint is a linear generalized inequality. Cone programming

can therefore be thought of as a natural extension of linear programming. It

has been widely used in the convex optimization literature since the early 1990s

because it provides a framework for studying extensions of interior-point methods

from linear programming to convex optimization [NN94, §4], [Ren01, §3], [BV04].

Research on algorithms for cone programming has focused on cones that are

the direct product of three basic cones: the nonnegative orthant, the second-

order cone, and the positive semidefinite cone [AHO98, TTT98, Mon98, Stu99,

Bor99a, Stu02, TTT03, YFK03, BY05]. The second-order cone in Rn is defined

as points (t, x) ∈ R ×Rn−1 that satisfy ‖x‖2 ≤ t, and the positive semidefinite

cone Sn
+ is the set of symmetric positive semidefinite matrices of order n. A

problem of the form (1.1) is called a second-order cone program (SOCP) if the

cone K is the direct product of second-order cones, and similarly, (1.1) is called

a semidefinite program (SDP) if K is the direct product of positive semidefinite

cones. LPs can be expressed as SOCPs, and SOCPs can be expressed as SDPs.

The converse is not true in general, so SDPs are much more general than SOCPs

and LPs. The focus on the nonnegative orthant, the second-order cone, and

the positive semidefinite cone (and direct products of these) is motivated by the

fact that these are the only interesting cones that are symmetric or self-scaled

[Gul96, NT97, NT98]. This property is necessary in order to formulate completely

symmetric primal–dual interior-point methods, i.e., methods that yield the same

iterates if we switch the primal and the dual problem.

The modeling capabilities associated with the three basic cones are surpris-

ingly powerful. With a few exceptions (for example, geometric programming),

most nonlinear convex constraints encountered in practice can be expressed as

2

second-order cone or semidefinite constraints [NN94, VB96, BN01, AG03, BV04].

We illustrate this with two examples. Consider the eigenvalue optimization prob-

lem

minimize λmax(A(x)) (1.3)

where A(x) = A0+
∑m

i=1 xiAi and Ai ∈ Sn. This is a nonlinear, nondifferentiable,

convex problem, and it can be reformulated as an equivalent SDP

minimize t

subject to tI − A(x) � 0
(1.4)

with an auxiliary variable t ∈ R [VB96]. (The inequality X � 0 means that

X is positive semidefinite.) As another example, consider the nonlinear matrix-

fractional optimization problem

minimize cTA(x)−1c (1.5)

with A(x) defined as above and with domain {x |A(x) ≻ 0}. This nonlinear

problem can be expressed as an SDP [BV04, p. 76]

minimize t

subject to


A(x) c

cT t


 � 0.

(1.6)

These examples illustrate just a few of many techniques that can be used to

reformulate nonlinear convex problems as LPs, SOCPs, or SDPs. yalmip [Lof04]

and cvx [GB12], two modeling software packages for convex optimization, can

convert a high-level problem description of a convex optimization problem into

either an LP, an SOCP, or an SDP, and both packages rely on second-order cone

and semidefinite programming solvers for the numerical solution.

The three cones form a hierarchy with three levels of generality, and there

are large gaps between the linear algebra complexity associated with each level.

3

Methods for exploiting structure in LPs rely on highly developed sparse Cholesky

factorization techniques [Wri97a, GS04], and modern LP solvers can handle a very

large number of variables and constraints (i.e., linear inequalities). Second-order

cone constraints are more general than linear inequality constraints, and hence

also more costly. The techniques for exploiting structure in SOCPs are similar to

those used for LPs, and the extra cost depends largely on the number of second-

order cone constraints and the dimension of the cones [ART03, GS05]. The

positive semidefinite cone is the most general of the three basic cones, and the

techniques for exploiting structure in SDPs are not as well-developed as those for

LPs and SOCPs. These large differences in linear algebra complexity sometimes

lead to inefficiencies when convex optimization problems are converted to the

canonical cone program format. For example, a Euclidean norm constraint ‖Ax+
b‖2 ≤ t is equivalent to a linear matrix inequality (LMI) with arrow structure.

An extension is a matrix norm constraint ‖A(x)+B‖2 ≤ t, where A(x) = x1A1+

· · · + xmAm and Ai ∈ Rp×q. This constraint cannot be expressed as an SOC

constraint, but it is equivalent to a (p+ q)× (p+ q) LMI


 tI (A(x) + B)T

A(x) + B tI


 � 0.

Block-arrow structure is also common in robust optimization [EL97, GI03]. Since

the block-arrow constraint cannot be reduced to a second-order cone constraint, it

must be handled via its SDP formulation. This makes problems with matrix norm

constraints substantially more difficult to solve than problems with Euclidean

norm constraints, even when q is small. We demonstrate the complexity gap

with a simple Matlab experiment based on a cvx model with a single matrix

4

102 103
10−2

10−1

100

101

102

q = 1

q = 2

q = 10

p

T
im

e
p
er

it
er
at
io
n
(s
ec
on

d
s)

Figure 1.1: Time per iteration (seconds) required to solve (1.7) with cvx/sedumi
for m = 100 and with different values of p and q where Ai, B ∈ Rp×q. The
problem is formulated and solved as an SOCP when q = 1 (and p ≥ q), and it is
reformulated and solved as an SDP when q ≥ 2.

norm constraint

minimize cTx+ t

subject to ‖A(x) + B‖2 ≤ t

l � x � u.

(1.7)

cvx uses an SOCP formulation when q = 1 and an SDP formulation when q ≥ 2.

Fig. 1.1 shows the relationship between the parameter p and the average time

per iteration for different values of q and with m = 100. The gap from q = 1 to

q = 2 is quite significant, whereas the difference from q = 2 to q = 10 is relatively

small. Furthermore, the time per iteration grows much faster as a function of p

for q ≥ 2. We give a similar example in Section 2.2 that illustrates the gap in

complexity between linear programming and semidefinite programming.

For practical purposes, it is interesting to consider a wider family of cones that

5

allow us to capture more closely structure in the problem. In this dissertation,

we therefore consider cone programs defined by chordal sparse matrix cones, i.e.,

cones of positive semidefinite matrices with chordal sparsity patterns. In addition

to the three basic cones (and direct products of them), the family of sparse chordal

matrix cones also includes a wide range of useful intermediate cones. These cones

are interesting because, as we will see in Section 2.4, there exist fast recursive

algorithms for evaluating the function values and derivatives of the logarithmic

barrier functions associated with these cones and their dual cones. This allows us

to efficiently implement any primal or dual interior-point method. By replacing

the three symmetric cones with the family of chordal sparse matrix cones, we

gain in modeling flexibility and, potentially, efficiency. For matrix cones with

band structure and block-arrow structure, the cost of one interior-point iteration

can be reduced from being quadratic in the order of the matrix variable to being

only linear. This allows us to solve problems with very large (but sparse) matrix

variables on a standard desktop PC.

Another advantage of the chordal sparse matrix cones is that they belong to

a lower-dimensional subspace. As a result, it is sometimes feasible to solve the

Newton equations, which define the search direction in an interior-point method,

without explicitly forming the normal equations. This improves the accuracy of

the computed search direction when the Newton equations are ill-conditioned.

We will discuss sparse matrix cones and a set of chordal matrix techniques

in Chapter 2, and in Chapter 3, we describe implementations of primal and

dual interior-point methods for linear optimization with sparse matrix cone con-

straints.

6

1.2 Sparse Inverse Approximation

We also explore other applications of the chordal matrix techniques in nonlinear

optimization. Chordal matrix techniques can be used to compute sparse inverse

approximations of dense positive definite matrices. The maximum determinant

positive definite completion of a partial matrix (if it exists) has a sparse inverse,

and it can be computed efficiently when the underlying sparsity pattern is chordal.

Similar techniques for computing sparse inverse approximations have been devel-

oped for preconditioning of iterative methods [BF82, KY93, BT99]. Unlike these

methods, the completion-based sparse inverse approximations are guaranteed to

be positive definite.

We make use of the completion-based sparse inverse approximation technique

in a method for nonlinear support vector machine (SVM) training. SVMs are dis-

criminative classifiers, and the training stage requires the solution of a constrained

convex quadratic optimization problem where the Hessian of the quadratic ob-

jective is a (typically dense) kernel matrix. The order of the kernel matrix is

equal to the number of data points, and computing the entire kernel matrix

is therefore prohibitively expensive for large data sets. Massive data sets with

many thousands – or even millions – of data points are increasingly common

in many machine learning applications. In practice a subset of the data points

is therefore often used to compute a low-complexity approximation of the full

kernel matrix that is cheaper to compute, requires less storage, and makes the

(approximate) training problem easier to solve. Research on kernel matrix ap-

proximation has focussed on randomized techniques for low-rank approximation

[WS01, FS02, DM05, BJ05, KMT09a, KMT09b], and these methods generally

work quite well for problems with a numerically rank-deficient kernel matrix.

In Chapter 4 we explore the use of matrix completion techniques as a means

7

of computing sparse inverse approximations of partial positive kernel matrices.

Using this technique, we implement and test an efficient interior-point method

for approximate support vector machine training.

1.3 Notation

Sn is the set of symmetric matrices of order n. Sn
+ = {X ∈ Sn | X � 0} and

Sn
++ = {X ∈ Sn | X ≻ 0} are the sets of positive semidefinite, respectively, posi-

tive definite matrices of order n. The notation S •X = tr(SX) =
∑n

i,j=1 SijXij

denotes the standard inner product of symmetric matrices of order n.

A sparsity pattern of a symmetric matrix is defined by the set V of positions

(i, j) where the matrix is allowed to be nonzero, i.e., X ∈ Sn has sparsity pattern

V if Xij = Xji = 0 for (i, j) /∈ V . It is assumed that all the diagonal entries are

in V . Note that the entries Xij for (i, j) ∈ V are allowed to be zero as well. In

that case we refer to them as numerical zeros, as opposed to the structural zeros.

The number of nonzero elements in the lower triangle of V is denoted |V |.

Sn
V is the subspace of Sn of matrices with sparsity pattern V . Sn

V,+ and Sn
V,++

are the sets of positive semidefinite and positive definite matrices in Sn
V . The

projection Y of a matrix X ∈ Sn on the subspace Sn
V is denoted Y = PV (X), i.e.,

Yij = Xij if (i, j) ∈ V and otherwise Yij = 0.

Sn
V,c+ = {PV (X) | X � 0} is the cone of matrices in Sn

V that have a positive

semidefinite completion, and Sn
V,c++ is the interior of Sn

V,c+. The inequalities �c

and ≻c denote (strict) matrix inequality with respect to Sn
V,c+, i.e., X �c 0 if

and only if X ∈ Sn
V,c+ and X ≻c 0 if and only if X ∈ Sn

V,c++. The functions φ

and φc are logarithmic barrier functions for Sn
V,+ and Sn

V,c+, and are defined in

Section 2.4 (equations (2.11) and (2.16)).

8

CHAPTER 2

Optimization with Sparse Matrix Cones

2.1 Cone Programs with Matrix Inequalities

Despite the progress made in the last fifteen years, exploiting sparsity in semidef-

inite programming remains an important challenge. A fundamental difficulty is

that the variable X in the standard form SDP

minimize C •X
subject to Ai •X = bi, i = 1, . . . ,m,

X � 0

(2.1a)

is generally dense, even when the coefficients Ai, C are sparse with a common

sparsity pattern. This complicates the implementation of primal and primal–dual

interior-point methods. Exploiting sparsity in dual methods is more straightfor-

ward, because the slack variable S in the dual problem

maximize bTy

subject to
m∑

i=1

yiAi + S = C

S � 0

(2.1b)

has the same (aggregate) sparsity pattern as C and the matrices Ai. However,

computing the gradient and Hessian of the dual logarithmic barrier function

requires the inverse of S, and S−1 is in general a dense matrix.

9

Fukuda and Nakata et al. [FKM00, NFF03], Burer [Bur03], and Srijuntongsiri

and Vavasis [SV04] propose to pose the problems as optimization problems in

the subspace of symmetric matrices with a given sparsity pattern. Specifically,

assume that C, A1, . . . Am ∈ Sn
V , where Sn

V denotes the symmetric matrices of

order n with sparsity pattern V . Then the pair of SDPs (2.1a–2.1b) is equivalent

to a pair of sparse matrix cone programs

minimize C •X
subject to Ai •X = bi, i = 1, . . . ,m

X �c 0

(2.2a)

with primal variable X ∈ Sn
V , and

maximize bTy

subject to
m∑

i=1

yiAi + S = C

S � 0,

(2.2b)

with dual variables y ∈ Rm, S ∈ Sn
V . The inequality X �c 0 means that the

sparse matrix X is in the cone Sn
V,c+ of matrices in Sn

V that have a positive

semidefinite completion, i.e., X is the projection on Sn
V of a positive semidefinite

matrix

X �c 0 ⇔ X ∈ Sn
V,c+ ≡ {PV (X̄) | X̄ ∈ Sn

+}.

Similarly, the inequality S � 0 in (2.2b) means that S is in the cone

Sn
V,+ ≡ Sn

V ∩ Sn
+.

The equivalence between (2.2a–2.2b) and (2.1a–2.1b) is easily established: if

X is optimal in (2.2a), then any positive semidefinite completion of X is optimal

in (2.1a). Conversely, if X is optimal in (2.1a), then PV (X), the projection of

X on Sn
V , is optimal in (2.2a). An important difference between (2.2a–2.2b)

10

and (2.1a–2.1b) is that different types of inequalities are used in the primal and

dual problems of (2.2a–2.2b).

By formulating the SDPs (2.1a–2.1b) as optimization problems in Sn
V , we

achieve a dimension reduction from n(n+1)/2 (the dimension of the space Sn of

symmetric matrices of order n) to |V |, the number of lower-triangular nonzeros

in V . It is reasonable to expect that this can reduce the linear algebra complexity

of interior-point methods for these problems. We will see that this is the case

for methods based on primal or dual scaling, if the sparsity pattern V is chordal.

The reduction in complexity follows from efficient methods for evaluating the

primal and dual barrier functions for the problems (2.2a–2.2b), their gradients,

and Hessians [DVR08].

In the remainder of this chapter we will first discuss sparse matrix cones

and related work. This is followed by an introduction to chordal sparsity and

an overview of efficient algorithms for evaluating primal and dual barriers and

their derivatives for sparse matrix cones with chordal structure. We also discuss

techniques for handling nonchordal sparsity patterns.

2.2 Sparse Matrix Cones

The optimization problems (2.2a–2.2b) are an example of a pair of primal and

dual cone programs

P: minimize 〈c, x〉
subject to A(x) = b

x �K 0

D: maximize bTy

subject to Aadj(y) + s = c

s �K∗ 0.

(2.3)

The variables x, s in these problems are vectors in a vector space E, with inner

product 〈u, v〉. The inequality x �K 0 means x ∈ K, where K is a closed, convex,

11

pointed cone with nonempty interior. The inequality s �K∗ 0 means that s is in

the dual cone K∗ = {s | 〈x, s〉 ≥ 0 for all x ∈ K}. The mapping A in the primal

equality constraint is a linear mapping from E to Rm, and Aadj is its adjoint,

defined by the identity uTA(v) = 〈Aadj(u), v〉.

2.2.1 Nonsymmetric Sparse Matrix Cones

In the three-cone format used by SDP packages, any constraint that cannot be

expressed as componentwise linear inequalities or second-order cone constraints

must be converted to a semidefinite cone constraint. This has surprising conse-

quences for the complexity of handling certain types of constraints.

Consider, for example, an SDP in which the coefficient matrices Ai, C are

banded with bandwidth 2w + 1. If w = 0 (diagonal matrices), the problem

reduces to an LP and the cost of solving it by an interior-point method increases

linearly in n. (For dense problems, the cost per iteration is O(m2n) operations.)

If w > 0, the band SDP cannot be cast as an LP or an SOCP, and must be

solved as an SDP. However, as Fig. 2.1 demonstrates, the cost per iteration of

SDP solvers increases at least quadratically with n. This is surprising, because

one would expect the complexity to be close to the complexity of an LP, i.e.,

linear in n for fixed m and w (see Section 3.5 for numerical experiments).

Band and block-arrow sparsity patterns are two examples of chordal struc-

ture. As the experiments in Section 3.5 will show, handling these constraints as

nonsymmetric cone constraints results in a complexity per iteration that is linear

in n, if the other dimensions are fixed. This provides one motivation for develop-

ing interior-point methods for the sparse matrix cone programs (2.2a–2.2b) with

chordal sparsity patterns: the chordal sparse matrix cones form a family of useful

convex cones that can be handled efficiently, without incurring the overhead of

12

102 103
10−1

100

101

102

103

104

dsdp

sdpa-c

sdpt3

sedumi

O(n2)

n

T
im

e
p
er

it
er
at
io
n
(s
ec
on

d
s)

Figure 2.1: Time per iteration for SDPs with band structure as a function of n
and with half-bandwidth w = 5 and m = 100 constraints. The complexity grows
quadratically or worse.

the embedding in the positive semidefinite cone. Since block-diagonal combina-

tions of chordal sparsity patterns are also chordal, a solver that efficiently handles

a single matrix inequality with a general chordal pattern applies to a wide va-

riety of convex optimization problems. Moreover, general (nonchordal) sparsity

patterns can often be embedded in a chordal pattern by adding a relatively small

number of nonzeros (see §2.5.1).

2.2.2 Related Work

Chordality is a fundamental property in sparse matrix theory, and its role in

sparse semidefinite programming has been investigated by several authors. The

first papers to point out the importance of chordal sparsity in semidefinite pro-

gramming were by Fukuda et al. [FKM00] and Nakata et al. [NFF03]. Two tech-

13

niques are proposed in these papers. The first technique exploits chordal sparsity

to reformulate an SDP with a large matrix variable as a problem with several

smaller diagonal blocks and additional equality constraints. This is often easier to

solve using standard semidefinite programming algorithms. The second method is

a primal–dual path-following method for the optimization problems (2.2a–2.2b).

The algorithm uses the HRVW/KSH/M search direction for general semidefinite

programming [HRV96, KSH97, Mon95], but applies it to the maximum determi-

nant positive definite completion of the primal variable X. The authors show

that the search direction can be computed without explicitly forming the com-

pletion of X. This method is outlined in §2.4.6, and it has been implemented in

the sdpa-c package.

Burer’s method [Bur03] is a nonsymmetric primal–dual path-following method

for the pair of cone programs (2.2a–2.2b). It is based on a formulation of the

central path equations in terms of the Cholesky factors of the dual variable S

and the maximum determinant completion of the primal variable X. Linearizing

the reformulated central path equations results in a new primal–dual search di-

rection. The resulting algorithm is shown to have a polynomial-time worst-case

complexity.

It is well known that positive definite matrices with chordal sparsity have a

Cholesky factorization with zero fill-in. This provides a fast method for evaluat-

ing the standard logarithmic barrier function for the dual problem (2.2b), and via

the chain rule, also for its gradient and Hessian. Srijuntongsiri and Vavasis [SV04]

exploit this property in the computation of the dual Newton direction, by apply-

ing ideas from automatic differentiation in reverse mode. They also describe a

fast algorithm for computing the primal barrier function (defined as the Legendre

transform of the dual logarithmic barrier function) and its gradient and Hessian.

14

The algorithm is derived from explicit formulas for the maximum determinant

positive definite completion [GJS84] which we discuss in §2.3.4.

Most semidefinite programming solvers also incorporate techniques for ex-

ploiting sparsity that are not directly related to chordal sparsity. For example,

Fujisawa, Kojima, and Nakata [FKN97] present optimized methods for exploiting

sparsity of the matrices Ai when computing the quantities Hij = Ai • (UAjV),

i, j = 1, . . . ,m, with U , V dense. The matrix H is known as the Schur com-

plement matrix, and its computation is a critical step in interior-point methods

for semidefinite programming. Implementations of the techniques in [FKN97] are

available in the sdpa and sdpt3 packages. Other recent work has focused on

exploiting sparsity in specific classes of SDPs (notably, SDPs derived from sum-

of-squares relaxations of polynomial optimization problems [WKK06]), and types

of sparsity that ensure sparsity of the Schur complement matrix [KKK08]. For

SDPs with band structure, it is possible to exploit so-called sequentially semisep-

arable structure [DGO10].

2.3 Chordal Sparsity

In this section, we introduce chordal graphs and matrices. We present some

examples of classes of chordal graphs, and we describe important properties of

chordal graphs and clique trees. We also discuss the maximum determinant

positive definite completion problem which provides useful insights into some of

the properties of the barrier function for the primal cone Sn
V,c+.

15

2.3.1 Chordal Graphs and Matrices

The sparsity pattern associated with a symmetric matrix X of order n can be

represented by an undirected graph G(X) with nodes 1, . . . , n. The edges in G(X)

correspond to the nonzero elements of X, i.e., G(X) has an edge between node i

and node j (i 6= j) if Xij 6= 0. Although all the diagonal entries are assumed to

be nonzero, the edges (i, i) are not included in the graph G(X).

Before we formally define chordal graphs and matrices, we will briefly review a

few basic graph theoretic concepts (see e.g. [Gol04] or [Die10] for further details).

A path of length k in a graph is a sequence of k + 1 distinct and pair-wise

adjacent vertices v0v1 · · · vk, and a cycle is a path with no repeated vertices other

than the end vertices (i.e., v0 = vk). A chord of a cycle is an edge that joins two

nonadjacent vertices of the cycle. A complete graph is a graph in which every pair

of distinct vertices is adjacent, i.e., any two vertices are connected by a unique

edge. A clique W of a graph G is a subset of nodes such that the subgraph induced

byW is a maximal complete subgraph1 of G. The cliques of a sparsity graph G(X)

correspond to the (dense) maximal principal submatrices of X. The number of

vertices in the largest clique of a graph is called the clique number of the graph.

Thus, the clique number of G(X) corresponds to the order of the largest dense

principal submatrix of the matrix X. A graph is said to be connected if there

exists a path between any two of its vertices. A maximal connected subgraph of

G is a component of G. Components of the sparsity graph G(X) correspond to

diagonal blocks of the matrix X after a symmetric permutation. In the rest of

this section we assume for the sake of simplicity that G(X) is connected. However

all algorithms extend in a straightforward manner to graphs consisting of several

1Some authors define a clique as any subset of nodes that induces a (not necessarily maximal)
complete subgraph. Using this terminology, a maximal clique is a clique that is not included
in any larger clique.

16

1

4

3

25

(a) Nonchordal graph.

1

4

3

25

(b) Chordal graph.

Figure 2.2: The graph (a) is nonchordal because there is a cycle of length four
(1-2-3-4-1) without a chord. The graph (b) is chordal because all cycles of length
four or greater have a chord.

connected chordal components.

We are now ready to define chordal graphs and matrices.

Definition 2.1. A graph G is chordal if every cycle of length at least four has a

chord. We say that a symmetric matrix X is chordal if its sparsity graph G(X)

is chordal.

Chordal graphs are also known as a triangulated graphs since all induced cycles

(i.e., chordless cycles) are triangles. Fulkerson and Gross [FG65] use the term

rigid circuit graph, and Lu et al. [LNM07] describe matrices with chordal structure

as well-structured matrices. Fig. 2.2 shows an example of a nonchordal and a

chordal graph. Notice that the graph in Fig. 2.2a is a composition of triangles,

but the graph is nonchordal since there is an induced cycle of length four without

a chord. The chordal graph in Fig. 2.2b can be obtained from the nonchordal

graph in Fig. 2.2a by adding a chord to the chordless cycle, and hence the graph in

Fig. 2.2b is a chordal embedding of the nonchordal graph in Fig. 2.2a. All induced

subgraphs of a chordal graph are chordal, and hence all principal submatrices

of a chordal matrix are chordal. Furthermore, a graph with several connected

components is chordal if and only if each of its connected components is a chordal

graph. The number of cliques in a chordal graph is at most n (with equality if

17

and only if the graph has no edges) whereas the number of cliques in a nonchordal

graph can grow exponentially in n [FG65, MM65].

2.3.2 Examples of Chordal Sparsity

The class of chordal graphs includes a number of other classes of graphs. For

example, interval graphs, split graphs, trees, k-trees, and complete graphs are

all chordal graphs. We now briefly discuss these classes of graphs and their

properties. We start with trees and k-trees which include as special cases the

sparsity graphs of matrices with band and block-arrow sparsity.

Trees and k-trees It is easy to see that trees are chordal graphs since trees

have no cycles. The cliques of a tree with two or more nodes therefore all consist

of two nodes. The k-tree can be thought of as a generalization of a tree, and it

can be defined recursively as follows [Ros74].

Definition 2.2. A complete graph on k vertices is a k-tree. A k-tree on l + 1

vertices (l ≥ k) can be constructed from a k-tree on l vertices by adding a vertex

adjacent to exactly k vertices that induce a complete subgraph.

The definition implies that a k-tree has cliques of order at most k+1, and hence

a 1-tree is simply a tree. The sparsity graphs associated with band matrices and

block-arrow matrices are k-trees. In the band case, k is equivalent to the half-

bandwidth, and in the block-arrow case, k is the block-width, i.e., the number

of dense columns/rows in the block-arrow structure. Examples of band structure

and block-arrow structure, as well as the corresponding sparsity graphs, are shown

in Fig. 2.3 and Fig. 2.4, respectively. The block-arrow structure arises naturally

in a number of applications, for example, in robust optimization. When k = 1,

the block-arrow structure reduces to arrow structure, and the associated sparsity

18

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a)

1

2

3

4

5

6

7

8

(b)

Figure 2.3: Band sparsity pattern and sparsity graph.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a)

1

2

3

4

5

6

7

8

(b)

Figure 2.4: Block-arrow sparsity pattern and sparsity graph.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a)

1

2

3

4

5

6

7

8

(b)

Figure 2.5: Example of k-tree (k = 2) sparsity pattern and sparsity graph.

19

pattern is a so-called star graph which is a tree with one root and n − 1 leaves

if n is the number of nodes. Similarly, for band matrices, k = 1 corresponds

to tridiagonal matrices for which the sparsity graph is a chain. An example of

a more general k-tree is shown in Fig. 2.5. The recursive definition of k-trees

can easily be verified. We start with a complete graph on the nodes 1 through

k. Nodes are then added recursively such that an added node is adjacent to a

complete subgraph on k nodes.

Interval graphs Interval graphs are defined in terms of a set of intervals on

the real line. Each interval corresponds to a node in the interval graph, and there

is an edge between two nodes if their corresponding intervals intersect [FG65].

Interval graphs are chordal graphs, and they arise naturally in certain scheduling

and resource allocation problems.

Split graphs A split graph is a graph whose vertices can be split into two sets

where one set induces a complete subgraph, and the other set is independent (i.e.,

a set of mutually nonadjacent nodes). In general, such a splitting need not be

unique. The cliques in a split graph must naturally be of order k+1 or lower if k

is the order of the complete subgraph in the splitting. A split graph is a special

case of a partial k-tree,2 and it arises in several applications. For example, the

sparsity graph associated with a matrix of the form

A =


B CT

C D


 (2.4)

is clearly a split graph if B is a dense symmetric matrix and D is a diagonal

matrix. Notice that A has block-arrow structure if C is dense. The structure in

2A partial k-tree contains all the vertices and a subset of the edges of a k-tree.

20

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a)

1

2

3 4

5

6

7

8

(b)

Figure 2.6: A split graph is a chordal graph that consists of a complete subgraph
and an independent set of nodes.

(2.4) is common in barrier methods. For example, a barrier method for problems

of the form

minimize f(x) + γ1Tu

subject to −u ≤ x ≤ u

yields a Hessian matrix of the form (2.4) with C and D diagonal, and B =

∇2f(x) + D. It is easy to see that if both C and D are diagonal, then A is

chordal (but not necessarily a split graph) if and only if B is chordal.

Powers of graphs The kth power of a graph G is a graph Gk with the same

set of nodes as G, and there is an edge between nodes i and j in Gk if and only

if there is a path of length at most k between nodes i and j in G. It can be

shown that powers of a tree graph are chordal, i.e., if G is a tree (and hence

chordal), then Gk is chordal for k ≥ 1. The square of a general graph, however,

is not necessarily chordal. Moreover, even when the square of a chordal graph

is chordal, the corresponding sparsity pattern needs not be sparse. For example,

the square of a star graph (which is a special case of a tree) is a complete graph.

A detailed treatment of powers of chordal graphs can be found in [LS83].

21

1 3 5 7 9 11 13 15 17
1

3

5

7

9

11

13

15

17

(a)

1

2 3

4

5

6

7

8

9

10

11 12

13 14

15

16

17

(b)

Figure 2.7: An example of a matrix with a general chordal sparsity pattern and
the corresponding sparsity graph.

General chordal graphs General chordal graphs can be thought of as a gen-

eralization of interval graphs in that a chordal graph can be represented as the

intersection graph of a family of subtrees of a tree [Gav74, Gol04]. An example

of a general chordal sparsity pattern and its sparsity graph is shown in Fig. 2.7.

In the next subsection we discuss how general chordal graphs can be represented

in terms of a clique tree. This representation plays an important role in the

formulation of efficient chordal matrix algorithms in Section 2.4.

2.3.3 Clique Trees

The cliques of a graph can be represented by a weighted undirected graph, with

the cliques as its nodes, an edge between two cliques Wi and Wj (i 6= j) with

a nonempty intersection, and a weight for the edge (Wi,Wj) equal to the car-

dinality of Wi ∩ Wj. A clique tree is a maximum weight spanning tree of the

clique graph. Clique trees of chordal graphs can be efficiently computed by the

maximum cardinality search (MCS) algorithm [Ros70, RTL76, TY84]. The time

22

and space complexity of the MCS algorithm is O(n + e) if e is the number of

edges in the graph, and hence this algorithm also provides an efficient test for

chordality.

The useful properties of chordal sparsity patterns follow from a basic property

known as the running intersection property [BP93]. Suppose a chordal graph G
has l cliques W1, . . . ,Wl, numbered so that W1 is the root of a clique tree, and

every parent in the tree has a lower index than its children. We will refer to this

as a reverse topological ordering of the cliques. Define U1 = ∅, V1 = W1, and, for

i = 2, . . . , l,

Ui = Wi ∩ (W1 ∩W2 ∩ · · · ∩Wi−1), Vi = Wi \ (W1 ∪W2 ∪ · · · ∪Wi−1). (2.5)

The sets Vi are sometimes called the residuals, and the sets Ui the separators of

the clique tree. The running intersection property then states that

Ui = Wi ∩Wpar(i), Vi = Wi \Wpar(i), (2.6)

where Wpar(i) is the parent of Wi in the clique tree. Fig. 2.8 shows an example of

a chordal sparsity pattern and a clique tree that satisfies the running intersection

property.

2.3.4 Maximum Determinant Positive Definite Completion

Chordal sparsity plays a fundamental role in the maximum determinant matrix

completion problem: given a matrix X ∈ Sn
V , find the positive definite solution

X̄ = Z⋆ of the optimization problem

maximize log detZ

subject to PV (Z) = X.
(2.7)

A necessary condition for X to have a positive definite completion is clearly that

all its fully specified submatrices (i.e., its cliques) are positive definite. We say

23

1 3 5 7 9 11 13 15 17
1

3

5

7

9

11

13

15

17

(a) Chordal sparsity pattern.

{1, 2, 3}

{1, 2, 4}

{1, 4, 5, 6}

{1, 5, 6, 7, 8}

{2, 3, 9}

{2, 9, 10}

{9, 10, 11}

{11, 12}

{3, 9, 13}

{3, 13, 14}

{14, 15}

{15, 16} {15, 17}

(b) Clique tree.

Figure 2.8: The chordal sparsity pattern (a) is obtained by a symmetric permu-
tation of the sparsity pattern in Fig. 2.7. The clique tree (b) satisfies the running
intersection property. The left-most leaf in the clique tree, Wi = {1, 5, 6, 7, 8},
corresponds to the principal submatrix XWiWi

in (a) and it can be decomposed
into XUiUi

(gray), XViVi
(white), and XUiVi

= XT
ViUi

(hatched).

that such a matrix is partial positive. Partial positiveness of X, however, is not

a sufficient condition for X to be positive completable, unless V is chordal.

Theorem 2.1. Grone et al. [GJS84, Thm. 7]. The set of partial positive (non-

negative) matrices in Sn
V is equal to the set of positive (nonnegative) completable

matrices in Sn
V if and only if V is chordal.

Thus, if V is chordal andX is partial positive, then the solution X̄ = Z⋆ to (2.7) is

unique and can be computed from X via closed-form expressions [GJS84, BJL89],

[Lau96, page 146], [FKM00, §2], [NFF03], [Wer80, §3.2]. An equivalent algorithm

for computing the Cholesky factor of X̄−1 is outlined in [DVR08].

The dual of the maximum determinant positive definite completion problem

24

(2.7) can be expressed as

minimize X • S − log detS − n

subject to Sij = 0, ∀(i, j) /∈ V
(2.8)

with variable S. It follows from convex duality that Ŝ = X̄−1 is the unique

minimizer of (2.8). This means that the maximum determinant positive definite

completion X̄ of a partial positive matrix X (if it exists) has a sparse inverse with

the same sparsity pattern as X. Furthermore, Ŝ satisfies the nonlinear equation

PV (Ŝ
−1) = X. (2.9)

The maximum determinant completion algorithm can therefore be interpreted as

a method for solving the nonlinear equation (2.9) with variable Ŝ ∈ Sn
V .

For partial matrices with band structure, the inverse of X̄ is also a band ma-

trix, and hence X̄ is a so-called k-semiseparable matrix. A symmetric matrix X is

called k-semiseparable (where k ≥ 1) if the maximum rank of all subblocks strictly

below the kth superdiagonal of X is at most k (see e.g. [VBM07, p. 316]). An

example of a 3-semiseparable matrix is shown in Fig. 2.9. Efficient algorithms for

computations involving semiseparable matrices exist (see e.g. [VBM07, VBM09]).

Remark. Partial positive matrices with nonchordal sparsity patterns are not nec-

essarily positive definite completable. For example, the nonchordal matrices

A =




3/2 1 0 1

1 1 1 0

0 1 3/2 1

1 0 1 1



, B =




3/2 1 0 −1

1 1 1 0

0 1 3/2 1

−1 0 1 1




are both partial positive, but only A has a positive definite completion.

25

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 × × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

Figure 2.9: The structure of a semiseparable matrix with semiseparability rank
3: the submatrices below the third superdiagonal are of rank at most 3.

2.4 Chordal Matrix Algorithms

In this section we list a number of sparse matrix problems that can be solved by

specialized methods if the underlying sparsity pattern is chordal. The algorithms

consist of one or two recursions over the clique tree. Each recursion traverses the

cliques in the tree in reverse topological order (starting at the root) or topological

order (starting at the leaves). We omit the details of the algorithms, which can

be found in [DVR08] and in Appendix A. A software implementation is available

in the chompack library [DV09a].

2.4.1 Cholesky Factorization

Gauss elimination of a symmetric matrix X can be modelled as a so-called elim-

ination game on the undirected adjacency graph G(X) [Par61]. The elimination

game algorithm takes an elimination ordering α (i.e., a permutation of the vertex

set {1, . . . , n}) and returns a chordal graph.

26

Algorithm 2.1. Elimination game.

Input: a graph G with n vertices and an ordering α
for i = 1 to n do

Eliminate vertex v of G for which α(v) = i.
Pair-wise connect all uneliminated vertices that are adjacent to v in G.

end for

The added edges are called fill edges or fill-in and they correspond to the added

nonzero entries in the factorization of X. It is easy to see that no fill edges

are incurred at step i if and only if the vertex v is a simplical vertex, i.e., a

vertex whose neighbors induce a complete subgraph. An ordering α is called

a perfect elimination ordering if no fill edges are incurred by the elimination

game. Fulkerson & Gross [FG65] showed that a graph has a perfect elimination

ordering if and only if the graph is chordal. This implies that a positive definite

matrix with a chordal sparsity pattern has a Cholesky factorization with zero

fill-in [Ros70, BP93], i.e., if S ∈ Sn
V,++, then there exists a permutation matrix P

and a lower triangular matrix L such that

P TSP = LLT , (2.10)

and P (L+LT)P T has the sparsity pattern V . This is perhaps the most important

property of chordal graphs and the basis of the algorithms described in this

section. The factorization algorithm follows a recursion on the clique tree and

visits the cliques in topological order. The permutation matrix P corresponds to

a perfect elimination ordering which can be found with the MCS algorithm.

2.4.2 Value and Gradient of Dual Barrier

The Cholesky factorization provides an efficient method for evaluating the loga-

rithmic barrier function for the cone Sn
V,+, defined as

φ : Sn
V → R, φ(S) = − log detS, domφ = Sn

V,++. (2.11)

27

To evaluate φ(S), we compute the Cholesky factorization (2.10) and evaluate

φ(S) = −2
n∑

i=1

logLii.

The gradient of φ is given by

∇φ(S) = −PV (S
−1). (2.12)

Although S−1 is generally dense, its projection on the sparsity pattern can be

computed from the Cholesky factorization of S without computing any other

entries of S−1. The algorithm is recursive and visits the nodes of the clique tree

in reverse topological order.

2.4.3 Hessian and Inverse Hessian of Dual Barrier

The Hessian of φ at S ∈ Sn
V,++, applied to a matrix Y ∈ Sn

V , is given by

∇2φ(S)[Y] = PV (S
−1Y S−1). (2.13)

Evaluating this expression efficiently for large sparse matrices requires methods

for computing the projection of S−1Y S−1 on Sn
V , without, however, computing

S−1Y S−1. This can be accomplished by exploiting chordal structure. The ex-

pression (2.13) can be evaluated from the Cholesky factorization of S and the

projected inverse PV (S
−1) via two recursions on the clique tree. The first recur-

sion visits the cliques in topological order while the second recursion visits the

cliques in reverse topological order.

The two recursions form a pair of adjoint linear operators, and the algorithm

for applying the Hessian can be interpreted as evaluating the Hessian in a factored

form,

∇2φ(S)[Y] = Ladj(L(Y)), (2.14)

28

by first evaluating a linear mapping L via an algorithm that visits the cliques

in topological order, followed by the evaluation of the adjoint Ladj via an algo-

rithm that follows the reverse topological order. Furthermore, the factor L of the

Hessian is easily inverted, and this provides a method for evaluating

∇2φ(S)−1[Y] = L−1(L−1
adj(Y)) (2.15)

(equivalently, for solving the linear equation ∇2φ(S)[U] = Y) at the same cost

as the evaluation of ∇2φ(S)[Y].

2.4.4 Value and Gradient of Primal Barrier

As a logarithmic barrier function for the matrix cone

Sn
V,c+ = {X ∈ Sn

V | X �c 0} = (Sn
V,+)

∗

we can use the Legendre transform of the barrier φ of Sn
V,+ [NN94, p. 48]. For

X ≻c 0, the barrier function is defined as

φc(X) = sup
S≻0

(−X • S − φ(S)) . (2.16)

(This is the Legendre transform of φ evaluated at −X.) The optimization prob-

lem (2.16) is the dual of the maximum determinant positive definite completion

problem (2.7), and it can be solved analytically if the sparsity pattern is chordal.

The solution is the positive definite matrix Ŝ ∈ Sn
V that satisfies

PV (Ŝ
−1) = X, (2.17)

and as we have seen in the previous section, Ŝ−1 is the maximum determinant

positive definite completion ofX. This provides an efficient method for evaluating

φc: we first compute the Cholesky factorization Ŝ = LLT of the solution Ŝ of the

29

maximization problem in (2.16), or equivalently, the nonlinear equation (2.17),

and then compute

φc(X) = log det Ŝ − n = 2
n∑

i=1

logLii − n.

It follows from properties of Legendre transforms that

∇φc(X) = −Ŝ, (2.18)

and, from (2.17), this implies that X • ∇φc(X) = −n.

2.4.5 Hessian and Inverse Hessian of Primal Barrier

The Hessian of the primal barrier function is given by

∇2φc(X) = ∇2φ(Ŝ)−1, (2.19)

where Ŝ is the maximizer in the definition of φc(X). This result follows from stan-

dard properties of the Legendre transform. We can therefore evaluate ∇φc(X)[Y]

using the methods for evaluating the inverse Hessian of the dual barrier (2.15),

and we can compute ∇2φc(X)−1[Y] using the algorithm for evaluating the dual

Hessian.

2.4.6 Step-length Calculation

Another problem that comes up in interior-point methods for conic optimization

problems is a step-length calculation of the form

α = argmax
α

{α |Z + α∆Z ∈ K} (2.20)

where K is a proper convex cone, and Z ∈ intK and ∆Z are given. The cost

of computing an accurate solution to this problem is generally much higher than

30

the cost of computing a lower bound on the step-length using, for example, a

backtracking line search. In practice the step-length calculation (2.20) is therefore

often approximated very roughly using a backtracking line search. The downside

of this is that the number of interior-point iterations may increase if the step-

lengths obtained via backtracking are too conservative.

The step-length calculation (2.20) can be performed efficiently for chordal

sparse matrix cones. When K is the cone Sn
V,+, the problem (2.20) can be ex-

pressed as

α = argmax
α

{α |λmin(S + α∆S) ≥ 0}

where S ∈ Sn
V,++ and ∆S ∈ Sn

V . The optimal α can be expressed in terms of

the largest eigenvalue of the matrix U = −L−1∆SL−T where S = LLT is the

Cholesky factorization of S, i.e.,

α = argmax
α

{α | I − αU � 0} =





1
λmax(U)

if λmax(U) > 0

∞ if λmax(U) ≤ 0.

A good approximation of λmax(U) can be computed efficiently using Lanczos

iteration with reorthogonalization (see [CW02]). Note that the matrix U need

not be formed explicitly since we only need to evaluate matrix–vector products

with U .

For step-length calculations in Sn
V,c+ we can apply Theorem 2.1 when V is

chordal, i.e.,

X + α∆X �c 0 ⇔ XWkWk
+ α∆XWkWk

� 0, k = 1, . . . , l.

This means that we can compute α by first solving l dense generalized symmetric

eigenvalues problems

αi = argmax
α

{α |λmin(XWkWk
+ α∆XWkWk

) ≥ 0}, k = 1, . . . , l,

31

and the step-length is then equal to

α = min(α1, . . . , αl).

When the cliques are small, this approach can be much cheaper than computing

α by solving a single large eigenvalue problem.

2.5 Chordal Embedding, Restriction, and Decomposition

When the data matrices Ai, C have a common chordal sparsity pattern V , we have

seen that it is possible to formulate and take advantage of efficient algorithms

for evaluating barriers and their first and second derivatives. In this section, we

discuss how a nonchordal sparsity pattern can be extended to a chordal one by

means of chordal embedding. We also briefly discuss chordal restriction, which

extracts a chordal subgraph from a nonchordal graph. Finally, we outline some

chordal decomposition techniques that can be used to convert a sparse matrix

cone program into a standard SDP with a number of smaller but dense blocks.

2.5.1 Chordal Embedding of Nonchordal Sparsity Patterns

For nonchordal sparsity patterns, it is possible to exploit chordality by construct-

ing a chordal embedding or triangulation of V , i.e., by adding edges to the graph

to make it chordal. Chordal embeddings are not only useful for nonchordal spar-

sity patterns. By extending a chordal sparsity pattern, it is sometimes possible

to “shape” the clique tree to improve the computational efficiency of the algo-

rithms. For example, merging cliques with large relative overlap3 often improves

3We refer to the cardinality of the intersection of two cliques Wi and Wj as the overlap

between Wi and Wj . Similarly, the relative overlap between Wi and Wj is defined as the
overlap between Wi and Wj , normalized by min(|Wi|, |Wj |).

32

performance. A similar observation was made by Fukuda et al. [FKM00] who

demonstrated that with their conversion method, a balance between the number

of cliques and the size of the cliques and the separator sets is critical in order to

obtain good performance.

In practice, a chordal embedding is easily constructed by computing a sym-

bolic Cholesky factorization of the sparsity aggregate pattern. The amount of

fill-in (i.e., the number of added edges) generally depends heavily on the order-

ing of the nodes, and different chordal embeddings can be obtained simply by

reordering the nodes. In sparse matrix computations, it is generally desirable to

minimize fill-in, since fill-in requires additional storage and often increases the

time needed to solve a system of equations. However, the problem of finding

a minimum fill ordering is an NP-complete problem [RTL76, Yan81], and when

practical considerations such as data locality and cache efficiency are considered,

minimizing fill-in is not necessarily optimal in terms of run-time complexity. This

can be seen in BLAS-based supernodal Cholesky codes where additional fill-in

may be created in order to increase the size of the supernodes (so-called relaxed

supernodal amalgamation). Some common fill reducing ordering heuristics are

minimum degree (MD) orderings [Mar57, TW67, Ros72], approximate minimum

degree (AMD) orderings [ADD96] and nested dissection (ND) orderings [Geo73].

The MD algorithm repeatedly selects a node of minimum degree to eliminate.

This greedy heuristic works well in many cases, but it may produce fill even for

chordal graphs. The chordal graph in Fig. 2.10 is an example of a graph for which

a minimum degree ordering is not a perfect elimination ordering. The AMD al-

gorithm is based on approximate node degrees instead of the true node degrees

used in the MD algorithm. This modification is generally faster, and it typically

results in nearly identical amounts of fill.

33

2

3

4

5 1 6

9

8

7

Figure 2.10: A chordal graph with a minimum degree ordering of the nodes.
Eliminating node 1 results in a fill edge between nodes 8 and 9 (dashed arc), and
hence a minimum degree ordering is not a perfect elimination ordering in general.

An alternative to embeddings based on heuristic fill reducing orderings is to

compute a minimal chordal embedding. A chordal embedding is called minimal

if the removal of any fill edge yields a nonchordal graph. A minimum chordal em-

bedding (i.e., an embedding obtained from a minimum fill ordering) is a minimal

chordal embedding, but the converse is not true in general. The MCS algorithm

can be modified such that it produces a minimal chordal embedding when the

sparsity pattern is nonchordal [BBH04]. This variant is known as MCS-M and its

complexity is O(ne) if e is the number of edges in the sparsity graph. A survey

of minimal triangulation techniques can be found in [Heg06].

2.5.2 Chordal Restriction

A chordal restriction of a nonchordal graph G is a spanning subgraph G ′ of G that

is chordal. The problem of finding a maximal chordal subgraph can be thought

of as the opposite of the minimal triangulation problem. Given a nonchordal

graph G, we seek to remove a minimal subset of the edges in G such that the

resulting spanning subgraph G ′ is chordal. In other words, we say that G ′ is a

maximal chordal subgraph of G if adding an any edge from G to G ′ results in a

nonchordal graph. A maximal chordal subgraph can be computed by the MAX-

CHORD algorithm [DSW88]. The worst-case time complexity of this algorithm

34

is O(eδ) if δ is the maximum degree of any vertex in G. Unlike chordal embed-

dings, chordal restrictions discard one or more nonzero elements from the sparsity

pattern to make it chordal, and hence chordal restrictions are mainly useful for

approximation purposes.

2.5.3 Chordal Decomposition

Chordal structure can also be used to decompose sparse matrix cone constraints

into a set of coupled constraints. The first chordal decomposition method to ap-

pear in the literature was pioneered by Fukuda et al. [FKM00]. Chordal decom-

position has since been applied to semidefinite programming as a preprocessing

technique [FFN06] and to reformulate an SDP into an equivalent convex–concave

saddle point problem [LNM07]. A more general and systematic set of decomposi-

tion methods have recently been proposed by Kim et al. [KKM10]. We will discuss

a simplified version of these methods for two types of constraints: domain space

decomposition for the primal form inequality constraint X �c 0 and range space

decomposition for the dual form linear matrix inequality C −∑m
i=1 yiAi � 0.

We will assume that C,Ai, X ∈ Sn
V and that V is chordal. Furthermore, we

denote with W̄k
△
= {1, . . . , n} \Wk. The linear mapping GT

kXGk 7→ XWkWk
ex-

tracts the |Wk|×|Wk| principal submatrixXWkWk
fromX. IfWk = {j1, j2, . . . , jr}

and j1 < j2 < · · · jr, then Gk ∈ Rn×r is defined as

Gk =
[
ej1 ej2 · · · ejr

]

where ei is the ith column of the n × n identity matrix. The adjoint mapping

GkY G
T
k yields an n× n matrix Z that satisfies

ZW̄kW̄k
= 0, ZWkWk

= Y, ZWkW̄k
= ZT

W̄kWk
= 0.

35

Domain space decomposition Theorem 2.1 allows us to express the chordal

sparse matrix cone constraint X �c 0 as l standard positive semidefiniteness

constraints, i.e.,

X �c 0 ⇔ XWkWk
� 0, k = 1, . . . , l. (2.21)

These l constraints are implicitly coupled: Xij appears in bothXWpWp
andXWqWq

if i, j ∈ Wp ∩Wq. Since the cliques satisfy the running intersection property, it is

sufficient to ensure consistency between pairs XWpWp
, XWqWq

that correspond to

parent–child pairs in the clique tree (i.e., p = par(q) or q = par(p)). This allows

us to decompose the constraint X �c 0 as l standard matrix inequalities and m̃

equality constraints

X̃k � 0, k = 1, . . . , l, (2.22)

(GkX̃kG
T
k)UkUk

= (Gpar(k)X̃par(k)G
T
par(k))UkUk

, k = 2, . . . , l. (2.23)

The variable X̃k ∈ S|Wk| is associated with XWkWk
in X, and the total number of

(componentwise) equality constraints m̃ is

m̃ =
l∑

i=2

1

2
|Ui|(|Ui|+ 1). (2.24)

Recall that U1 = ∅ by assumption, and hence the index k starts at 2 in (2.23)

and (2.24).

The sparse matrix cone constraint X �c 0 can also be decomposed by dual-

izing each of the constraints XWkWk
� 0 in (2.21). Let x = vec(X) denote the

vector of length |V | with the lower-triangular nonzeros of X ∈ Sn
V , scaled such

that X • Y = vec(X)T vec(Y). Then XWkWk
� 0 can be expressed as an LMI

Fk(x) � 0 where Fk(x) ∈ S|Wk| is a basis decomposition of XWkWk
, i.e.,

Fk(x) =
∑

i,j∈Wk
i≥j

Xij ·GT
kEijGk

36

where

Eij =





eie
T
i i = j

eie
T
j + eje

T
i i 6= j.

Consequently, the sparse matrix cone constraint X �c 0 can be expressed as k

LMIs

Fk(x) � 0, k = 1, . . . , l (2.25)

with variable x ∈ R|V |. Note that only a subset of the elements of x is required

in each of these LMIs.

Range space decomposition The range space decomposition methods can

be thought of as the dual of the domain space decomposition methods.

The following theorem plays a fundamental role in range space decomposi-

tions. It asserts that a positive semidefinite matrix S with chordal sparsity can

be decomposed as a sum of positive semidefinite matrices that correspond to the

cliques of G(S).

Theorem 2.2. Agler et al. [AHM88, Thm. 2.3]. Let V be a sparsity pattern

and denote with W1, . . . ,Wl the cliques of the corresponding sparsity graph. The

following statements are equivalent:

(a) V is chordal.

(b) For any S ∈ Sn
V,+ there exist Yk ∈ S

|Wk|
+ , k = 1, . . . , l, such that

S =
l∑

k=1

GkYkG
T
k . (2.26)

We remark that when S is positive definite, a decomposition of the form (2.26) can

easily be obtained from the columns of the zero-fill Cholesky factor of S = LLT .

37

If li is the ith column of L, the nonzeros in the outer product lil
T
i are fully

contained in one of the l cliques. It is possible to extend Theorem 2.2 with the

following rank condition on the decomposition (2.26) [Kak10]

rank(S) =
l∑

k=1

rank(Yk). (2.27)

Since rank(A+B) ≤ rank(A)+rank(B), this implies that there exists a decom-

position S =
∑l

k=1GkYkG
T
k such that Yk � 0 minimizes

∑l
k=1 rank(Yk). Clearly,

when S = LLT is positive definite, the clique-based decomposition extracted from

the columns of L satisfies (2.27).

Theorem 2.2 can be used to decompose the sparse matrix cone constraint

C − A(y) � 0 where A(y) =
∑m

i=1 yiAi. Let C̃k, Ãk(y) ∈ S|Wk|, k = 1, . . . , l, be

any clique-based splitting of C,A(y) such that

C =
l∑

k=1

GkC̃kG
T
k and A(y) =

l∑

k=1

GkÃk(y)G
T
k .

To find a splitting of C − A(y) of the form (2.26) such that C̃k − Ãk(y) � 0, we

parameterize all possible splittings

S̃k(y, z) = C̃k − Ãk(y) +
∑

i,j∈Uk
i≥j

zijkG
T
kEijGk −

∑

q∈ch(k)

∑

i,j∈Uq

i≥j

zijqG
T
kEijGk (2.28)

= C̃k − Ãk(y)− F̃k(z) (2.29)

where ch(i) is the set of indices of the children of the ith clique, and z is a vector

of length m̃ with components

{zijk | i, j ∈ Uk, i ≥ j, k = 2, . . . , l}.

It is easy to verify that

F (z) =
l∑

k=1

GkF̃k(z)G
T
k = 0

38

and hence the sparse matrix cone constraint C − A(y) � 0 can be decomposed

into l constraints

C̃k − Ãk(y)− F̃k(z) � 0, k = 1, . . . , l. (2.30)

An alternative decomposition can be obtained by dualizing the constraint

C − A(y) � 0, i.e.,

l∑

k : i,j∈Wk

(GkS̃kG
T
k)ij = Cij − (A(y))ij, ∀(i, j) ∈ V, (2.31)

S̃k � 0, k = 1, . . . , l. (2.32)

Remark. The chordal sparsity pattern V plays an important role in the decompo-

sition techniques. There is a trade-off between the number of additional variables

and/or constraints in the decomposition and the number and the order of the

matrix inequalities in the decomposition. Heuristic embedding techniques can

therefore be useful as a means to obtain a computationally efficient decompo-

sition. Moreover, when applied to SDPs as a preprocessing technique, chordal

decomposition may induce sparsity in the Schur complement system, and this

further complicates the choice of decomposition method.

2.6 Summary

In this chapter, we have described how a pair of standard primal and dual SDPs of

the form (2.1a–2.1b) can be reformulated as a pair of sparse matrix cone programs

(2.2a–2.2b) when the data matrices C,Ai share a common sparsity pattern V .

In addition to the nonnegative orthant, the second-order cone, and the cone of

positive semidefinite matrices, the sparse matrix cones include a number of useful

intermediate cones that can be handled efficiently. Specifically, when the sparsity

39

pattern V is chordal, the powerful recursive matrix algorithms described in (2.4)

can be used to evaluate the barrier functions φc and φ and their first and second

derivatives. These algorithms can be extended to nonchordal sparsity pattern by

means of chordal embedding.

40

CHAPTER 3

Nonsymmetric Interior-Point Methods

In this chapter, we describe how the recursive matrix algorithms from the pre-

vious chapter can be used in interior-point methods for the nonsymmetric pair

of sparse matrix cone problems (2.2a–2.2b). Interior-point methods for conic op-

timization require a barrier function that ensures that the iterates stay in the

interior of a cone. Two different (but closely related) interior-point schemes ex-

ist: potential-reduction and path-following schemes. Karmarkar’s groundbreak-

ing polynomial-time algorithm for linear programming [Kar84], which sparked

what is often referred to as “the interior-point revolution,” is an example of a

potential reduction method. We will focus on path-following methods, but the

techniques that we describe also apply to potential-reduction methods.

3.1 Primal and Dual Path-following Methods

Polynomial-time interior-point methods for convex optimization belong to the

class of interior penalty schemes developed by Fiacco and McCormick [FM68].

Given a general convex optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(3.1)

with convex objective and constraints, Fiacco and McCormick’s sequential uncon-

strained minimization technique transforms (3.1) into a family of unconstrained

41

problems, parameterized by µ > 0,

minimize F (x, µ) = f0(x) + µ
∑m

i=1 ψ(−fi(x)). (3.2)

The function ψ : R+ → R is a strongly convex barrier function that satisfies

ψ(x) → ∞ as x → 0+. By choosing a decreasing parameter sequence µ1, µ2, . . .

such that µk → 0 as k → ∞, the minimizer x(µk) of F (x, µk) converges to the

minimizer x⋆ of (3.1), provided that some mild conditions hold. Specifically, if

the feasible set

{x | fi(x) ≤ 0, i = 1, . . . ,m}

is bounded, then the minimizer of F (x, µ) is unique, and the points {x(µ) |µ > 0}
define a smooth curve that is known as the central path. This path is used in

barrier methods as a “rough guide” toward the solution x⋆ by approximately

solving a sequence of problems F (x, µk) using e.g. Newton’s method.

Although the classical interior penalty scheme converges under rather mild

conditions, its convergence may be too slow in practice. However, it is possible

to construct interior-point methods with polynomial complexity for linear opti-

mization over a closed convex set1 if one can find a computable self-concordant

barrier function for the feasible set [NN94].

In the previous chapter we saw that the barriers φc and φ as well as their

first and second derivatives can be evaluated efficiently when V is chordal, using

recursive matrix algorithms. The standard logarithmic barrier function φ̄(X) =

− log detX for the cone Sn
+ is self-concordant, and hence the barrier φ for the

cone Sn
V,+ is also self-concordant (provided that Sn

V,++ 6= ∅ which is obviously

satisfied when V includes the diagonal nonzeros). Self-concordance of φc, the

barrier for Sn
V,c+, follows from the properties of the Legendre transformation of

1The epigraph form of the convex optimization problem (3.1) is a linear optimization problem
over a closed convex set.

42

a self-concordant barrier [NN94, p. 46]. The barriers can therefore be used as

basic building blocks in interior-point methods for the pair of sparse matrix cone

problems (2.2a–2.2b).

3.1.1 Central Path

If the primal problem (2.2a) is strictly feasible, we can define a family of equality-

constrained problems, parameterized by a positive parameter µ,

minimize C •X + µφc(X)

subject to Ai •X = bi, i = 1, . . . ,m.
(3.3)

The cone constraint X �c 0 in (2.2a) has been replaced with a barrier term

in the objective in (3.3). The central path associated with (2.2a) is defined as

points X(µ) ≻c 0 that satisfy the optimality conditions accompanying the barrier

problem (3.3)

Ai •X(µ) = bi, i = 1, . . . ,m (3.4a)

m∑

i=1

yiAi + S = C (3.4b)

µ∇φc(X(µ)) = −S. (3.4c)

Here y ∈ Rm is a Lagrange multiplier for the equality constraints in (3.3), and

S is an auxiliary variable. The central path for the dual problem (2.2b) can be

defined in a similar way. The dual barrier problem is given by

maximize bTy − µφ(S)

subjecto to
∑m

i=1 yiAi + S = C
(3.5)

43

and the dual central path consists of points y(µ), S(µ) ≻ 0 that satisfy the opti-

mality conditions

Ai •X = bi, i = 1, . . . ,m (3.6a)

m∑

i=1

yi(µ)Ai + S(µ) = C (3.6b)

µ∇φ(S(µ)) = −X (3.6c)

where X is a Lagrange multiplier for the equality constraint in (3.5). The

optimality conditions (3.4) and (3.6) are, in fact, equivalent, and the points

X(µ) ≻c 0, y(µ), S(µ) ≻ 0 define a primal–dual central path. The equivalence of

(3.4) and (3.6) follows from properties of Legendre transform pairs. Interior-point

methods that compute search directions by linearizing (3.4) are called primal scal-

ing methods, and methods that linearize (3.6) are called dual scaling methods.

We will refer to the corresponding linearized equations as the primal or dual

Newton equations. Points on the primal–dual central path satisfy

C •X(µ)− bTy(µ) = C •X(µ)−
m∑

i=1

yi(µ)Ai •X(µ) = S(µ) •X(µ) = µn,

i.e., the duality gap is equal to µn on the central path.

A symmetric tangent direction ∆X̄,∆ȳ,∆S̄ at a point X(µ), y(µ), S(µ) on

the central path can be derived from (3.4) or (3.6) by taking the derivative with

respect to µ. This direction is a descent direction and it satisfies the equations

Ai •∆X̄ = 0, i = 1, . . . ,m (3.7a)

m∑

i=1

∆ȳiAi +∆S̄ = 0 (3.7b)

µ∇2φc(X(µ))[∆X̄] + ∆S̄ = −S(µ). (3.7c)

The equivalence of (3.4) and (3.6) on the central path means that the tangent

direction is symmetric, i.e., we obtain the same direction when the last equation

44

is expressed in terms of the dual barrier

µ∇2φ(S(µ))[∆S̄] + ∆X̄ = −X(µ). (3.8)

Unfortunately, this symmetry is lost outside the central path.

3.1.2 Search Directions

At each iteration, a feasible path-following method computes a search direction

and takes a step in this direction. We will distinguish between two kinds of

search directions: centering directions and approximate tangent directions. The

purpose of a centering step is to move closer to a point X(µ), y(µ), S(µ) on the

central path. Short-step path-following methods rely only on centering steps,

and progress is made by gradually decreasing µ between the centering steps. An

approximate tangent direction, on the other hand, can be used to predict a new

value of µ adaptively, and this typically leads to more aggressive updates of µ.

It is also possible to take a step in an approximate tangent direction, or one can

use a linear combination of a centering direction and an approximate tangent

direction. Methods that take steps in an approximate tangent direction are often

referred to as long-step methods. Although the short-step methods yield the best

complexity bounds, the more aggressive long-step methods are generally faster

in practice.

We obtain a primal scaling centering direction if we linearize the primal opti-

mality conditions (3.4) around the current feasible iterate X ≻c 0, y, S ≻ 0 (the

45

current primal and dual iterates in an interior-point method), i.e.,

Ai •∆X = 0, i = 1, . . . ,m (3.9a)

m∑

i=1

∆yiAi +∆S = 0 (3.9b)

µ∇2φc(X)[∆X] + ∆S = −R (3.9c)

where the right-hand side is R = µ∇φc(X) + S. The solution ∆X,∆y,∆S can

be interpreted as a Newton step for the nonlinear system (3.4) so we refer to

(3.9) as the primal Newton equations. We obtain the dual Newton equations and

a dual scaling centering direction if we linearize the dual optimality conditions

(3.6). Notice the similarity between the Newton equations (3.9) and the central

path equations (3.7).

For a symmetric cone K with barrier ψ and any points x ∈ intK and s ∈
intK∗, it is always possible to compute a so-called scaling-point w ∈ intK that

satisfies the scaling relation

∇2ψ(w)[x] = s. (3.10)

This property is used in symmetric primal–dual interior-point methods to com-

pute symmetric approximate tangent directions at points outside the central path.

For nonsymmetric cones, an approximate tangent direction can be computed us-

ing the Hessians of both the primal and the dual barriers. Unfortunately, this

method is expensive [Nes96]. Another possibility is to use a sequence of primal

or dual centering steps in combination with a technique referred to as lifting to

find a point in the vicinity of the central path that satisfies a scaling relation

similar to (3.10) [Nes06b, Nes06a]. We now outline the primal scaling variant

of the technique. (The dual scaling variant is similar.) Suppose that the primal

46

scaling centering step computed at iteration k satisfies

λ = (∆X • ∇2φc(X
(k))[∆X])1/2 < 1

i.e., the Newton decrement is less than one which is true if X is sufficiently close

to a target point X(µ), y(µ), S(µ) on the central path. A full step in the negative

centering direction is therefore feasible [NN94, p. 13]. We can now use (3.9c) to

link S̃ = S(k) +∆S and a lifted point X̃ = X(k) −∆X as

µ∇2φc(X
(k))[X̃] = S̃. (3.11)

This scaling relation provides a way to compute an approximate tangent direction

∆Xat,∆yat,∆Sat that satisfies (3.9) with R = S̃. It follows from (3.9a) and (3.9b)

that ∆Sat •∆Xat = 0, and moreover,

S •∆X +∆S •X = S •∆X + (−S − µ∇2φc(X(µ))[∆X]) •X

= S •∆X − S •X − S •∆X = −S •X.

A full step in the approximate tangent direction therefore reduces the duality gap

to zero, i.e.,

(X̃ +∆Xat) • (S̃ +∆Sat) = 0. (3.12)

A full approximate tangent step, however, is never feasible.

3.1.3 Feasible Start Path-Following Method

Feasible-start interior-point methods require a strictly feasible starting point, i.e.,

a point X(0) ≻c 0, y
(0), S(0) ≻ 0 that satisfies

Ai •X(0) = bi, i = 1, . . . ,m,
m∑

i=1

y
(0)
i Ai + S(0) = C.

47

We will discuss initialization from infeasible (but interior) points in Section 3.3.

An outline of a basic path-following method for the pair of problems (2.2a–2.2b)

is given in Algorithm 3.1. The data matrices Ai are assumed to be linearly in-

dependent, and we also assume that a chordal embedding is available and that

a clique tree has been computed. The line search can be implemented in differ-

ent ways. We will discuss our implementation of a slightly modified version of

Algorithm 3.1 in Section 3.4. Note that the Newton equations are solved more

than once (with different right-hand sides) at some iterations. However, the cost

associated with solving multiple systems is negligible since only one factorization

is needed. In the next section we discuss how the Newton equations can be solved

efficiently using the chordal matrix algorithms from the previous chapter.

3.2 Newton System

The solution of the Newton equations (3.9) forms the bulk of the computation in

any interior-point method. In this section, we describe methods for solving the

Newton equations when V is chordal.

3.2.1 Primal Scaling Methods

If we eliminate ∆S in the Newton equations (3.9), we obtain the system

Ai •∆X = ri, i = 1, . . . ,m,
m∑

i=1

∆yiAi − µ∇2φc(X)[∆X] = R, (3.13)

where ri = bi − Ai •X and

R = C −
m∑

i=1

yiAi + µ∇φc(X).

The variables are ∆X ∈ Sn
V , ∆y ∈ Rm, so this is a set of |V | +m equations in

|V | +m variables (recall that |V | is the number of lower triangular nonzeros in

48

Algorithm 3.1. Feasible Start Primal Scaling Path-Following Method

Input: strictly feasible starting point X(0), y(0), S(0)

Input: parameters δ ∈ (0, 1), ǫrel > 0, and ǫabs > 0
for k = 0, 1, 2, . . . do

Compute gap: µ = (X(k) • S(k))/n.

Terminate if the (approximate) optimality condition nµ ≤ ǫabs or

min{C •X(k),−bTy(k)} < 0 and
nµ

−min{C •X(k),−bTy(k)} ≤ ǫrel

is satisfied.

Compute centering direction ∆Xcnt,∆ycnt,∆Scnt:
– solve (3.9) with R = µ∇φc(X

(k)) + S(k)

if (∆Xcnt • ∇2φc(X
(k))[∆Xcnt])

1/2 ≤ δ then

Compute approximate tangent direction ∆Xat,∆yat,∆Sat:
– solve (3.9) with R = S̃ = S(k) +∆Scnt

Calculate µ̂ := (1− α)(X̃ • S̃)/n where X̃ = X(k) −∆Xcnt and

α = 0.98 · sup
α

{
α ∈ [0, 1) | X̃ +∆Xat ≻c 0, S̃ +∆Sat ≻ 0

}
.

Compute new search direction ∆X,∆y,∆S:
– solve (3.9) with µ = µ̂ and R = µ̂∇φc(X

(k)) + Ŝ

Line search: compute primal and dual step sizes αp and αd.

Update the variables:

X(k+1) := X̃ + αp∆X, y
(k+1) := ỹ + αd∆y, S

(k+1) := S̃ + αd∆S

else

Line search: compute primal and dual step sizes αp and αd.

Update the variables:

X(k+1) := X(k)+αp∆Xcnt, y
(k+1) := y(k)+αd∆ycnt, S

(k+1) := S(k)+αd∆Scnt

end if

end for

49

V). By eliminating ∆X we can further reduce the Newton equations to

H∆y = g, (3.14)

where H is the positive definite symmetric matrix with entries

Hij = Ai •
(
∇2φc(X)−1[Aj]

)
, i, j = 1, . . . ,m, (3.15)

and gi = µri + Ai • (∇2φc(X)−1[R]).

We now outline two methods for solving (3.14), and we will compare their

practical performance in Section 3.5. Recall from Section 2.4 that ∇2φc(X) =

∇2φ(Ŝ)−1 where Ŝ solves PV (Ŝ
−1) = X, and that the Cholesky factor L of Ŝ

is readily computed from X using a recursive algorithm. The entries of H can

therefore be written

Hij = Ai • (∇2φ(Ŝ)[Aj]), i, j = 1, . . . ,m. (3.16)

Method 1: Cholesky factorization

The first method explicitly forms H, column by column, and then solves (3.14)

using a dense Cholesky factorization. We distinguish two techniques for comput-

ing column j. The first technique is a straightforward evaluation of (3.16). It first

computes ∇2φ(Ŝ)[Aj] and then completes the lower-triangular part of column j

of H by making inner products with the matrices Ai:

T1: U := ∇2φc(X)−1[Aj]

for i = j to m do

Hij := Ai • U
end for

50

Additional sparsity of Ai, relative to V , can be exploited in the inner products,

but additional sparsity in Aj is not easily exploited. The matrix U is a dense

matrix in Sn
V , and Aj is handled as a dense element in Sn

V .

The second technique is useful when Aj is very sparse, relative to V , and has

only a few nonzero columns. We write Aj as

Aj =
∑

(p,q)∈Ij

(Aj)pqepe
T
q ,

where ek is the kth unit vector in Rn and Ij indexes the nonzero entries in Aj.

The expression for Hij in (3.14) can then be written as

Hij =
∑

(p,q)∈Ij

(Aj)pq
(
Ai • (∇2φc(X)−1[epe

T
q]
)

=
∑

(p,q)∈Ij

(Aj)pq

(
Ai • PV (Ŝ

−1epe
T
q Ŝ

−1)
)

=
∑

(p,q)∈Ij

(Aj)pq
(
Ai • (L−TL−1epe

T
q L

−TL−1)
)
.

If Aj has only a few nonzero columns, it is advantageous to precompute the

vectors uk = L−TL−1ek that occur in this expression. This results in the following

algorithm for computing column j of H:

T2: Solve LLTuk = ek for k ∈ {i | Ajei 6= 0}
for i = j to m do

Hij :=
∑

(p,q)∈Ij
(Aj)pqu

T
q Aiup

end for

Since Aj is symmetric, the summation can easily be modified to use only the

lower triangular entries of Aj. If Aj has ζj nonzero columns, T2 requires that ζj

vectors uk be computed and stored in order to form column j of H. Since this is

generally the most expensive part of T2, the technique is efficient only when ζj

is small.

51

T2 is similar to a technique used in sdpa-c [NFF03, p. 316]. However, sdpa-c

only stores two vectors at the time, and forming the jth column of H requires

that 2ζj systems of the form LLTx = b be solved (twice the number of T2). It is

also worth mentioning that low-rank techniques such as those used in dsdp and

sdpt3 provide a more general and often faster alternative to T2. However, these

low rank techniques require that a low-rank factorization of the data matrices be

computed and stored as a preprocessing step. Furthermore, we remark that in

its current form, T2 does not exploit any block structure of Ŝ when computing

uk.

A threshold on the number of nonzero columns ζj can be used as a heuristic

for choosing between T1 and T2. Based on some preliminary experiments, we set

the threshold to n/10 in the implementation used in Section 3.5 (in other words,

we use T1 if ζj > n/10 and T2 otherwise). Finally we note that the total flop

count can be reduced by permuting the order of the data matrices.

Method 2: QR factorization

The second method for solving the reduced Newton equation (3.14) avoids the

explicit calculation of H by applying the factorization of the Hessian matrix in

Section 2.4. Using the factorization ∇2φc(X)−1 = ∇2φ(Ŝ) = Ladj ◦ L, we can

write

Hij = Ai •
(
∇2φc(X)−1[Aj]

)
= L(Ai) • L(Aj).

The factorization allows us to express H as H = ÃT Ã where Ã is a |V | × m

matrix with columns vec(L(Ai)). (Recall that the vec(·) operator converts ma-

trices in Sn
V to vectors containing the lower-triangular nonzeros, scaled so that

vec(U1)
T vec(U2) = U1•U2 for all U1, U2 ∈ Sn

V .) Instead of computing a Cholesky

factorization of H (constructed via (3.15) or as ÃT Ã), we can compute a QR-

52

decomposition of Ã and use it to solve (3.14). This is important, because the

explicit computation of H is a source of numerical instability.

The second method is a variation of the augmented systems approach in linear

programming interior-point methods. In the augmented systems approach, one

computes the solution of the Newton equation

 −D AT

A 0




 ∆x

∆y


 =


 r1

r2


 (3.17)

(the linear programming equivalent of (3.13)) via an LDLT or QR factoriza-

tion, instead of eliminating ∆x and solving the ‘Schur complement’ equation

AD−1AT∆y = r2+AD
−1r1 by a Cholesky factorization [FM93], [Wri97a, p. 220].

The augmented system (3.17) can be solved using a sparse LDLT factorization

(for sparse A), or via a QR decomposition of Ã = D−1/2AT (for dense A). The

augmented system method is known to be more stable than methods based on

Cholesky factorization of AD−1AT . It is rarely used in practice, since it is slower

for large, sparse LPs than computing the Cholesky factorization of AD−1AT . In

semidefinite programming, the loss of stability in forming H is more severe than

in linear programming [Stu03]. This would make the augmented system approach

even more attractive than for linear programming, but unfortunately the large

size of the Newton equations makes it very expensive. In our present context,

however, the augmented system approach is often feasible, since we work in the

subspace Sn
V where the row dimension of Ã is equal to |V |.

3.2.2 Dual Scaling Methods

The dual Newton equations can be derived in a similar way, by linearizing (3.6):

−µ∇2φ(S)−1[∆X] +
m∑

i=1

∆yiAi = R, Ai •∆X = ri, i = 1, . . . ,m (3.18)

53

with ri = bi − Ai •X and

R = C −
m∑

i=1

yiAi − 2S + µ∇2φ(S)−1[X].

Eliminating ∆X and ∆S gives a set of linear equations (3.15) with

Hij = Ai • (∇2φ(S)[Aj]), i, j = 1, . . . ,m.

This matrix has the same structure as (3.16). Therefore, the same methods can

be used to compute the dual scaling direction as for the primal scaling direction,

and the complexity is exactly the same.

3.2.3 Complexity

The cost of solving the Newton system (3.13) is dominated by the cost of solv-

ing (3.14). Method 1 solves (3.14) by explicitly forming H and then applying a

Cholesky factorization. Method 2 avoids explicitly forming H, by applying a QR

factorization to a matrix Ã that satisfies H = ÃT Ã.

Method 1 The cost of solving (3.14) via the Cholesky factorization of H de-

pends on the sparsity of the data matrices and on the techniques used to form H.

The matrix H is generally dense, and hence the cost of factorizing H is O(m3).

If all data matrices share the same sparsity pattern V and are dense relative to

Sn
V , the cost of forming H using technique T1 is mK +O(m2|V |) where K is the

cost of evaluating ∇2φc(X)−1[Aj]. If the data matrices Ai are very sparse relative

to V , the cost of computing H using T1 is roughly mK.

With technique T2, the dominating cost of computing the columns of H is

solving the systems LLTuk = ek for k ∈ {i | Ajei 6= 0}. Thus, the cost mainly

depends on |V | and the number of nonzero columns in the data matrices. When

54

the data matrices only have a small number of nonzeros, T2 is generally many

times faster than T1.

The cost K depends on the clique distribution (i.e., the structure of V) in a

complicated way, but for special cases such as banded and arrow matrices we have

|V | = O(n) and K = O(n), and in these special cases the cost of one iteration is

linear in n.

Method 2 Solving (3.14) via a QR decomposition of Ã costs O(mK) to form

Ã and O(m2|V |) to compute the QR decomposition. In particular, the cost of

one iteration is also linear in n for banded and arrow matrices, when the other

dimensions are fixed. If the coefficients Ai are dense relative to V , the cost of

Method 2 is at most twice that of Method 1 when only T1 is used.

3.3 Initialization From Infeasible Starting-points

The path-following algorithm that we have described in the previous sections is a

feasible start algorithm. While it is sometimes possible to find a feasible starting

point analytically, this is generally not the case. We now describe two different

methods for initializing the algorithm from an infeasible (but interior) point.

The first method solves a so-called “Phase I” problem in order to find a feasible

starting point. The phase I problem is typically as expensive to solve as the

original problem itself. The second method relies on a self-dual embedding of the

original problem for which it is straightforward to find a centered starting point.

The self-dual embedding also provides an elegant way to detect infeasibility, and

the solution to the original problem can easily be recovered from the solution to

the embedding problem.

55

3.3.1 Phase I

Algorithm 3.1 is a feasible-start method, and hence we need a feasible starting

point. To this end we first solve the least-norm problem

minimize ‖X‖2F
subject to Ai •X = bi, i = 1, . . . ,m.

(3.19)

If the solution Xln satisfies Xln ≻c 0, we use it as the starting point. On the other

hand, if Xln �c 0, we solve the phase I problem

minimize s

subject to Ai •X = bi, i = 1, . . . ,m

tr(X) ≤M

X + (s− ǫ)I �c 0, s ≥ 0

(3.20)

where ǫ > 0 is a small constant. The constraint tr(X) ≤ M (with M large and

positive) is added to bound the feasible set. The optimal solution X⋆ is strictly

feasible in (2.2a) if s⋆ < ǫ. The phase I problem (3.20) can be cast in standard

form and solved using the feasible start algorithm.

3.3.2 Self-dual Embedding

Self-dual embeddings were first used in interior-point methods for linear pro-

gramming [YTM94], and later extended to semidefinite and cone programming

[PS95, KRT97, LSZ00], and nonlinear convex optimization [AY98]. The embed-

56

ded problem is defined as

minimize (n+ 1)θ

subject to Ai •X −biτ +r
(0)
i θ = 0, i = 1, . . . ,m

−∑m
i=1 yiAi +Cτ +R(0)θ = S

bTy −C •X +ρ(0)θ = κ

−(r(0))Ty −R(0) •X −ρ(0)τ = −(n+ 1)

X �c 0, τ ≥ 0, S � 0, κ ≥ 0

(3.21)

with variables X,S ∈ Sn
V , y ∈ Rm, κ, τ, θ ∈ R. The extra parameters in the

problem are chosen as

r
(0)
i = bi−Ai•X(0), R(0) = S(0)+

m∑

i=1

y
(0)
i Ai−C, ρ(0) = 1+C•X(0)+bTy(0),

where X(0) = I, S(0) = I, y(0) = 0. It can be verified that the values

X = X(0), S = S(0), y = y(0), τ = κ = θ = 1

are strictly feasible. These values are used as a starting point in the algorithm.

(The formulation is easily extended to general X(0) ≻c 0, S
(0) ≻ 0 and y(0).)

Problem (3.21) is formally identical to its dual, and therefore the optimal

solution satisfies the complementarity condition X •S+κτ = 0. Furthermore, by

taking the inner product with (y,X, S, τ, θ) of each side of the equality in (3.21),

we find that

θ =
X • S + κτ

n+ 1

for all feasible points. Therefore θ = 0 at the optimum.

Depending on the sign of the optimal κ and τ , we can extract from the

optimal solution of the embedded problem either (a) the primal and dual solutions

of (2.2a–2.2b), or (b) certificates of primal and dual infeasibility. If τ > 0, κ = 0

57

at the optimum of (3.21), then X/τ is optimal in (2.2a) and y/τ , S/τ are optimal

in (2.2b). If τ = 0, κ > 0, then from the third equation, C • X or −bTy are

negative. If C • X < 0, then X is a certificate of dual infeasibility. If bTy > 0,

then y, S are a certificate of primal infeasibility. If τ = κ = 0 at the optimum,

then no conclusion about the original problem (2.2a–2.2b) can be made from the

solution of (3.21).

The central path for the embedded problem is defined as the solutions X, S,

y, κ, τ , θ that satisfy the constraints in (3.21) and

S = −µ∇φc(X), κ =
µ

τ
, (3.22)

where µ is a positive parameter. An equivalent condition is

X = −µ∇φ(S), τ =
µ

κ
. (3.23)

We have noted in Section 2.4 that X •∇φc(X) = −n for all X ≻c 0. From (3.22)

this implies that X • S + τκ = µ(n+ 1) on the central path. On the other hand,

we have seen above that X • S + τκ = θ(n + 1) for all feasible points in (3.21).

Hence θ = µ on the central path. These observations can be used to simplify the

central path equations as

Ai •X − biτ = −µr(0)i , i = 1, . . . ,m (3.24)

−
m∑

i=1

yiAi + Cτ = S − µR(0) (3.25)

bTy − C •X = κ− µρ(0) (3.26)

plus (3.22) or (3.23). The fourth equality constraint in (3.21) can be omitted

because it follows from (3.24)–(3.26).

58

3.4 Implementation

The techniques described in Section 3.2 can be used in any interior-point meth-

ods based on primal or dual scaling directions, for example, barrier methods,

infeasible primal or dual path-following methods, or nonsymmetric primal–dual

methods [Nes06b, Nes06a]. In this section, we describe the algorithm used in

the numerical experiments of Section 3.5. The implementation is a feasible-start

path-following algorithm based on Algorithm 3.1 with some minor differences

to allow initialization from a primal strictly feasible point X or a dual strictly

feasible point S, y.

3.4.1 Algorithm Outline

The algorithm depends on parameters δ ∈ (0, 1), γ ∈ (0, 1/2), β ∈ (0, 1), and

tolerances ǫabs and ǫrel. (The values used in our experiments are δ = 0.9, γ = 0.1,

β = 0.7, ǫabs = ǫrel = 10−7.) The algorithm also requires a strictly feasible

starting point X and an initial value of the positive parameter µ (see §3.3.1).

Repeat the following steps.

1. Primal centering. Solve (3.9) with R = C + µ∇φc(X) and denote the

solution by ∆Xcnt, ∆ycnt, ∆Scnt. Evaluate the Newton decrement

λ =
(
∆Xcnt • ∇2φc(X)[∆Xcnt]

)1/2
.

If λ ≤ δ, set

S := C +∆Scnt, y := ∆ycnt

and proceed to step 2. Otherwise, conduct a backtracking line search to

59

find a step size α that satisfies X + α∆Xcnt ≻c 0 and the Armijo condition

1

µ
(C • (X + α∆Xcnt)) + φc(X + α∆Xcnt) ≤

1

µ
(C •X) + φc(X)− αγλ2.

(3.27)

Update X as X := X + α∆Xcnt. Repeat step 1.

2. Prediction step. Solve (3.9) with R = S and denote the solution by ∆Xat,

∆yat, ∆Sat. Calculate

µ̂ :=
(X̃ + α∆Xat) • (S + α∆Sat)

n
= (1− α)

X̃ • S
n

where X̃ := X −∆Xcnt and

α = 0.98 · sup
{
α ∈ [0, 1)

∣∣∣ X̃ + α∆Xat ≻c 0, S + α∆Sat ≻ 0
}
.

Solve (3.9) with µ = µ̂ and R = S + µ̂∇φc(X). Conduct a backtracking

line search to find a primal step size αp such that X + αp∆X ≻c 0 and the

Armijo condition

1

µ̂
(C • (X + α∆X)) + φc(X + α∆X) ≤ 1

µ̂
(C •X) + φc(X)− αγλ2

is satisfied, where λ = (∆X • ∇2φc(X)[∆X])1/2. Conduct a backtracking

line search to find the dual step size

αd = max
k=0,1,...

{βk |S + βk∆S ≻ 0}, (3.28)

where β ∈ (0, 1) is an algorithm parameter. Update the variables

X := X + αp∆X, y := y + αd∆y, S := S + αd∆S. (3.29)

3. Stopping criteria. Terminate if the (approximate) optimality conditions

X • S ≤ ǫabs or

(
min{C •X,−bTy} < 0,

X • S
−min{C •X,−bTy} ≤ ǫrel

)

are satisfied. Otherwise, set µ := (X • S)/n and go to step 1.

60

The three systems of equations that are solved at each iteration have the same

coefficient matrix (if we absorb the scalar µ in ∆X) and therefore require only

one factorization. They can be solved using either method 1 or method 2 from

Section 3.2. We will refer to these two variants of the algorithm as smcp-ch

and smcp-qr, respectively. Moreover the right-hand side of the third system is a

linear combination of the right-hand sides of the first two systems, so the solution

can be obtained by combining the first two solutions.

The prediction direction in step 3 is based on the approximate tangent direc-

tion proposed by Nesterov [Nes06a, Nes06b], who refers to the intermediate point

X̃ = X−∆X as a lifting. Here the approximate tangent is used only to calculate

µ̂; the actual step made in step 2 is a centering step with centering parameter µ̂.

The algorithm can be improved in several ways, most importantly by allowing

infeasible starting points and by making more efficient steps in the approximate

tangent direction. However these improvements would be of no consequence for

the two questions we aim to answer in the experiments: how does the cost per

iteration compare with general-purpose sparse semidefinite programming solvers

and, secondly, how does the choice for primal scaling affect the accuracy that can

be attained?

The line search in step 3 is carried out by means of bisection in our preliminary

implementation. Note, however, that the step length can also be computed using

the step-length calculation techniques outlined in §2.4.6.

3.4.2 Numerical Stability

As mentioned in Section 3.2, the augmented systems approach used in smcp-qr is

more stable than methods based on the Cholesky factorization of the Schur com-

plement matrix H (method smcp-ch). To illustrate the difference we consider

61

Solver ǫ1 ǫ3 ǫ5 ǫ6
smcp-ch 1.63e−07 0.00e+00 1.04e−05 6.79e−06
smcp-qr 9.97e−14 0.00e+00 4.30e−10 3.63e−10
csdp 5.67e−08 9.41e−09 3.66e−08 1.42e−08
sdpa 4.17e−07 1.81e−09 1.15e−06 1.03e−06
sdpt3 3.50e−07 1.80e−09 7.80e−07 7.40e−07
sedumi 1.45e−06 0.00e+00 -2.92e−08 3.28e−06

Table 3.1: DIMACS error measures for control6 from SDPLIB.

the problem control6 from SDPLIB [Bor99b]. This problem has a dual degen-

erate solution. Using default accuracy settings, the symmetric primal–dual codes

csdp, sdpa, sdpt3, and sedumi all stop prematurely because the Cholesky fac-

torization of the Schur complement matrix fails near the solution where the Schur

complement system is severely ill-conditioned. This is also the case for smcp-

ch. However the augmented systems approach in smcp-qr solves the problem

to high accuracy. Table 3.1 shows four of six so-called DIMACS error measures

which are defined as [JPA00]

ǫ1 =
‖r‖2

1 + ‖b‖∞
,

ǫ5 =
C •X − bTy

1 + |C •X|+ |bTy| ,

ǫ3 =
‖R‖F

1 + ‖C‖max

,

ǫ6 =
S •X

1 + |C •X|+ |bTy| ,

where ‖C‖max = maxi,j |Cij|. (The remaining two DIMACS error measures are

equal to zero for all the solvers.) Although the sparsity pattern associated with

control6 is not very sparse, the results in Table 3.1 demonstrate the benefit of

the augmented systems approach in terms of numerical accuracy. Similar results

can be observed for several other SDPLIB problems.

62

3.5 Numerical Experiments

To assess the speed and accuracy of the algorithm described in §3.4.1, we have

conducted a series of experiments using a preliminary implementation of the al-

gorithm. The implementation is based on a combination of Python code and C

code, and it relies on two Python packages, cvxopt 1.1.2 [DV08] and chom-

pack 1.1 [DV09a]. We have also implemented and tested a method based on

dual scaling. These results are not included but were similar to the results for

the primal scaling method.

The experiments consist of some families of randomly generated problems,

selected sparse problems from SDPLIB, and a set of very large sparse SDPs. All

the experiments were conducted on a desktop computer with an Intel Core2 Quad

Q6600 CPU (2.4 GHz), 4 GB RAM, and Ubuntu 9.10 (64-bit). Each problem

instance was solved with the interior-point SDP solvers dsdp 5.8, sdpa-c 6.2.1,

sdpt3 4.0b, and sedumi 1.2. The Matlab-based solvers sdpt3 and sedumi were

run in Matlab R2008b while the other solvers are stand-alone and linked to at-

las/lapack. It should be noted that dsdp reports “wall time” (i.e., real time)

whereas the other solvers report CPU time. However, since a single-threaded ver-

sion of dsdp is used, the difference between wall time and CPU time is negligible

in practice.

We ran all the solvers with their default parameters and starting points. In

our solver, we used the tolerances ǫabs = ǫrel = 10−7 as exit conditions. Moreover,

we applied one iterative refinement step when solving the Newton systems using

smcp-qr, and three iterative refinement steps when using smcp-ch. We used the

centering parameter δ = 0.9, the backtracking parameters β = 0.7 and γ = 0.1,

and the initial µ was set to 100.

63

For nonchordal sparsity patterns, we used the AMD ordering to compute

chordal embeddings. Recall that smcp-ch uses a combination of two techniques

(referred to as T1 and T2 in §3.2.1) to form the Schur complement matrix. For

each column of the Schur complement matrix, we employ a threshold to select

between the two techniques. The threshold is based on the number of nonzero

columns in Ai: T1 is used if Ai has more than 0.1 · n nonzero columns, and

otherwise T2 is used. This criterion is a simple heuristic based on experimen-

tation, and leaves room for improvement. The second method, smcp-qr, does

not explicitly form the Schur complement matrix, and it treats each of the data

matrices Ai as a dense element in Sn
V .

The main purpose of the experiments is to compare the linear algebra com-

plexity of the techniques described in the previous sections with existing interior-

point solvers. For most test problems, the number of iterations needed by the

different solvers was comparable and ranged between 20 and 50 iterations. We

report the average time per iteration as well as the total time. The cost per itera-

tion is arguably the most fair basis for a comparison, since the solvers use different

stopping criteria, start at different initial points, and use different strategies for

step size selection and for updating the central path parameter.

The solution times for smcp-ch and smcp-qr do not include the time spent

in phase I. Most test problems did not require a phase I because the solution of

the least-norm problem (3.19) happened to be strictly feasible. The few problems

that did require the solution of a full phase I problem are pointed out in the text.

3.5.1 SDPs with Band Structure

In the first experiment we consider randomly generated SDPs with band struc-

ture, i.e., the matrices C,Ai ∈ Sn (i = 1, . . . ,m) are all banded with a common

64

bandwidth 2w+1. The special case where all Ai are diagonal (w = 0) corresponds

to a linear programming problem.

Table 3.2 shows the total time and the time per iteration as a function of n,

with a fixed number of constraints (m = 100) and fixed bandwidth (w = 5). The

time per iteration is also shown in the plot in Fig. 3.1. We see that, in terms of

n smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 0.12 0.05 0.20 5.1 0.20 0.09
200 0.23 0.10 1.2 20 0.46 0.36
400 0.48 0.22 9.0 86 1.5 2.2
800 1.0 0.45 132 576 5.4 16
1600 2.0 0.98 3988 4312 28 171

(a) Time per iteration (sec.)

n smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 4.2 1.8 6.3 117 3.0 1.2
200 9.3 4.3 41 510 7.9 5.7
400 18 8.3 314 2065 23 35
800 41 18 4766 13247 91 249
1600 94 46 171500 116426 500 3086

(b) Total time (sec.)

Table 3.2: Time per iteration and total time for randomly generated band SDPs
with m = 100 and w = 5.

time per iteration, smcp-ch and smcp-qr scale linearly with n. The advantage

is clear for large values of n. The high iteration times for dsdp and sdpa-c can

be explained by implementation choices rather than fundamental limitations.

The problem data in this experiment have full rank, and as a consequence, the

low-rank techniques used in dsdp become expensive. Furthermore, recall that

sdpa-c uses a technique similar to technique T2 described in §3.2.1. This is

clearly inefficient when all the columns of the data matrices contain nonzeros.

In the next part of the experiment, we fix n and w and vary the number of

65

102 103
10−2

10−1

100

101

102

103

104

n

T
im

e
p
er

it
er
at
io
n
(s
ec
.)

smcp-ch

smcp-qr

sdpt3

sedumi

dsdp

sdpa-c

Figure 3.1: Time per iteration as a function of the problem parameter n for
randomly generated band SDPs with half-bandwidth w = 5 and m = 100 con-
straints. The cost of one iteration increases linearly with n for smcp-ch and
smcp-qr whereas the cost grows at least quadratically for the other solvers.

66

constraints m (Table 3.3). Here smcp-qr is the fastest method, and for these

m smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

10 0.07 0.03 13 1.9 0.46 3.4
50 0.19 0.08 27 36 0.96 3.7
100 0.41 0.18 31 135 1.7 3.9
200 1.1 0.37 46 555 3.1 4.3
400 3.5 0.80 89 1571 6.3 6.0
800 12 1.8 - 6373 14 10

(a) Time per iteration (sec.)

m smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

10 2.8 1.2 450 47 7.4 62
50 7.5 3.2 1052 891 15 59
100 15 6.8 1102 3241 27 55
200 46 15 1888 13318 53 69
400 145 33 5493 40845 107 85
800 535 80 - 159337 246 159

(b) Total time (sec.)

Table 3.3: Time per iteration and total time for randomly generated band SDPs
with n = 500 and w = 3. The smcp-ch and smcp-qr results for m = 800 do not
include the time of the phase I. The other problems did not require a phase I.

problems it scales much better than smcp-ch. We remark that dsdp did not

return a solution for m = 800 (possibly due to insufficient memory). Again, the

poor performance of sdpa-c on these chordal problems is likely a consequence

of the technique used to compute the Schur complement matrix rather than a

shortcoming of the completion technique.

Finally we consider a set of SDPs with different bandwidths and with n andm

fixed. From the results in Table 3.4 it is clear that, for most of the solvers, there

is a gap in time per iteration from w = 0 (i.e., a linear programming problem

cast as an SDP) to w = 1 (i.e., a tridiagonal sparsity pattern). The gap is less

evident for the chordal methods. Interestingly, sdpt3 is slightly faster when the

67

bandwidth is increased from 16 to 32.

w smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0 0.03 0.02 0.39 3.3 0.07 0.02
1 0.10 0.05 2.1 8.4 0.24 0.31
2 0.14 0.06 1.2 10 0.28 0.33
4 0.19 0.09 1.2 17 0.41 0.36
8 0.34 0.16 1.2 31 0.66 0.40
16 0.71 0.33 2.2 65 1.2 0.50
32 1.7 0.84 2.2 127 0.87 0.68

(a) Time per iteration (sec.)

w smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0 1.4 0.65 20 95 1.2 0.20
1 4.4 2.0 109 235 4.0 4.7
2 4.9 2.2 42 259 4.5 4.6
4 7.3 3.4 41 393 6.5 4.7
8 13 6.0 39 782 9.9 5.6
16 26 12 73 1355 16 7.0
32 69 34 74 2660 11 8.2

(b) Total time (sec.)

Table 3.4: Time per iteration and total time for randomly generated band SDPs
with n = 200 and m = 100. smcp-ch and smcp-qr required a phase I for w = 0
and w = 1 (time not included).

3.5.2 Matrix Norm Minimization

In the next experiment, we consider a family of matrix norm minimization prob-

lems of the form

minimize ‖F (x) +G‖2 (3.30)

where F (x) = x1F1 + · · · + xrFr, and with randomly generated problem data

G,Fi ∈ Rp×q with p ≥ q. The matrix G is dense while the sparsity of each Fi is

determined by a sparsity parameter d ∈ (0, 1]. The number of nonzero elements

68

Fi is given by max(1, round(dpq)), and the locations of the nonzero elements are

selected at random for each Fi. All nonzero elements are randomly generated

from a normal distribution.

The matrix norm minimization problem (3.30) can be formulated as an SDP:

minimize t

subject to


 tI F (x) +G

(F (x) +G)T tI


 � 0.

(3.31)

The variables are x ∈ Rr and t ∈ R. Since G is dense, the aggregate sparsity

pattern is independent of the sparsity parameter d. Moreover, this aggregate

sparsity pattern is nonchordal for q > 1, but a chordal embedding is easily ob-

tained by filling the smaller of the two diagonal blocks in the aggregate sparsity

pattern associated with (3.31). In the special case where q = 1, the SDP (3.31)

is equivalent to a second-order cone program.

Of the r+1 data matrices associated with the SDP (3.31), one matrix always

has full rank (the identity matrix) whereas the rank of each of the remaining r

data matrices is at most min(2p, 2q). This means that low-rank structure may

be exploited when p≫ q or p≪ q.

In the first part of the experiment we look at the time per iteration for in-

creasing values of p and with q and r fixed. The data matrices Fi are dense. The

results in Table 3.5 verify that the time per iteration is roughly linear in n = p+q

for smcp-ch and smcp-qr. This is also shown in the plot in Fig. 3.2. Indeed,

for large p + q, smcp-ch and smcp-qr are significantly faster in terms of time

per iteration than the other interior-point solvers.

In the second part of the experiment we use matrix norm SDPs with Fi dense,

a varying number of constraints m = r+1, and p and q fixed. Table 3.6 summa-

rizes the results. Notice that smcp-qr performs quite well, and it scales much

69

p+ q smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 0.23 0.12 0.09 0.91 0.29 0.09
200 0.48 0.24 0.39 2.1 0.78 0.34
400 1.0 0.51 1.8 5.5 2.5 1.8
800 2.1 1.1 10 15 9.1 15
1600 4.3 2.5 77 43 35 162

(a) Time per iteration (sec.)

p+ q smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 6.2 3.1 3.1 21 3.5 1.2
200 13 6.3 8.2 55 9.3 4.4
400 29 14 38 132 32 25
800 60 32 219 437 136 223
1600 146 84 1772 1372 491 2424

(b) Total time (sec.)

Table 3.5: Time per iteration and total time for randomly generated dense matrix
norm problems of size p× q with r variables, for q = 10, r = 100.

102 103
10−2

10−1

100

101

102

103

p+ q

T
im

e
p
er

it
er
at
io
n
(s
ec
.)

smcp-ch

smcp-qr

sdpt3

sedumi

dsdp
sdpa-c

Figure 3.2: Time per iteration as a function of p+q for randomly generated dense
matrix norm problems with q = 10, r = 100. The iteration complexity is roughly
linear for smcp-ch and smcp-qr.

70

r smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

50 0.51 0.23 1.0 1.8 1.4 1.8
100 1.1 0.52 1.9 5.6 2.6 2.0
200 2.7 1.0 4.0 19 5.2 2.3
400 7.8 2.2 8.5 69 11 3.3
800 26 4.9 15 262 24 6.6

(a) Time per iteration (sec.)

r smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

50 15 6.9 20 47 19 25
100 33 16 40 140 36 30
200 70 27 80 471 72 30
400 204 57 169 1523 141 43
800 682 128 434 5756 291 80

(b) Total time (sec.)

Table 3.6: Time per iteration and total time for randomly generated dense matrix
norm problems of size p× q with r variables, with p = 400, q = 10.

better than smcp-ch. The main reason is that smcp-ch will use Technique 1 to

compute the columns of H since the data matrices Fi are dense (i.e., the number

of nonzero columns in Ai is n = p + q, and as a consequence, Technique 2 is

expensive). Notice also that sdpa-c is slow for large m. This can be attributed

to the fact that sdpa-c uses an algorithm similar to Technique 2 to compute the

Schur complement matrix H, and this is expensive whenever the data matrices

have a large number of nonzero columns.

The effect of varying the density of Fi can be observed in Table 3.7 which

shows the time per iteration for matrix norm problems with varying density and

fixed dimensions. For d small, the data matrices Ai generally have only a few

nonzero columns, and this can be exploited by smcp-ch and sdpa-c. For the

two most sparse problems (d < 0.01), method smcp-ch used technique T2 for all

but one column in the Schur complement matrix; for the problems with d ≥ 0.01,

71

d smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0.001 0.31 0.96 0.09 0.22 0.22 1.7
0.005 0.69 0.97 0.28 0.42 0.33 1.7
0.01 1.2 0.97 0.36 0.53 0.60 1.8
0.02 1.2 0.96 0.96 0.71 1.6 1.8
0.05 1.2 0.95 1.6 1.2 2.3 1.8
0.1 1.3 0.96 1.5 2.1 2.5 1.8
0.25 1.5 0.98 2.5 4.7 3.2 1.9
0.5 1.9 1.0 3.0 9.6 4.0 2.0

(a) Time per iteration (sec.)

d smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0.001 9.2 29 2.0 4.9 2.9 24
0.005 19 26 6.5 10 4.6 26
0.01 34 28 8.2 13 8.4 26
0.02 33 27 21 16 21 24
0.05 40 31 36 30 30 23
0.1 37 28 34 49 33 26
0.25 39 25 54 117 48 27
0.5 50 26 67 232 56 28

(b) Total time (sec.)

Table 3.7: Time per iteration and total time for randomly generated sparse matrix
norm problems of size p× q with r variables and density d, for p = 400, q = 10,
and r = 200.

72

T1 was used for all columns. The times for smcp-qr on the other hand are more

or less independent of d since smcp-qr handles the data matrices Ai as dense

matrices in Sn
V .

In the last part of this experiment, we use matrix norm problems with dif-

ferent values of q, with r and p + q fixed, and with dense problem data Fi. The

results are shown in Table 3.8. Both smcp-ch and smcp-qr perform relatively

q smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

1 0.10 0.05 1.6 0.19 1.5 28
2 0.12 0.05 1.7 0.32 1.7 28
5 0.25 0.12 1.9 0.72 1.7 27
10 0.51 0.23 2.3 1.4 2.8 26
20 1.3 0.58 3.8 3.0 4.0 27
50 7.8 3.5 5.8 9.8 7.3 28

(a) Time per iteration (sec.)

q smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

1 3.2 1.5 18 3.4 15 142
2 3.6 1.7 31 5.7 22 305
5 7.4 3.5 36 18 22 356
10 15 6.8 44 32 39 397
20 50 23 69 72 53 383
50 234 105 110 264 102 478

(b) Total time (sec.)

Table 3.8: Time per iteration and total time for randomly generated dense matrix
norm problems of size p× q with r variables, for p+ q = 1000, r = 10.

well, but the time per iteration does not scale well with q. Observe that in the

special case where q = 1, the chordal techniques appear superior. However it

should be noted that both sdpt3 and sedumi can handle second-order cone con-

straints directly with greater efficiency when the second-order cone constraints

are explicitly specified as such.

73

3.5.3 Overlapping Cliques

In this experiment, we consider a family of SDPs with chordal sparsity, obtained

by modifying a block diagonal sparsity pattern so that neighboring blocks overlap.

Let l be the number of cliques, all of order N , and denote with u the overlap

between neighboring cliques. Note that u must satisfy 0 ≤ u ≤ N−1 where u = 0

corresponds to a block diagonal sparsity pattern and u = N − 1 corresponds to a

banded sparsity pattern with bandwidth 2u+1. The order of V is n = l(N−u)+u,
and the l cliques are given by

Wi = {(i− 1)(N − u) + 1, . . . , i(N − u) + u}, i = 1, . . . , l.

For the experiment, we use l = 50 cliques of order N = 16 and m = 100 con-

straints. The aggregate sparsity pattern as a function of the clique overlap u is

illustrated in Fig. 3.3. Each of the data matrices Ai has roughly 10% nonzeros

1

2

50

b
b

b

N = 16

u

n = 800− 49u

Figure 3.3: Sparsity pattern with 50 overlapping cliques of order 16. The param-
eter u is the overlap between adjacent cliques, i.e., |Ui| = u for i = 2, . . . , l.

(relative to the aggregate sparsity pattern). Table 3.9 shows the results for dif-

ferent values of u. Not surprisingly, all the nonchordal solvers do quite well in

the block diagonal case (u = 0), but there is a significant jump in complexity

74

u smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0 0.23 0.31 0.16 47 0.32 0.12
1 0.28 0.35 79 43 3.8 12
2 0.28 0.34 100 38 3.5 9.5
4 0.26 0.32 124 31 2.9 6.5
8 0.26 0.27 55 21 1.5 2.2
15 0.12 0.08 0.08 0.60 0.12 0.05

(a) Time per iteration (sec.)

u smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

0 10 14 2.9 1027 4.2 1.7
1 11 14 3415 1035 61 181
2 12 14 4515 920 56 143
4 10 13 5817 776 43 97
8 9.7 10 2621 530 24 37
15 3.5 2.4 1.7 11 1.5 0.60

(b) Total time (sec.)

Table 3.9: Time per iteration and total time for random SDPs with l = 50
cliques of order N = 16 and m = 100 constraints. Neighboring cliques overlap
by u nodes.

75

for these solvers when the cliques overlap just slightly and thereby destroy the

block structure. On the other hand, smcp-ch and smcp-qr appear to be much

less sensitive to such overlaps. We remark that smcp-ch used only T1 for these

problems. When u = 15, the sparsity pattern is banded and has order n = 65.

This is a relatively small problem that can be solved quite easily with symmetric

primal–dual methods.

We should point out that the conversion method by Fukuda et al. [FKM00],

which also exploits chordal structure, can be a viable alternative for this type

of sparsity pattern when the clique overlaps are small and when the number of

cliques is not too large. The conversion method is closely related to one of the

domain space decomposition methods described in §2.5.3, and it can be imple-

mented as a preprocessing step and used in conjunction with existing primal–dual

interior-point codes.

3.5.4 Robust Convex Quadratic Optimization

Sparsity patterns with block-arrow structure are chordal, and matrix inequalities

with block-arrow patterns arise in several applications. Many robust counterparts

of quadratically constrained quadratic programs (QCQPs) or SOCPs fall in this

category [EL97, BN98, KBM96]. If the block-width of the arrow is not too large,

it is often advantageous to exploit chordal structure.

Uncertain convex quadratic constraints In our first example of a robust

optimization problem, we look at quadratic programs with one or more uncertain

convex quadratic constrains of the form

xTATAx ≤ 2bTx+ d. (3.32)

76

Here the problem data A ∈ Rp×q, b ∈ Rq, and d ∈ R are uncertain. If we choose

as an uncertainty set a bounded ellipsoid

U =

{
(Ā, b̄, d̄) +

r∑

i=1

ui(Ai, bi, di)

∣∣∣∣∣ u
Tu ≤ 1

}
(3.33)

where Ā, b̄, d̄ are nominal values, the robust counterpart of the uncertain quadratic

constraint (3.32) can be formulated as an LMI [BN98]




tI G(x)T h(x)

G(x) I Āx

h(x)T (Āx)T f(x)− t


 � 0 (3.34)

with variables t ∈ R and x ∈ Rq and where

G(x) = [A1x · · · Arx],

h(x) = (bT1 x+ d1/2, . . . , b
T
r x+ dr/2),

f(x) = 2b̄Tx+ d̄.

The sparsity pattern associated with the LMI (3.34) has block-arrow structure,

and it can be either chordal or nonchordal, depending on the structure of G(x)

(which, in turn, is determined by the choice of uncertainty set). It is typically

worthwhile to exploit chordal sparsity in two cases. If G(x) is dense and p ≫ r

or r ≫ p, an efficient chordal embedding can easily be constructed by filling the

smaller of the two diagonal blocks. This chordal embedding will have cliques of

order at most min(r+1, p+1). If on the other hand G(x) is sparse, the sparsity

pattern may have an efficient chordal embedding with small cliques even when

p ≈ r. As a special case we mention that if G(x) has at most one structural

nonzero entry in each column (or alternatively, at most one structural nonzero

entry in each row), then the sparsity pattern associated with (3.34) is chordal

and the cliques are of order at most three. Here we will consider a numerical

77

p smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

200 0.25 0.13 0.20 0.70 0.54 0.34
400 0.51 0.26 0.91 1.4 1.7 1.9
800 1.0 0.53 5.1 3.1 5.8 15.3
1600 2.1 1.2 33.6 6.5 21.6 166.9
3200 4.3 2.7 – 13.8 90.2 1416.9

(a) Time per iteration (sec.)

p smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

200 7.0 3.7 7.3 13.9 7.0 6.1
400 16.8 8.6 32.7 34.0 23.2 34.5
800 40.8 21.1 190.5 76.4 87.5 185.4
1600 80.8 47.7 1377.0 157.1 345.8 2335.9
3200 162.0 101.0 – 429.3 1352.3 19836.0

(b) Total time (sec.)

Table 3.10: Average time per iteration and total time for randomly generated
uncertain QCQPs with q = 100 and r = 5.

experiment with G(x) dense and r ≪ p, and in the next experiment we look

at an example where G(x) is sparse and where the LMI has a chordal sparsity

pattern.

In our first experiment, we are interested in the average CPU time per it-

eration as a function of p for randomly generated uncertain QCQPs with q, r

fixed and with r small. Specifically, we minimize a linear objective f0(x) = cTx

subject to a single uncertain quadratic constraint of the form (3.32). For this

experiment we choose q = 100, r = 5, and we generate problem instances with

Ā, b̄, Ai random, bi = 0, d̄ = 1, and di = 0. The results are listed in Table 3.10.

It is easy to verify that the average time per iteration grows roughly linearly in

p for smcp. Notice also that sdpa-c, which also exploits chordal structure, is

quite fast as well. The other solvers scale quadratically or worse, and hence the

benefit of exploiting chordal sparsity becomes evident for p large. We remark

78

that dsdp crashed on the largest problem instance. Finally we note that having

multiple uncertain quadratic constraints gives rise to an LMI with block-diagonal

structure and with blocks of the form (3.34).

Robust least-squares Our next experiment is based on robust least-squares

(RLS) which is a special case of robust QCQP. Suppose we want to minimize

‖Ax− b‖2 where A ∈ U is uncertain but assumed to lie in the ellipsoidal uncer-

tainty set

U = {Ā+ u1A1 + · · ·+ urAr | ‖u‖2 ≤ 1}. (3.35)

Here Ā ∈ Rp×q is a known nominal coefficient matrix, b ∈ Rp is a known vector,

and the matrices Ai ∈ Rp×q define the structure of the set U . The RLS problem

seeks a solution x ∈ Rq that minimizes the worst-case error which is defined as

ewc(x) = sup
‖u‖2≤1

‖G(x)u+ h(x)‖2, (3.36)

where G(x) = [A1x · · · Arx] and h(x) = Āx− b. This problem can be cast as an

SDP [EL97]:

minimize t+ λ

subject to




t 0 h(x)T

0 λI G(x)T

h(x) G(x) I


 � 0

(3.37)

with variables t, λ ∈ R and x ∈ Rq. Note that the SDP (3.37) has m = q + 2

variables, and the constraint is an LMI of order n = p+ r + 1.

In the following experiment we consider a family of RLS problems defined

as follows. Suppose Ā has r uncertain entries indexed by (i1, j1), . . . , (ir, jr).

Furthermore, let the matrices A1, . . . , Ar be defined as

(Ak)ij =





γ i = ik, j = jk

0 otherwise

k = 1, . . . , r, (3.38)

79

xlbl0

y
lb
l0

10 20 30 40 50 60 70

10

20

30

40

50

60

70

(a) Before reordering.

xlbl0

y
lb
l0

10 20 30 40 50 60 70

10

20

30

40

50

60

70

(b) After reordering.

Figure 3.4: Sparsity pattern associated with an RLS problem instance with di-
mensions p = 25, q = 10, and r = 50.

where γ > 0 is a parameter that controls the size of the uncertainty set U . The

resulting SDP has a chordal sparsity pattern with |V | = 2p+ 2r + 1 nonzeros in

the lower triangle of V , and furthermore, the sparsity pattern has p + r cliques

of order two. An example of a sparsity pattern from a randomly generated RLS

problem is shown in Fig. 3.4.

As in the previous experiment, we are interested in the computational cost per

interior-point iteration as a function of p. We generate random problem instances

as follows. The vector b is computed as b = Āx̄+σw where Ā is a (dense) random

matrix, x̄ and w are random vectors, and σ is a positive parameter. The number

of uncertain entries of Ā is parameterized by d ∈ (0, 1] such that r = ⌈pqd⌉ where
⌈x⌉ denotes the smallest integer larger than or equal to x. The positions of the

unknown entries are selected at random.

Table 3.11 shows the average CPU time per iteration (in seconds) for problem

instances with different values of p and with the remaining problem parameters

80

p smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 0.19 0.14 0.20 0.18 1.0 4.8
200 0.41 0.31 0.81 0.62 4.8 54.5
400 0.82 0.64 4.4 2.8 27.6 512.5
800 1.7 1.4 25.2 11.1 125.2 –
1600 3.6 3.2 153.6 45.3 – –

(a) Time per iteration (sec.)

p smcp-ch smcp-qr dsdp sdpa-c sdpt3 sedumi

100 7.4 5.2 11.5 3.9 15.1 86.0
200 24.4 18.3 91.5 26.9 96.1 1690.3
400 67.1 52.1 672.0 136.5 606.1 14350.0
800 190.5 161.8 5549.0 587.3 2755.1 –
1600 572.7 504.4 45780.0 2987.2 – –

(b) Total time (sec.)

Table 3.11: Average time per iteration (seconds) for randomly generated RLS
problems with q = 100 and r = 5p.

fixed (q = 100 and d = 0.05). Notice once again that for smcp the time per

iteration grows roughly linearly with the parameter p. The other solvers scale

quadratically or worse, and for the largest instance, the general purpose solver

sdpt3 ran out of memory. Note also that in this example, sdpa-c does not scale

as well as in the previous experiment.

3.5.5 Sparse SDPs from SDPLIB

Our next experiment is based on a set of problem instances from SDPLIB [Bor99b].

We include only the largest and most sparse problem instances (specifically, sparse

problems with n ≥ 500), since these are the most interesting problems in regard

to chordal matrix techniques. Before we present and discuss our results, we briefly

give some definitions pertaining to problem dimension and data sparsity.

Suppose V is a sparsity pattern with k diagonal blocks of order n1, . . . , nk,

81

where block i has sparsity pattern Vi. In other words, Sn
V = Sn1

V1
× · · · × S

nk

Vk
and

n =
∑k

i=1 ni. We denote with nmax = maxi ni the order of the largest block, and

we define the density of V as

ρV =
2|V | − n
∑k

i=1 n
2
i

.

(Recall that |V | is the number of lower triangular nonzeros in the sparsity pat-

tern.) Note that ρV = 1 corresponds to dense blocks in which case the chordal

techniques become trivial. Similarly, we define the average density of the problem

data, relative to V , as

ρ̄V,rel =
1

m

m∑

i=1

nnz(Ai)

2|V | − n
,

where nnz(Ai) is the number of nonzeros in Ai. This is a measure of the sparsity

of the coefficients Ai in the subspace Sn
V . If ρ̄V,rel = 1, the coefficient matrices are

all dense relative to Sn
V . Note that smcp-qr is generally inefficient when ρ̄V,rel is

small since smcp-qr treats Ai as a dense element in Sn
V .

For a chordal sparsity pattern with l cliques, we define the following two

measures:

W =
l∑

i=1

|Wi| and U =
l∑

i=1

|Ui|,

i.e., W is the sum of clique cardinalities, and U is the sum of separator cardinal-

ities. The sum of residual cardinalities is given by
∑l

i=1 |Vi| = W − U = n, and

hence does not carry any information about the sparsity pattern. The measure U
can be thought of as the total overlap between cliques, where U = 0 corresponds

to nonoverlapping cliques, i.e., V is block diagonal with dense blocks. Finally, we

denote with wmax order of the maximum clique in V (the clique number).

The set of SDPLIB problems with n ≥ 500 is listed in Table 3.12 with selected

problem statistics. With the exception of one problem (truss8), all problem

82

Dimensions Sparsity (%)
Instance m n k nmax ρV ρ̄V,rel
maxG11 800 800 1 800 0.62 0.025
maxG32 2,000 2,000 1 2,000 0.25 0.010
maxG51 1,000 1,000 1 1,000 1.28 0.008
maxG55 5,000 5,000 1 5,000 0.14 0.003
maxG60 7,000 7,000 1 7,000 0.08 0.002
mcp500-1 500 500 1 500 0.70 0.057
mcp500-2 500 500 1 500 1.18 0.034
mcp500-3 500 500 1 500 2.08 0.019
mcp500-4 500 500 1 500 4.30 0.009
qpG11 800 1,600 1 1,600 0.19 0.042
qpG51 1,000 2,000 1 2,000 0.35 0.014
thetaG11 2,401 801 1 801 0.87 0.113
thetaG51 6,910 1,001 1 1,001 1.48 0.053
truss8 496 628 34 19 100.00 0.270

Table 3.12: Problem statistics for SDPLIB problems.

instances have a nonchordal aggregate sparsity pattern. The problem truss8

clearly has a block diagonal aggregate sparsity pattern with dense blocks (since

ρV = 1). This implies that the chordal techniques are trivial and have no ad-

vantage over existing solvers that handle block diagonal structure. Notice also

that ρ̄V,rel is small for all problem instances, and as a consequence, smcp-qr can

be expected to be quite slow since it does not fully exploit the sparsity of the

individual data matrices. Finally, we remark that all the problem instances in

Table 3.12 have data matrices with very low rank.

Table 3.13 shows some statistics for two embeddings: a standard AMD em-

bedding and an AMD embedding obtained via cholmod [CDH08] which includes

a post-processing of the clique tree. cholmod’s embedding clearly has fewer but

larger cliques, and therefore the density ρV is somewhat larger. We will refer to

Method 1 based on cholmod’s AMD embedding as smcp-cm.

If we compare the density of the aggregate sparsity patterns (Table 3.12)

83

Instance l wmax W U ρV (%)
maxG11 598 24 4,552 3,752 2.48
maxG32 1,498 76 12,984 10,984 1.81
maxG51 674 326 14,286 13,286 13.41
maxG55 3,271 1,723 77,908 72,908 12.55
maxG60 5,004 1,990 100,163 93,163 8.51
mcp500-1 452 39 1,911 1,411 2.07
mcp500-2 363 138 4,222 3,722 10.74
mcp500-3 259 242 6,072 5,572 27.99
mcp500-4 161 340 8,420 7,920 52.64
qpG11 1,398 24 5,352 3,752 0.65
qpG51 1,674 326 15,286 13,286 3.38
thetaG11 598 25 5,150 4,349 2.72
thetaG51 676 324 14,883 13,882 13.41
truss8 34 19 628 0 100.00

(a) amd embedding

Instance l wmax W U ρV (%)
maxG11 134 32 1,864 1,064 4.92
maxG32 253 79 5,348 3,348 3.12
maxG51 129 337 4,563 3,563 20.81
maxG55 728 1,776 28,421 23,421 15.30
maxG60 1,131 2,048 35,817 28,817 10.27
mcp500-1 127 51 860 360 5.55
mcp500-2 99 146 1,545 1,045 18.71
mcp500-3 58 251 2,196 1,696 42.08
mcp500-4 32 352 2,608 2,108 68.60
qpG11 934 32 2,664 1,064 1.26
qpG51 1,129 337 5,563 3,563 5.23
thetaG11 134 33 1,998 1,197 5.16
thetaG51 127 335 4,707 3,706 20.97
truss8 34 19 628 0 100.00

(b) cholmod-amd embedding

Table 3.13: Statistics for two chordal embeddings of selected sparsity patterns
from SDPLIB.

84

with the density of the chordal embeddings (Table 3.13), we see that for some of

the problems, the chordal embeddings are much more dense than the aggregate

sparsity pattern. This means that the chordal embeddings are not very efficient.

Indeed, this seems to be the case for many of the problems, in particular, maxG55,

maxG60, mcp500-3, and mcp500-4. Notice also that the chordal embeddings of

maxG55 and maxG60 have fairly large clique numbers.

From the results in Table 3.14, we see that the performance of the chordal

techniques varies quite a bit when compared to the nonchordal solvers. As ex-

pected, the problems maxG55, maxG60, mcp500-3, and mcp500-4 are not favorable

to the chordal techniques. Problems with more efficient chordal embeddings and

smaller maximum clique sizes, such as maxG11 and maxG32, are solved more effi-

ciently. If we compare smcp-ch and smcp-cm, it is readily seen that the chordal

embedding obtained with cholmod consistently results in faster iteration times.

Other embedding techniques can be used and may further improve the speed.

Notice that dsdp does quite well on most problems, and this may partially be

due to dsdp’s use of low rank techniques. Furthermore, dsdp solves the Schur

complement equations using preconditioned conjugate gradient which is often

more efficient, especially when m is large and so long as the condition number of

the Schur complement is not too large. The chordal techniques do not exclude

the use of low rank techniques or iterative solution of the Newton system, so

implementing these techniques may also improve smcp-ch/smcp-cm.

Finally we remark that for the problem thetaG51, all the solvers stopped

prematurely because of numerical problems, and for the problems maxG55 and

maxG60, sdpa-c spent more than 50% of the total CPU time outside the main

loop.

85

Instance smcp-ch smcp-cm dsdp sdpa-c sdpt3 sedumi

maxG11 0.74 0.47 0.24 0.48 0.98 13
maxG32 5.1 3.3 3.2 5.1 9.5 339
maxG51 8.3 5.4 0.64 2.8 2.0 31
maxG55 1169 650 73 852 149 m
maxG60 2301 1074 170 1883 428 m
mcp500-1 0.33 0.18 0.07 0.11 0.29 3.1
mcp500-2 1.3 0.77 0.10 0.33 0.37 3.3
mcp500-3 3.6 2.0 0.14 0.86 0.42 3.3
mcp500-4 13 4.4 0.20 1.7 0.47 3.4
qpG11 1.1 0.76 0.38 0.77 0.97 158
qpG51 12 8.4 0.97 4.6 1.9 308
thetaG11 4.2 3.2 3.2 3.4 2.7 21
thetaG51 59 52 94 85 33 301
truss8 0.60 0.60 0.14 2.6 0.17 0.13

(a) Time per iteration (sec.)

Instance smcp-ch smcp-cm dsdp sdpa-c sdpt3 sedumi

maxG11 23 16 5.0 11 15 169
maxG32 154 118 70 133 142 4743
maxG51 282 196 19 76 34 498
maxG55 45598 28590 2618 22146 2539 m
maxG60 92029 49398 6131 45194 6848 m
mcp500-1 9.5 6.5 1.9 2.3 4.4 50
mcp500-2 32 19 2.2 6.9 5.9 50
mcp500-3 109 64 2.7 18 5.9 50
mcp500-4 349 124 4.2 37 6.1 47
qpG11 33 30 12 18 15 2214
qpG51 682 488 95 252 32 6775
thetaG11 248 178 200 67 49 317
thetaG51 2901 2676 5662 5726 1223 5422
truss8 26 26 3.7 87 2.8 3.1

(b) Total time (sec.)

Table 3.14: Average time per iteration and total time for selected SDPLIB prob-
lems. Failure due to insufficient memory is marked with an ‘m’. smcp-ch and
smcp-cm required a phase I for the problems thetaG11, thetaG51, and truss8

(time not included).

86

3.5.6 Nonchordal SDPs

In our last experiment we consider SDPs with nonchordal aggregate sparsity

patterns and random data. Each problem is based on a sparsity pattern from

the University of Florida Sparse Matrix Collection (UFSMC) [DV09b]. We will

use as problem identifier the name rsX, where X is the ID number associated

with the corresponding problem from UFSMC. Fig. 3.5 shows a selection of nine

nonchordal sparsity patterns used in this experiment.

For each of the sparsity patterns, we generated a problem instance with av-

erage density ρ̄V,rel = 10−3 and m = 200 constraints. Table 3.15 lists problem

statistics and Table 3.16 shows some statistics for two different chordal embed-

dings. All nine problems have a single block, and therefore, for the largest of the

Dimensions Sparsity (%)
Instance m n k nmax ρV ρ̄V,rel
rs35 200 2,003 1 2,003 2.09 0.05
rs200 200 3,025 1 3,025 0.23 0.05
rs228 200 1,919 1 1,919 0.88 0.05
rs365 200 4,704 1 4,704 0.47 0.05
rs828 200 10,800 1 10,800 0.69 0.05
rs1184 200 14,822 1 14,822 0.33 0.05
rs1288 200 30,401 1 30,401 0.05 0.05
rs1555 200 7,479 1 7,479 0.12 0.05
rs1907 200 5,357 1 5,357 0.72 0.05

Table 3.15: Problem statistics for nonchordal problems.

problems, handling the primal variable as a dense matrix is prohibitively expen-

sive in terms of both computations and memory. However, for all nine problems,

the chordal embeddings have clique numbers that are much smaller than n. No-

tice that cholmod’s AMD embedding generally has significantly fewer cliques

than the AMD embedding, and its density is only slightly higher. The chordal

embeddings have between 3-10 times as many nonzeros as the corresponding

87

500 1000 1500 2000

500

1000

1500

2000

(a) rs35

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000

(b) rs200

500 1000 1500

500

1000

1500

(c) rs228

1000 2000 3000 4000

1000

2000

3000

4000

(d) rs365

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

(e) rs828

2000 4000 6000 8000 100001200014000

2000

4000

6000

8000

10000

12000

14000

(f) rs1184

5000 10000 15000 20000 25000 30000

5000

10000

15000

20000

25000

30000

(g) rs1288

1000 2000 3000 4000 5000 6000 7000

1000

2000

3000

4000

5000

6000

7000

(h) rs1555

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

(i) rs1907

Figure 3.5: Aggregate sparsity patterns for nonchordal test problems.

88

Instance l wmax W U ρV (%)
rs35 589 343 27,881 25,878 13.21
rs200 1,632 95 20,063 17,038 1.51
rs228 790 88 17,244 15,325 3.60
rs365 1,230 296 36,136 31,432 2.54
rs828 841 480 74,256 63,456 2.19
rs1184 2,236 500 172,046 157,224 2.28
rs1288 10,394 412 222,706 192,305 0.32
rs1555 6,891 184 49,447 41,968 0.28
rs1907 577 261 30,537 25,180 2.97

(a) amd embedding

Instance l wmax W U ρV (%)
rs35 141 394 11,819 9,816 14.66
rs200 314 95 8,711 5,686 2.12
rs228 207 88 7,333 5,414 4.35
rs365 396 296 19,417 14,713 2.87
rs828 605 480 56,364 45,564 2.25
rs1184 830 500 91,966 77,144 2.36
rs1288 2,295 412 108,865 78,464 0.38
rs1555 2,371 193 23,614 16,135 0.55
rs1907 400 261 24,974 19,617 3.10

(b) cholmod-amd embedding

Table 3.16: Statistics for AMD and cholmod’s AMD embeddings of nonchordal
problems.

89

aggregate sparsity patterns.

The results are listed in Table 3.17. For three of the four smallest problem,

dsdp is the fastest in terms of average time per iteration. The results show

Instance smcp-ch smcp-cm dsdp sdpa-c sdpt3 sedumi

rs35 37 30 4.0 41 13 325
rs200 3.2 2.4 2.9 5.9 33 1139
rs228 3.9 3.0 1.4 5.7 11 282
rs365 30 28 15 59 100 m
rs828 406 392 482 1813 m m
rs1184 729 677 791 2925 m m
rs1288 386 362 m 2070 m m
rs1555 14 11 22 23 m m
rs1907 49 48 38 176 152 m

(a) Time per iteration (sec.)

Instance smcp-ch smcp-cm dsdp sdpa-c sdpt3 sedumi

rs35 1632 1377 205 1245 234 5530
rs200 171 142 117 196 727 19367
rs228 187 139 71 181 214 5914
rs365 1473 1368 850 1940 1993 m
rs828 21107 20401 27000 63448 m m
rs1184 43010 37897 47460 105313 m m
rs1288 23548 20621 m 74528 m m
rs1555 641 484 1062 648 m m
rs1907 2531 2192 2004 5445 2888 m

(b) Total time (sec.)

Table 3.17: Average time per iteration and total time for nonchordal SDPs with
random data. Failure due to insufficient memory is marked with an ‘m’.

that the chordal techniques can be quite fast for large problems, even when the

chordal embedding has many more nonzeros than the aggregate sparsity pattern.

If we compare the results obtained with smcp-ch and smcp-cm, we see that

cholmod’s chordal embedding is advantageous in terms of iteration time, but

the difference in iteration time is typically smaller than for many of the SDPLIB

90

problems. Both smcp-ch and smcp-cm used only T2 to compute the Schur

complement matrix in all cases.

The general purpose primal–dual solvers sdpt3 and sedumi ran of memory

while solving the largest of the problems, and while dsdp successfully solved

the largest instance rs1288, it ultimately ran out of memory in an attempt to

compute the dense primal variable.

3.6 Summary

We have described implementations of a primal and a dual path-following algo-

rithm that take advantage of chordal sparsity when solving the Newton equations.

Two different methods were implemented for solving the Newton equations. The

first method forms and solves the Schur complement system via a Cholesky fac-

torization. This method can exploit the sparsity of the individual data matrices

more aggressively, but it is also less stable than the second method. The sec-

ond method avoids the explicit construction of the Schur complement matrix,

by solving the augmented system via a QR decomposition. Although the aug-

mented system approach is rarely practical in general semidefinite programming

because of its high cost (despite its better numerical stability), it can be viable

for matrix cones of relatively low dimension. The two methods can be used in

any interior-point method based on primal or dual scaling, including barrier and

potential reduction methods, infeasible path-following methods, and Nesterov’s

nonsymmetric primal–dual methods [Nes06b].

The results of the experiments indicate that if the sparsity patterns are

chordal, the nonsymmetric chordal methods are often significantly faster and can

solve larger instances than the general-purpose semidefinite programming solvers.

91

For problems with a band or block-arrow sparsity, the complexity of the chordal

methods increases linearly with the matrix dimension (for fixed bandwidth or

block-width), while the complexity of the other interior-point SDP solvers in-

creases quadratically or faster. For general (nonchordal) sparsity patterns, the

performance depends on the efficiency of the chordal embedding. If no efficient

chordal embedding can be found, the chordal techniques are generally not ad-

vantageous, although in many cases, their efficiency is still comparable with the

primal–dual interior-point solvers.

92

CHAPTER 4

Applications in Nonlinear Programming

In this chapter, we investigate other applications of chordal matrix techniques

in nonlinear optimization. We consider maximum determinant positive definite

completion techniques as a means to approximate or compress large, dense, pos-

itive definite matrices. We know from §2.3.4 that this type of approximation

yields a positive definite approximation (if it exists) whose inverse is sparse, and

it can be computed efficiently when the associated sparsity pattern is chordal.

Sparse inverse approximations have been used in numerical linear algebra and

optimization as preconditioners for iterative methods. Our focus, however, is

on kernel-based methods in machine learning that involve large, dense kernel

matrices.

We start the chapter with a discussion of techniques that can be used to

approximate the inverse of a matrix by a sparse matrix. To gain insight into the

accuracy of the completion-based approximations, we will study the spectrum

of a “preconditioned matrix” RTAR where RTR is the Cholesky factorization of

a sparse approximate inverse of A. We then discuss an implementation of an

interior-point method for nonlinear SVM training that relies on a sparse inverse

approximation of a large, dense kernel matrix.

93

4.1 Sparse Approximate Inverses

A sparse inverse approximation of a positive definite matrix A is a matrix M

that is close to A−1 in some sense. The work on sparse inverse approximations

has mainly focused on preconditioners for iterative methods such as the conju-

gate gradient method. The convergence rate of the conjugate gradient method

is largely determined by the spectral properties of the coefficient matrix, and

improved efficiency and robustness can be obtained by transforming the system

of equations Ax = b into a preconditioned system of equations MAx =Mb that

has the same solution as the original problem. The matrixM , which is an inverse

preconditioner of A, should ideally satisfy the following requirements: it should

be close to A−1 in some sense, and matrix–vector productsMz as well asM itself

should be cheap to compute. Clearly, these are conflicting requirements in all but

trivial cases: if M is equal to A−1, the cost of products with M is the same as

that of solving the original system, and if Mz is easy to evaluate (e.g. if M is di-

agonal), M is typically a very poor approximation of A−1. This means that some

kind of trade-off is necessary when choosing the preconditioner M . Furthermore,

some iterative methods (e.g., the conjugate gradient algorithm) require a positive

definite preconditioner.

The sparsity pattern of the inverse of an irreducible matrix is structurally

full. This can be verified using the Cayley-Hamilton theorem, which states that

a square matrix A satisfies its own characteristic equation, i.e., pA(A) = 0 where

pA(t) = det(tI − A) is the characteristic polynomial associated with A. This

implies that [Che05, p. 192]

A−1 ∈ span{I, A,A2, . . . , An−1} (4.1)

and consequently, the sparsity pattern of A−1 is a subset of the sparsity pattern

94

of (I + A)n−1. It is therefore not obvious how a sparse approximate inverse can

yield a good approximation. However, if A−1 has many small or numerical zero

entries, a sparse inverse approximation may be justified in some cases. The above

observations suggest that the sparsity pattern associated withM has a significant

effect on the quality of M as an approximate inverse of A. For general matrices,

however, the locations of the “important” entries in A−1 are usually unknown,

and this makes it difficult to choose a suitable sparsity pattern for M .

As an example of an inverse type preconditioning technique, we highlight the

pioneering approach proposed by Benson and Frederickson [Ben73, BF82] which

seeks a matrix M that minimizes ‖I − AM‖2F subject to sparsity constraints on

M . Many variations have since been proposed, including adaptive versions that

try to automatically find a suitable sparsity pattern for M . The sparse approx-

imate inverse algorithm [GH97], or SPAI, is an example of such an algorithm.

Another variant of Benson’s method is the factorized sparse approximate inverse

[KY93], or FSAI, proposed by Kolotilina in 1993. Both the SPAI and the FSAI

algorithm work with general nonsymmetric coefficient matrices, and when A is

symmetric positive definite, an algorithm similar to FSAI can be used with the

preconditioned conjugate gradient (PCG) algorithm [BMT96]. An overview of

sparse inverse type preconditioners can be found in [CS94], and a comparative

study is presented in [BT99].

4.1.1 Optimization Approach

Benson’s idea to use ‖I−AM‖2F as the optimization objective in the search for an

approximate inverse is both elegant and simple. In its simplest form, the problem

is separable and can be solved as n independent least-squares problems, one for

95

each column in M , i.e., the objective can be decomposed as

‖I − AM‖2F =
n∑

i=1

‖ei − Ami‖22

where ei is the ith column of the identify matrix, and mi is the ith column of

M . Using the unitary invariance property of the Frobenius norm, it is easy to

see that

‖I − AM‖2F =
n∑

i=1

|1− λi|2 (4.2)

where λ1, . . . , λn are the eigenvalues of the preconditioned matrix AM . Note that

M may not be positive definite nor symmetric, even if A is symmetric positive

definite.

Like Benson and Frederickson’s method, the sparse inverse approximation

that we obtain by solving the dual (2.7) of the maximum determinant positive

definite completion problem can be interpreted as a matrix nearness problem.

Instead of minimizing the objective ‖I−AM‖F , we use the so-called Burg entropy

as a measure of the similarity of the two matrices M−1 and A. The Burg matrix

entropy is defined as

D(X;Y) = X • Y −1 − log det(XY −1)− n (4.3)

and it is a nonsymmetric measure of the difference between two symmetric pos-

itive definite matrices X and Y . (It is closely related to the Kullback-Leibler

divergence, or relative entropy, of two zero-mean multivariate normal distribu-

tions.) The Burg entropy is zero if and only if X = Y in (4.3). Rewriting

D(A;M−1) in terms of the eigenvalues λ1, . . . , λn of M1/2AM1/2 yields

D(A;M−1) =
n∑

i=1

(λi − log(λi)− 1) . (4.4)

96

If we compare (4.4) to (4.2), we see that the Burg entropy assigns a high penalty

to small eigenvalues of M1/2AM1/2, and more importantly, the preconditioner

is guaranteed to be symmetric positive definite. Furthermore, the completion

preconditioner can be computed efficiently if V is a chordal sparsity pattern.

In related work, Yamashita [Yam08] proposes a technique for sparse quasi-

Newton updates based on matrix completion.

4.1.2 Block-arrow Completion

We now study a special case of the completion approximation. If we restrict the

sparsity pattern of M to be of block-arrow type with block-width p, we obtain a

factorization M = RRT where R is of the form

R =


R11 R12

0 R22




with R11 ∈ S
p
++, R12 ∈ Rp×(m−p), and R22 is a positive diagonal matrix of

order m − p. We will now show that the effect of this type of approximation is

equivalent to implicit preconditioning of the Schur complement system. Gondzio

[Gon09] has considered this type of preconditioner for the (regularized) Schur

complement equations that arise in an interior-point method for convex quadratic

optimization.

The inverse of R has the same sparsity pattern as R, and since the completion

satisfies (M−1)ij = Aij for all (i, j) ∈ V, we have

A−R−TR−1 =


A11 AT

21

A21 A22


−


R

−T
11 0

F T R−1
22




R

−1
11 F

0 R−1
22


 =


0 0

0 E


 (4.5)

where F = −R−1
11 R12R

−1
22 and E = A22 − F TF − R−2

22 with diag(E) = 0. We

97

immediately see from (4.5) that A11 = R−T
11 R

−1
11 and F T = A21R11, and hence

A22 − F TF = A22 − A21A
−1
11 A

T
21

where S = A22 − A21A
−1
11 A

T
21 is the Schur complement of A11 in A. Since the

diagonal of E is zero, the diagonal matrix R−2
22 must be equal to the diagonal

part of the Schur complement S, or equivalently,

diag(R22) = diag(S)−1/2.

The factorization M = R−TR−1 is closely related to the following explicit block

factorization of A as

A11 AT

21

A21 A22


 =


 I 0

A21A
−1
11 I




A11 0

0 S




I A−T

11 A
T
21

0 I


 .

To see this, let A11 = L11L
T
11 be the Cholesky factorization of A11 and define

L21 = A21L
−T
11 . It is easy to verify that L11 = R−T

11 and L21 = F T , and hence


A11 AT

21

A21 A22


 =


L11 0

L21 B




I 0

0 B−1SB−1




L

T
11 LT

21

0 B


 (4.6)

for any nonsingular B ∈ R(m−p)×(m−p). The block lower triangular factor in (4.6)

is therefore equal to R−T if B = R−1
22 . This implies that the preconditioned matrix

RTAR is of the form

RTAR =


I 0

0 R22SR22


 (4.7)

and moreover, RTAR has the eigenvalue 1 with multiplicity at least p. Notice that

the (2, 2) block of the preconditioned matrix in (4.7) is the Schur complement

S, preconditioned by its own diagonal. The block-arrow completion precondi-

tioner can therefore be thought of as an implicit Jacobi preconditioner for the

corresponding Schur complement equations.

98

We remark that the block-arrow completion approximation can be computed

either by solving PV (M
−1) = PV (A) using the recursive algorithm described pre-

viously, or alternatively, M−1 can be factored directly as M = LLT , for example,

using a partial Cholesky factorization. Generally this is not the case for any

chordal sparsity pattern, but it is easy to show that in the block-arrow case, the

sparsity pattern of R is identical to that of LT .

To test the accuracy of the block-arrow completion approximation, we gen-

erate some random dense symmetric positive definite matrices with a prescribed

spectrum as follows. First we generate a random orthogonal matrix Q. This can

be done using a simple method based on the QR decomposition of an m × m

matrix whose elements are drawn independently from a standard normal distri-

bution [Ste80]. Second, we form A = Qdiag(λ)QT where λ = (λ1, . . . , λm) is a

vector with the desired eigenvalues.

In the first example, we generate a random matrix A of order 1000 whose

eigenvalues decay at an exponential rate. Fig. 4.1 shows the spectrum and the

condition number ofRTAR for sparse inverse approximations with different block-

widths p. It is easy to verify that the eigenvalue 1 has multiplicity p and that

and the condition number decreases slowly as the block-width is increased.

In our second example we introduce a gap in the spectrum after the first

50 eigenvalues, and to keep the condition number fixed, we reduce the rate at

which the eigenvalues decay. Fig. 4.2 shows the spectrum and condition num-

ber of RTAR. Notice that the condition number increases initially for small

block-widths (p = 0 corresponds to a diagonal preconditioner). However, when

the block-width is larger than approximately 55, the condition number drops

sharply. This example demonstrates that the block-width p is an important pa-

rameter. Choosing p too low may increase the condition number in some cases.

99

Not surprisingly, the value of p at which the condition number starts to drop is

closely related to the gap in the spectrum of A.

4.1.3 Band Completion

Another special case of the completion approximation is the band completion

approximation, i.e., M is banded with bandwidth 2p + 1. The band completion

preconditioner reduces to a diagonal preconditioner when p = 0, so it can be

thought of as a generalization of the diagonal preconditioner. Recall that since

M is banded, the completionM−1 is a semiseparable matrix with semiseparability

rank p, and hence the half-bandwidth parameter p can be seen as an upper bound

on the rank of the submatrices in M−1 below its pth superdiagonal. It is easy to

show that the preconditioned matrix RTAR satisfies

diag(RTAR) = 1

and the leading principal minor of order p+ 1 of RTAR is the identity matrix.

We now repeat the simple experiments with random matrices to show the

effect of the band completion preconditioner. The first experiment tests the

band completion preconditioner on a random matrix A of order 1000 and whose

eigenvalues decay at an exponential rate. The spectrum and the condition number

of the preconditioned matrix RTAR are shown in Fig. 4.3 for different values of

p. Notice that the condition number drops very slowly as p is increased, but

the preconditioner does not introduce p repeated eigenvalues like the block-arrow

preconditioner (compare with the plot in Fig. 4.1).

In the second experiment we reintroduce a gap in the spectrum of A. Fig. 4.4

shows the spectrum and the condition number of RTAR for different bandwidths.

For small bandwidths, the condition number increases steadily and it peaks near

100

0 200 400 600 800 100010−5

10−4

10−3

10−2

10−1

100

101

102

i

p
=

0

p
=

200

p
=

400

(a)

0 100 200 300 400 500 600102

103

104

105

p

κ
(R

T
A
R
)

(b)

Figure 4.1: Spectrum (a) and condition number (b) of preconditioned matrix
RTAR where RRT is a positive definite block-arrow approximation of A−1 with
block-width p. The spectrum of A is shown with a dashed line.

101

0 200 400 600 800 100010−5

10−4

10−3

10−2

10−1

100

101

102

103

i

p = 0

p = 50

p = 100

(a)

0 50 100 150 200101

102

103

104

105

106

p

κ
(R

T
A
R
)

(b)

Figure 4.2: Spectrum (a) and condition number (b) of preconditioned matrix
RTAR where RRT is a positive definite block-arrow approximation of A−1 with
block-width p. The spectrum of A is shown with a dashed line.

102

p = 45. For p greater than approximately 50, the condition number decreases

rapidly. The effectiveness of the band completion preconditioner clearly depends

on p, and p must be chosen sufficiently large in order for the preconditioner have

the desired effect.

4.2 Applications in Machine Learning

Kernel methods typically require the solution of large, dense optimization prob-

lems. Perhaps the best known example of this is the quadratic program (QP)

that arises in the dual formulation of the SVM training problem:

maximize −(1/2)zTQz + dT z

subject to 0 � diag(d)z � γ1

1T z = 0.

(4.8)

The variable in this problem is z ∈ Rm where m is the number of training

examples. The vector d ∈ {−1, 1}m contains the labels of the training examples,

1 is the m-vector with elements equal to one, and γ > 0 is a positive parameter.

The inequalities denote componentwise inequality. The matrix Q in the objective

is called the kernel matrix, and it is defined as

Qij = h(xi, xj), i, j = 1, . . . ,m,

where h is a positive semidefinite kernel function and x1, . . . , xm are the training

examples. Important kernel functions on Rn ×Rn are the linear kernel function

h(u, v) = uTv, the radial basis function (RBF) kernel h(u, v) = exp(−‖u −
v‖22/(2σ)), and the polynomial kernel h(u, v) = (uTv)δ.

The QP (4.8) is a convex optimization problem and can be solved by stan-

dard methods for convex optimization, such as interior-point methods [NW06,

ch.16]. This requires knowledge of the entire kernel matrix and, at each iteration,

103

0 200 400 600 800 100010−5

10−4

10−3

10−2

10−1

100

101

102

i

p
=

0

p
=

100

p
=

200

p
=

300

p
=

400

(a)

0 100 200 300 400 500 600102

103

104

105

p

κ
(R

T
A
R
)

(b)

Figure 4.3: Spectrum (a) and condition number (b) of preconditioned matrix
RTAR where RRT is a positive definite band approximation of A−1 with half-
bandwidth p. The spectrum of A is shown with a dashed line. The condition
number κ(RTAR) decreases slowly as the half-bandwidth p increases.

104

0 200 400 600 800 100010−5

10−4

10−3

10−2

10−1

100

101

102

i

p = 0

p = 20

p = 40 p = 50 p = 60
p = 100

p = 200

(a)

0 50 100 150 200102

103

104

105

106

p

κ
(R

T
A
R
)

(b)

Figure 4.4: Spectrum (a) and condition number (b) of preconditioned matrix
RTAR where RRT is a positive definite band approximation of A−1 with half-
bandwidth p. The spectrum A is shown with a dashed line. Notice that there is a
gap in the spectrum of A after the first 50 eigenvalues. Notice also that κ(RTAR)
is larger than κ(A) (dashed line) for small p whereas κ(RTAR) drops quite fast
when p is larger than approximately 50.

105

a factorization of the sum of Q and a positive diagonal matrix. Forming the (gen-

erally dense) kernel matrix Q requires O(m2n) time for the three standard kernel

functions mentioned above and O(m2) storage, and factorizing it costs O(m3) op-

erations. When the number of training vectors is large (say, greater than 10000),

the QP therefore becomes prohibitively expensive to solve by general-purpose QP

interior-point solvers.

Efforts to improve the efficiency of large-scale SVM algorithms have been

most successful for the linear kernel h(u, v) = uTv. If the linear kernel is used,

Q = XXT if X is the m × n-matrix with rows xTi . Therefore rank(Q) ≤ n if

m ≥ n. This property can be exploited to reduce the complexity of an interior-

point method from O(m3) to O(nm2) per iteration [FS02, FM03]. Research on

fast first-order algorithms, such as projected gradient or cutting-plane algorithms,

has also focused largely on the linear kernel [HCL08, FCH08, Joa06, JY09] by

taking advantage of the fact that the gradient of the objective −Qz + d can be

evaluated in O(mn) operations if Q has rank n.

If a nonlinear kernel is used, the matrix Q is generally dense and possibly

full rank1, and this complicates the implementation of quadratic programming

algorithms. When m is large, it therefore makes sense to approximate Q by a

simpler matrix which is easy to compute, requires less storage, and makes the QP

easier to solve. Examples are low-rank [FS02] or diagonal-plus-low-rank [FM03]

approximations. If the rank is much lower than m, the cost per iteration of an

interior-point method can be reduced to O(mn2) by using the Sherman-Morrison-

Woodbury formula or the product-form Cholesky factorization algorithm. Low-

rank or diagonal-plus-low-rank approximations also simplify the implementation

of first-order methods because matrix–vector products are simplified. Finding a

1Some kernel functions (such as the RBF kernel) yield a positive definite kernel matrix in
theory. In practice, however, it can happen that the kernel matrix is numerically rank deficient.

106

suitable low-rank approximation, however, is a nontrivial task when m is large,

since optimal approximations based on an eigenvalue decomposition are very

expensive. Fine and Scheinberg [FS02] discuss a partial Cholesky factorization

algorithm with pivoting for computing a low-rank approximation of a kernel

matrix. In related work, Smola and Schölkopf [SS00] discuss greedy algorithms

for low-rank approximations of the kernel matrix. Low-rank approximation also

plays a role in the reduced SVM [LM01, LH06] formulation.

In this chapter we explore an idea similar to that of low-rank kernel matrix

approximation. Instead of making a low-rank approximation, we approximate the

kernel matrix by a matrix with a sparse inverse. The approximation is obtained

by computing the maximum determinant positive definite completion of a partial

kernel matrix. The approximated kernel matrix is dense and full rank but has

the property that its inverse is sparse. This makes the QP very easy to solve.

An added advantage is that only a subset of the entries of the kernel matrix

are needed to compute the approximation. Recall that the Cholesky factor of

the inverse of the completion can be computed very efficiently if the positions

of the specified entries in the partial kernel matrix, which are also the nonzero

positions in its inverse, form a chordal pattern, for example, a band pattern. Our

goal is to evaluate the performance of an SVM training algorithm based on this

sparse inverse kernel approximation. We focus on interior-point methods, but

the approximation should be useful in first-order methods as well. It can also be

combined with chunking, decomposition, and active set methods that are based

on solving a sequence of lower-dimensional subproblems [OFG97, Pla99, Joa99,

CL01].

107

4.2.1 Approximate Support Vector Machine Training

The matrix completion theory from §2.3.4 can be applied to compute an optimal

(i.e., having minimum relative entropy) approximation of a partial kernel matrix.

The approximation is a positive definite matrix with a sparse inverse. In this

section, we examine the computational advantages of a sparse inverse kernel

approximations when solving the SVM training problem (4.8).

Suppose Q̄ is the maximum determinant extension of a partial kernel matrix

Qij = h(xi, xj), (i, j) ∈ V , where V is a chordal pattern. (In our experiments

we will select V randomly, by choosing a band pattern after applying a random

permutation of the training vectors.) We will substitute Q̄ for Q in the training

problem (4.8) and consider

maximize −(1/2)zT Q̄z + dT z

subject to 0 � diag(d)z � γ1

1T z = 0.

(4.9)

In this section we first describe in detail how one can take advantage of the

sparsity of Q̄−1 in an interior-point method for the QP (4.9) (see §4.2.1.1 and

§4.2.1.2). We then discuss two possible ways of using the solution of (4.9). First,

we can interpret the optimal z as the exact dual solution of an SVM training

problem for an unknown kernel function h̄ with values h̄(xi, xj) = Q̄ij on the

training set. We will discuss two choices for h̄ in §4.2.1.3 and compare the per-

formance of the resulting classifiers in §4.2.2. Second, we can view the optimal z

as an approximation of the solution of the QP (4.8) associated with the original

kernel h and use the values of z to select a subset of training vectors for which

we then solve a smaller dense QP exactly. This idea is investigated in §4.2.2.

108

4.2.1.1 Quadratic Programming Duality

We first review the quadratic programming duality theory for the SVM training

problem (4.8). The dual of the problem can be expressed as

minimize (1/2)yTQ†y + γ1Tv

subject to y ∈ range(Q)

diag(d)(y + b1) + v � 1

v � 0,

(4.10)

with variables y ∈ Rm, b ∈ R, and v ∈ Rm. Here Q† denotes the pseudo-inverse

of Q (for now we do not make any assumptions on the invertibility of Q). The

vector b is the multiplier associated with the equality constraint in (4.8); the

vector v is the multiplier for the inequality diag(d)z � γ1. The multiplier for

the constraint diag(d)z � 0 has been eliminated from (4.10) and is equal to

diag(d)(y + b1) + v − 1. If we make a substitution y = Qu we can simplify the

dual problem as

minimize (1/2)uTQu+ γ1Tv

subject to diag(d)(Qu+ b1) + v � 1

v � 0

(4.11)

with variables u, b. It can be shown that if z is optimal in (4.8), then y = Qz is

optimal in (4.10) and hence u = z is optimal in (4.11).

We can eliminate v and write the dual QP (4.11) as an unconstrained nondif-

ferentiable problem

minimize
1

2
uTQu+ γ

m∑

i=1

max{0, 1− di(
m∑

j=1

Qijuj + b)}. (4.12)

Since Qij = h(xi, xj) the second term is

m∑

i=1

max{0, 1− di(
m∑

j=1

h(xi, xj)uj + b)},

109

i.e., the familiar hinge-loss penalty for the classifier

g(x) = sign(
m∑

j=1

h(x, xj)uj + b) (4.13)

evaluated on the training set defined by xi, di, i = 1, . . . ,m. If the linear kernel

is used (h(xi, xj) = xTi xj and Q = XTX, where X is the matrix with rows xTi),

then (4.12) can be written as

minimize
1

2
wTw + γ

m∑

i=1

max
{
0, 1− di(w

Txi + b)
}

with w = XTu. The classifier (4.13) reduces to g(x) = sign(wTx+ b).

4.2.1.2 Interior-point Method

We now discuss the implementation of interior-point algorithms for solving the

QP (4.9) and its dual, when Q̄ is large and dense, but also invertible with a sparse

inverse. For invertible Q̄ the dual reduces to

minimize (1/2)yT Q̄−1y + γ1Tv

subject to diag(d)(y + b1) + v � 1

v � 0.

(4.14)

The main step in an iteration of an interior-point method applied to (4.9) and (4.14)

is the solution of a linear equation of the form



Q̄−1 0 0 −diag(d) 0

0 0 0 −dT 0

0 0 0 −I −I
−diag(d) −d −I −D1 0

0 0 −I 0 −D2







∆y

∆b

∆v

∆z

∆w




=




r1

r2

r3

r4

r5




, (4.15)

where D1, D2 are positive diagonal matrices that change at each iteration. We

will refer to (4.15) as the Newton system because it can be interpreted as the

linearization of the nonlinear equations that define the primal–dual central path.

110

Interior-point methods are known to reach a high accuracy after a small num-

ber of iterations (in the range 10–30), almost independent of problem size, so to

get an idea of the overall complexity, it is fair to focus on the cost of solving one

Newton system (4.15). (Some common interior-point algorithms solve multiple

Newton systems (usually two or three) per iteration, with different right-hand

sides but with the same values for D1 and D2. The cost of solving the multiple

systems is therefore essentially the same as the cost of solving one Newton system

[Wri97a, NW06].) We now describe an efficient algorithm for solving (4.15) by

taking advantage of the sparsity of Q̄−1.

We start by eliminating ∆v, ∆z, ∆w. Let D̂ = (D1+D2)
−1 which is diagonal

and positive. From the bottom three block rows in (4.15) and the identity




0 I I

I D1 0

I 0 D2




−1

=




−D1D2 D2 D1

D2 I −I
D1 −I I







D̂ 0 0

0 D̂ 0

0 0 D̂




we can express ∆v, ∆z, ∆w, as a function of ∆y, ∆b:




∆v

∆z

∆w


 =−




0 I I

I D1 0

I 0 D2




−1 





0 0

diag(d) d

0 0





 ∆y

∆b


+




r3

r4

r5







=−




D2

I

−I


diag(d)D̂

[
I 1

]

 ∆y

∆b




−




−D1D2 D2 D1

D2 I −I
D1 −I I







D̂r3

D̂r4

D̂r5


 . (4.16)

111

Substituting this in (4.15) gives a smaller equation in ∆y, ∆b:


 Q̄−1 + D̂ D̂1

1T D̂ 1T D̂1




 ∆y

∆b


 =


 r̂1

r̂2


 (4.17)

where 
 r̂1

r̂2


 =


 r1

r2


−


 diag(d)

dT


 D̂(D2r3 + r4 − r5).

The coefficient matrix in (4.17) is positive definite since D̂−(1T D̂1)−1D̂11T D̂ � 0

for positive diagonal D̂. To solve (4.17), we can solve two equations

(Q̄−1 + D̂)y(1) = r̂1, (Q̄−1 + D̂)y(2) = −D̂1, (4.18)

and make a linear combination ∆y = y(1)+∆b y(2), with ∆b chosen to satisfy the

last equation in (4.17), i.e.,

∆b =
r̂2 − 1T D̂y(1)

1T D̂(y(2) + 1)
. (4.19)

In summary, we can solve (4.15) by first solving the two equations (4.18), then

computing ∆b and ∆y = y(1) + ∆b y(2), and then ∆v, ∆z, ∆w from (4.16). If

Q̄−1 is sparse then the matrix Q̄−1 + D̂ is sparse, with the same sparsity pattern

as Q̄−1. In particular, as we saw in Section 2.4, if the sparsity pattern of Q̄−1 is

chordal, then we can factor Q̄−1 + D̂ with a zero-fill Cholesky factorization. For

a band pattern with constant bandwidth, for example, the cost of solving (4.15),

and hence the cost of the interior-point algorithm itself, is linear in m.

4.2.1.3 Completion Kernel Classifier

Every positive definite matrix can be interpreted as a kernel matrix for some

positive definite kernel function [SS02, p. 44]. Replacing the kernel matrix Q

with a positive definite completion Q̄ of a subset of the entries of Q can therefore

112

be thought of as applying a modified positive definite kernel function h̄. The

value of the modified kernel function h̄ is known and equal to Q̄ij at pairs of

training points (xi, xj), i, j = 1, . . . ,m, but it is not uniquely defined for other

points. To evaluate the decision function

ḡ(x) = sign(
m∑

i=1

h̄(x, xi)zi + b), (4.20)

at a test point x, we therefore need to assign a value h̄(x, xi).

A first choice is simply to use h̄(x, xi) = h(x, xi). While our results below

indicate that this works well in some cases (e.g., if the bandwidth is chosen

sufficiently large), there is no guarantee that h̄ is a positive definite kernel, as it

can happen that the bordered kernel matrix

Q̄′ =


 Q̄ q̄

q̄T h(x, x)


 (4.21)

is not positive definite if we take q̄i = h(x, xi). We will refer to the classifier (4.20)

with h̄(x, xi) = h(x, xi) as the standard kernel classifier. Note that this classifier

is defined in terms of the solution to the approximation problem (4.9), not the

solution to the original problem (4.8).

A second choice is to take the chordal pattern V used to define the comple-

tion Q̄ and extend it to a chordal pattern V ′ for the bordered kernel matrix Q̄′

in (4.21). We define Q̄′
ij for (i, j) ∈ V ′ as

Q̄ij = h(xi, xj) ∀(i, j) ∈ V, q̄i = h(xi, x) ∀(i,m+ 1) ∈ V ′,

and use the maximum determinant completion of these entries to define q̄i =

h̄(xi, x) at the other values of i. Specifically, suppose V is a band pattern of

bandwidth 2w + 1 and let V ′ be a band pattern of the same bandwidth. The

w + 1 nonzero entries ρ and ri, i > m − w, in the last column of the Cholesky

113

factorization of


 Q̄ q̄

q̄T h(x, x)



−1

=


 R r

0 ρ




 RT 0

rT ρ




can be obtained from R using the algorithm described in Section 2.4. This re-

quires w + 1 kernel evaluations and O(w2) operations. The factorization Q̄′ =

(R′)−T (R′)−1 provides a method for evaluating h̄(xi, x), i.e.,

h̄(xi, x) = eTi Q̄
′em+1 = ui (4.22)

where u is obtained by solving R′(R′)Tu = em+1. The cost of computing u is

O(wm). If w ≪ m, the cost of evaluating the decision function (4.20) is therefore

O(wm). We will refer to this classifier as the completion kernel classifier.

4.2.2 Numerical Experiments

To evaluate the performance and accuracy of SVMs obtained with the completion-

based kernel matrix approximations, we have conducted a series of experiments

based on the mnist database of handwritten digits [LC98]. The training set con-

sists of 60000 patterns while the test set consists of 10000 patterns. We scale the

data by 1/256; no other preprocessing is used. All experiments were conducted

on a desktop computer with an Intel Core2 Quad Q6600 CPU (2.4 GHz), 4 GB

RAM, and running Ubuntu 9.10 (64 bit). The algorithm was implemented in

Python as a custom KKT-solver for the QP solver in cvxopt 1.1.2 [DV08], and

we used chompack 1.1 [DV09a] for chordal matrix computations. The software

package libsvm 2.9 [CL01] was used for comparison.

We use the RBF kernel function h(xi, xj) = exp(−‖xi − xj‖2/(2σ)). The

kernel matrix completions Q̄ are computed for band patterns V with bandwidth

2w + 1, after applying a random permutation of the training examples.

114

4.2.2.1 Cross-validation Accuracy

In the first experiment we compare the cross-validation accuracy for the two

classifiers defined in §4.2.1.3. We use a training set consisting of 10000 randomly

chosen examples from the mnist database (1000 examples of digit 0 and 9000

examples of digits 1–9), and for each pair of parameters (γ = 2p, σ = 2q), where

p and q are integers, we compute the 10-fold cross-validation accuracy. The half-

bandwidth is w = 100. The results are shown in Fig. 4.5. We see that the two

classifiers have similar cross-validation accuracies when the best combination of

parameters is chosen. The completion kernel classifier appears to be less sensitive

to parameter changes.

The optimal values of the parameters obviously depend on the bandwidth

used in the approximation problem as well as the number of training vectors. In

the next experiment we fix the parameters γ and σ and examine the test error

rate as a function of bandwidth w.

4.2.2.2 Bandwidth versus Test Error Rate

We consider a single binary classification problem (digit 0 versus digits 1–9) and

again we use as training set a subset of 10000 training vectors from the mnist

training set (1000 randomly chosen examples of digit 0 and 9000 randomly chosen

examples digits 1–9). In addition to the standard kernel classifier and the comple-

tion kernel classifier, we also compute a third classifier by training an SVM with

the exact RBF kernel function h(xi, xj) on the set of support vectors obtained

from the approximation problem. We use γ = 4 and σ = 32. Since the elements

in the completed kernel matrix depend on the permutation of the training set, we

repeated the experiment 10 times with different pseudo-randomly generated per-

mutations. The average of these results is shown in Table 4.1. As the bandwidth

115

0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

8

log2(σ)

lo
g
2
(γ
)

98.9 %

60 %
60

%

7
0
%

80
%

90
%

90
%

90 %

9
5
%

95
%

95 %
97 %

97 %

(a) Standard kernel classifier.

0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

8

log2(σ)

lo
g
2
(γ
)

98.0 %

90 %

95 %

97
%

(b) Completion kernel classifier.

Figure 4.5: 10-fold cross-validation accuracy using the RBF kernel. The dots
mark the best parameter pairs. The completion kernel classifier performs well
on a large set of parameters, and it appears to be less sensitive to the choice of
parameters than the standard kernel classifier.

116

Approx. problem (m = 10000) SV subset
w time SC error (%) CC error (%) m time #SVs error (%)
10 2 6.22 8.77 7786 567 654 0.30
20 4 7.95 7.39 5985 244 654 0.30
30 5 10.06 6.55 5100 146 649 0.31
40 5 12.10 5.52 4563 104 645 0.31
50 6 13.53 4.65 4152 79 644 0.32
75 10 15.79 3.84 3456 45 642 0.32
100 15 16.57 3.10 2988 28 640 0.32
150 26 16.18 2.28 2407 15 631 0.32
200 41 14.29 1.89 2057 10 630 0.31
250 59 12.12 1.54 1805 7 627 0.32
300 81 9.86 1.34 1623 5 626 0.31
400 138 6.25 1.01 1382 3 622 0.31
500 218 3.85 0.90 1240 2 616 0.31
750 643 1.39 0.67 1024 1 608 0.32
1000 1193 0.76 0.57 925 1 615 0.31

Table 4.1: Average training time (in seconds) and test error rates for the approxi-
mation problem and the dense subproblem, parameterized by the half bandwidth
w and with parameters γ = 4 and σ = 32. SC refers to the standard kernel
classifier and CC refers to the completion kernel classifier. For the dense sub-
problem, m is the number of support vectors obtained from the approximation
problem. We remark that solving the full QP (m = 10000) took 1194 seconds
and produced 659 support vectors and a test error of 0.30 %.

117

increases and the approximation gets better, the CPU time increases rapidly (as

w2), as expected. In this example, the completion classifier performs better than

the approximation classifier except when the smallest bandwidth (w = 10) is

used. Notice also that the third classifier (obtained by solving a subproblem

with the support vectors from the approximation problem) consistently performs

well, and the problem size (and hence also the training time) decreases quite fast

with increasing bandwidths. The total training time therefore involves a trade-off

between the complexity of the approximation problem and the dense subprob-

lem. In this example the fastest total training time (41 seconds) is obtained for

w = 150.

In column 2 we notice that the solution time for the approximation problem

with w = 1000 is roughly the same as the time for the full dense QP with

m = 10000. We believe that this is due to overhead in the current implementation

of chompack (in which it is assumed that w ≪ m). In an ideal implementation,

the cost for the banded case should approach the cost for the dense case only

when w ≈ m.

Extrapolating the values in columns 4 and 5, we also note that the error rate

in the completion classifier and the support vectors stop decreasing substantially

after a certain value of w < m.

4.2.2.3 Multistage Method

In the previous experiment we were able to obtain a low error rate by solving

a smaller, dense SVM QP with a reduced training set consisting of the support

vectors from the approximation problem. This suggests using the approximated

QP as a heuristic for working set selection. In our next experiment, we solve a

sequence of approximation problems with increasing bandwidth and decreasing

118

training set size. We consider ten binary classification problems (each digit versus

the nine other digits). For each instance, we first solve the approximation QP

(4.9) using the full mnist data set as training data and with half-bandwidth w1.

We refer to this as stage 1. At a subsequent stage i we solve (4.9) with half-

bandwidth wi and use as training data the support vectors from stage i − 1. If

the number of support vectors from stage j is below m̄ = 6000, we proceed to a

final stage and solve the SVM QP with the exact kernel matrix Q. At most five

stages are used before the final stage, regardless of the number of support vectors

in stage 5. If the number of support vectors at stage 5 exceeds the threshold m̄,

we keep only the m̄ training vectors with the largest values of zi in the solution

of the stage 5 problem. We choose w1 = 100 and set wi ≈
√
2wi−1 at subsequent

stages.

Table 4.2 lists the number of support vectors and the time required to solve

the QP in each stage. Table 4.3 shows the total CPU time for all stages and the

error rate for the resulting classifier. We can note that, on average, the total CPU

time for the multiple stages is less than half the CPU time for libsvm. Except

for digit 9, the test error rate obtained in the final stage is comparable to that

of libsvm. Furthermore, the final stage produces slightly fewer support vectors

than libsvm. Whether the smaller number of support vectors is due to the

suboptimality of the approximation problem or is simply related to thresholding

is not clear. On average, about nine interior-point iterations were required at

each stage, and it is possible that this number can be reduced by using a warm-

start technique. Finally, we notice that the number of support vectors for each

of the ten classifiers varies by more than a factor of three.

119

Digit Stage 1 Stage 2 Stage 3
(w = 100) (w = 141) (w = 200)

time #SVs time #SVs time #SVs
0 94 15558 35 6290 22 3757
1 94 8410 19 2688 - -
2 100 21417 48 11976 44 8175
3 100 19525 47 10932 41 8097
4 95 19395 44 10553 39 7179
5 100 24613 56 14841 55 10311
6 100 17550 39 7564 27 4662
7 99 16752 40 7354 26 5126
8 95 23122 52 13367 50 9861
9 100 19293 44 11802 44 8931

Digit Stage 4 Stage 5 Final stage
(w = 282) (w = 400) (dense)

time #SVs time #SVs time #SVs
0 - - - - 50 1584
1 - - - - 21 1161
2 47 6392 66 5102 120 2869
3 47 6636 69 5477 150 3149
4 41 5636 - - 175 2713
5 61 8059 86 6421 192 3192
6 - - - - 92 2002
7 - - - - 122 2511
8 58 8110 86 6789 192 3633
9 52 7585 80 6481 193 3722

Table 4.2: CPU time (seconds) and number of support vectors at each stage. The
parameters γ = 0.667 and σ = 32 were used at all stages. The full training set
(m = 60000) is used at stage 1, and at the following stages, the support vectors
from the previous stage are used as training set. We skip to the final stage,
where we solve a dense subproblem, when the number of support vectors is 6000
or fewer. If there are more than 6000 support vectors at stage 5, we truncate
the set based on the magnitude of the variables zi. On average 9.2 interior-point
iterations were needed to solve a subproblem.

120

Digit Multistage approximation libsvm

#SVs time error (%) #SVs time error (%)
0 1584 203 0.21 1650 560 0.23
1 1161 135 0.24 1254 266 0.20
2 2869 430 0.52 3051 936 0.54
3 3149 456 0.65 3492 1100 0.51
4 2713 395 0.40 2869 804 0.49
5 3192 553 0.38 3412 1066 0.51
6 2002 260 0.32 2015 472 0.33
7 2511 289 0.71 2540 672 0.76
8 3633 536 0.72 4072 1205 0.67
9 3722 515 3.53 4138 1072 0.89

Table 4.3: Number of support vectors, total CPU time (in seconds), and test
error rate for the multistage method as well as libsvm. We used the parameters
γ = 0.667 and σ = 32 for all classifiers. The multistage method yields fewer
support vectors in all cases. For the digits 0–8, the test error rates obtained
with the approximation method are similar to those obtained with libsvm. The
last classifier (9 versus the rest), however, has an error rate of nearly four times
that of libsvm. The approximation algorithm required a total of 3777 seconds
whereas the total for libsvm was 8156 seconds.

121

m Stage 1 (w = 100) Stage 2 (w = 200) Stage 3 (dense)
#SVs error (%) #SVs error (%) #SVs error (%)

2000 613 2.89 294 0.88 244 0.55
4000 1221 8.74 525 0.75 380 0.32
8000 2289 4.66 916 0.62 508 0.31
16000 4686 2.34 1687 0.84 712 0.28
32000 8628 1.97 2950 0.71 1075 0.24
50000 13023 4.76 4188 0.81 1398 0.21

m libsvm

#SVs error (%)
2000 277 0.56
4000 405 0.33
8000 543 0.33
16000 764 0.28
32000 1114 0.25
50000 1435 0.23

Table 4.4: Test error rates and number of support vectors at the three stages
and for libsvm. Here m is the number of training vectors used at stage 1 and
with libsvm, and the error rates reported at stage 1 and 2 were obtained using
the completion kernel classifier. The parameters γ = 40000/m and σ = 32 were
used.

4.2.2.4 Number of Training Vectors versus Test Error Rate

In the last example, we consider the test error rate as a function of the number of

training vectors m. As in the previous experiment, we use a multi-stage approach

where the last stage is a dense QP, but in this experiment we do not use a

threshold before the final dense SVM QP. We train a single classifier with 0 as

class 1 and 1–9 as class 2. The training set consists of m+ randomly chosen

examples from class 1 and m− = 9m+ randomly chosen examples from class 2.

The test set is the full mnist test set. Table 4.4 shows the test error rate at

each stage as well as the test error rate obtained with libsvm. As can be

seen, the number of support vectors at stage 1 grows roughly linearly with the

number of training vectors. As a result, the overall CPU time grows faster than

122

Stage 1 Stage 2 Stage 3 Stage 1+2+3 libsvm

m time m time m time time time
2000 3 613 1 294 0.09 5 2
4000 6 1221 4 525 0.3 11 6
8000 13 2289 8 916 1 23 15
16000 26 4686 18 1687 5 50 41
32000 57 8628 32 2950 25 115 128
50000 85 13023 52 4188 74 212 424

Table 4.5: CPU time (in seconds) for the three stages and for libsvm. The
parameters γ = 40000/m and σ = 32 were used. The time at stages 1 and 2
grows linearly with m whereas at stage 3, which involves a dense QP, the time
grows faster than linear.

linearly (more or less quadratically) with the training set size. This growth rate

is comparable with libsvm.

4.2.3 Other Applications

Sparse inverse approximations of dense positive definite matrices are useful for

a variety of optimization problems. In this section, we mention two interesting

further examples from machine learning.

4.2.3.1 Gaussian Process Classification

We first consider Gaussian process (GP) classification [RW06, Section 3.3]. In

two-class GP classification, it is assumed that the probability of observing a

binary outcome ±1 at a point x ∈ Rn depends on the value of a latent variable

f(x) via the formulas

prob (outcome at x is 1 | f(x)) = κ(f(x))

123

and

prob (outcome at x is −1 | f(x)) = 1− κ(f(x))

= κ(−f(x)),

where κ : R → R is a symmetric function (i.e., satisfying κ(−u) = 1 − κ(u))

with values in [0, 1]. The latent variable f(x) is assumed to be random with

a zero-mean Gaussian process with covariance function h(x, y) = E f(x)f(y)

as prior distribution. Common choices for κ are the logistic function κ(u) =

1/(1 + exp(−u)) and the probit function (the cumulative density of a zero-mean

unit-variance Gaussian). We note that these two functions κ(u) are log-concave.

Suppose we have a training set of observed outcomes di ∈ {−1, 1} at m

training points xi. To simplify the notation we denote by F = (f(x1), . . . , f(xm))

the random vector of latent variables at the training points. The first step in

deriving the GP classifier is a maximum a posteriori (MAP) estimation of F ,

given the observed outcomes d = (d1, . . . , dm). The MAP estimate of F is the

solution of the optimization problem

maximize L(u) =
m∑

i=1

log κ(diui)−
1

2
uTQ−1u− 1

2
log detQ (4.23)

with variable u ∈ Rm. The matrix Q has elements Qij = h(xi, xj) and is the

covariance of the prior distribution N (0, Q) of F . The function L(u) is, up to

a constant, the logarithm of the posterior density pF |d(u) of the latent variables

F , given the observed outcomes di, i = 1, . . . ,m. The MAP estimate of the

latent variables at the training points is the solution of (4.23). Problem (4.23)

is a convex optimization problems if the function κ is log-concave. We refer the

reader to [RW06, §3.4.2] for the details on how the MAP estimate is applied for

classifying test points.

124

The key step in GP classification is the solution of the unconstrained opti-

mization problem (4.23). If the function κ is log-concave, this problem is convex

and can be solved by Newton’s method. Each step requires the solution of an

equation ∇2L(u)∆u = ∇L(u), or
(
Q−1 +D

)
∆u = −∇L(u) (4.24)

where D is diagonal with diagonal elements

Dii =
κ′(diui)

2 − κ′′(diui)κ(diui)

κ(diui)2
.

For most common kernel functions the covariance Q and its inverse Q−1 are

dense, so the Newton equation may be expensive to solve when n is large. The

complexity can be improved by making low-rank or low-rank-plus-diagonal ap-

proximations, as described in Section 4.2 (see also [RW06, §3.4.3]). Clearly, the

Newton equation (4.24) becomes much easier to solve if we can replace Q−1 by a

sparse approximation Q̄−1, obtained via a maximum determinant positive definite

completion Q̄ of Qij = h(xi, xj), (i, j) ∈ V . This is equivalent to replacing the

Gaussian prior N (0, Q) in (4.23) with the maximum entropy distribution that

matches the moments E f(xi)f(xj) = h(xi, xj), (i, j) ∈ V .

4.2.3.2 Kernel PCA

In the two applications discussed so far, we have used sparse (zero-fill) Cholesky

factorizations of the inverse completion kernel to reduce the linear algebra cost of

interior-point algorithms and Newton’s method. Another benefit of the sparse in-

verse is that it simplifies matrix–vector products. As an example, we discuss how

the matrix completion techniques can be exploited in kernel principal component

analysis (PCA).

The main computational effort in kernel PCA lies in computing an eigenvalue

125

decomposition of the centered kernel matrix [SSM98]

Qc = (I − (1/m)11T)Q(I − (1/m)11T)

= Q− (1/m)11TQ− (1/m)Q11T + (1/m2)11TQ11T (4.25)

where Qij = h(xi, xj). Clearly, computing the entire eigenvalue decomposition is

not feasible when the number of observations m is large, so in practice some ap-

proximation is often used, for example, sparse greedy methods [SS00]. If matrix–

vector products with Qc are cheap, the dominant eigenvalues and eigenvectors

can also be computed iteratively, using the Lanczos method [GV96].

Suppose we replace the dense kernel matrix Q with the maximum determinant

positive definite completion Q̄ of a partially specified kernel matrix. The matrix–

vector product Q̄cv can then be evaluated efficiently given the sparse factorization

Q̄−1 = RRT , i.e., using (4.25),

Q̄cv = R−T (R−1v − z1Tv)− 1zTR−1v + zT z11Tv (4.26)

where z is the solution of Rz = 1. The cost of evaluating (4.26) is linear in m

for band patterns with fixed bandwidth. Hence the dominant eigenvalues of Q̄c

and the corresponding eigenvectors can then be computed efficiently using the

Lanczos method.

4.3 Summary

In this chapter we have investigated the use of maximum determinant positive

definite matrix completion as a means to compute a sparse approximation of a

symmetric positive definite matrix. The theory, as well as our preliminary exper-

iments, indicate that the accuracy of the approximation is determined largely by

the choice of sparsity pattern. While the experiments were limited to band and

126

block-arrow structured approximations, we intend to investigate the use of more

general chordal sparsity patterns in the future. Future work may also include a

study of the use of drop strategies to further improve the speed of the iterations.

Interior-point methods for support vector machine training provide robust

and accurate solutions, but their scope is known to be limited by the high de-

mands of computation time and storage, as a consequence of the density of the

kernel matrix. Scaling interior-point methods to training set sizes above, say,

10000 therefore requires approximations of the dense kernel matrix. Examples

of such approximations that have been studied in the literature include low-

rank, diagonal-plus-low-rank, and sparse approximations. By approximating the

positive definite kernel matrix by the maximum determinant positive definite

completion of a partially specified kernel matrix with chordal sparsity, we obtain

an approximate QP where the inverse of the kernel matrix is sparse. Exploiting

the sparsity of the inverse in an interior-point method leads to a dramatic im-

provement in solution time and memory requirements. As a consequence, very

large problems can be solved approximately on a standard desktop PC using

an interior-point method. Numerical results with band sparsity indicate that

the method can be faster than libsvm while the test error rates are compara-

ble. However, more experimentation is needed to evaluate the robustness of the

method across different kernel functions and data sets. The positive definite ma-

trix completion techniques should also be of interest in other applications that

involve large dense convex optimization problems. As two examples in machine

learning, we have mentioned Gaussian process classification and kernel PCA.

127

CHAPTER 5

Conclusions

We have discussed interior-point methods for linear cone programs involving two

types of sparse matrix cones: cones of positive semidefinite matrices with a given

chordal sparsity pattern, and their associated dual cones, which consist of the

chordal sparse matrices that have a positive semidefinite completion. These

cones include as special cases the familiar cones in linear, second-order cone,

and semidefinite programming, i.e., the nonnegative orthant (equivalent to a ma-

trix cone with diagonal sparsity pattern), the second-order cone (equivalent to

a matrix cone with arrow pattern), and the positive semidefinite cone. They

also include a variety of useful nonsymmetric cones, for example, cones of sparse

matrices with band or block-arrow patterns, as well as chordal embeddings of

general (nonchordal) sparse matrix cones.

Sparse matrix cone programs can be solved as SDPs, i.e., by embedding the

cones into dense positive semidefinite cones. Sparsity in the coefficient matrices

is exploited, to the extent possible, when solving the Newton equations. The ad-

vantage of this approach is that symmetric primal–dual methods can be applied.

An alternative approach is to solve the sparse matrix cone programs directly

via a nonsymmetric (primal or dual) interior-point method. The advantage of

this approach is that we work with cones in a lower-dimensional space, and it

is possible to take advantage of efficient algorithms for computing the values,

and first and second derivatives of the logarithmic barriers for the chordal sparse

128

matrix cones. However, a theoretical comparison of the complexity is difficult

because the techniques for exploiting sparsity in SDP solvers are quite involved

and their efficiency depends greatly on the sparsity pattern. In this disserta-

tion, we have developed, implemented, and tested nonsymmetric interior-point

methods for conic optimization with chordal sparse matrix cone constraints. Our

results show that implementations based on the chordal sparse matrix cone ap-

proach are competitive or better than general purpose SDP solvers for many

sparse problems. For problems with band or block-arrow structure, the cost per

interior-point iteration grows only linearly in the order of the matrix variable,

instead of quadratically or worse.

Symmetric primal–dual interior-point methods for LP are known to be numer-

ically more stable than purely primal or dual algorithms [Wri95, Wri97b], and the

same benefit is believed to hold for interior-point methods for second-order cone

programming and semidefinite programming as well. Despite forcing us to give

up primal–dual symmetry, however, the sparse matrix cone formulation allows

us to work in a lower-dimensional subspace, and this often makes the augmented

system approach (method 2) a feasible alternative to methods that form and solve

the Schur complement equations. It is well-known that the augmented system

approach is the preferred method from a numerical point-of-view, but in practice,

it is rarely used in general-purpose semidefinite programming solvers because of

the large size of the Newton system. We believe that using the augmented system

approach, at least to some extent, makes up for the loss of primal–dual symmetry.

Another conclusion of the experiments is that the chordal techniques can

serve as a complement to, but not a replacement of, the various techniques used

in existing SDP solvers. In our implementation of method 1, for example, we

found it useful to exploit sparsity in the data matrices using a technique (T2)

129

that does not rely on chordality and is related to techniques common in sparse

semidefinite programming. As another example, the good results for dsdp show

the importance of exploiting low-rank structure in many applications. It may

therefore be advantageous to implement and choose between or combine several

techniques in a more sophisticated code.

We can mention a few possible directions for continuing this research. As

we have already pointed out, the efficiency and robustness of the solver can be

improved in many respects, for example, by a better selection of starting point,

the use of a self-dual embedding for initialization, or by using more sophisticated

predictor steps. Furthermore, we have seen that the aggregate sparsity pattern

V plays an important role in the sparse matrix cone formulation. As a result,

a single dense coefficient matrix will destroy the aggregate sparsity and force us

to work with dense matrix cones. However, even if only a few of the coefficient

matrices are dense, it may still be possible to exploit chordal structure if the

dense coefficient matrices are low-rank. The dual slack variable S is then the

sum of a sparse term and a low-rank term, and it can be factored efficiently with

a product-form Cholesky factorization if the sparse part of S is positive definite.

Unfortunately, the sparse part of S may be indefinite, and this makes it more

challenging to exploit structure when some of the coefficient matrices are dense.

As another possible continuation of the research on sparse matrix cone pro-

grams, we mention first-order interior-point methods in combination with de-

composition methods. This combination may also provide a way to handle a

few dense low-rank coefficient matrices. Related work on first-order methods for

large-scale semidefinite programming includes [LNM07, WGY10].

We have also explored other applications of chordal matrix techniques in non-

linear optimization. We discussed a technique for computing sparse inverse ap-

130

proximations based on maximum determinant positive definite completion theory.

This technique can be used to approximate large, dense kernel matrices that arise

in applications in machine learning. The kernel matrix approximation depends

on the sparsity pattern of a partial positive kernel matrix, and it is cheaper

to compute and requires less storage than the full kernel matrix. Furthermore,

the completion-based approximation technique provides an alternative to existing

approximation methods that are typically based on randomized low-rank approx-

imation. We have implemented and tested the technique in combination with an

interior-point method. Our results show that the sparse inverse approximation

makes it possible to solve very large SVM training problems using interior-point

methods, and the method can perform well in terms of test error rate and speed

of training.

A useful extension of the completion-based sparse inverse approximation tech-

nique would be a method for automatically selecting the sparsity pattern of the

approximate inverse. Such a method would potentially improve the approxima-

tion accuracy.

The techniques for chordal sparse matrices should also be useful for improving

the efficiency of numerical methods for large-scale convex optimization problems

involving Euclidean distance matrix (EDM) cone constraints. A nonnegative

symmetric matrix X ∈ Sn with zero diagonal is called an EDM if there exist

vectors p1, . . . , pn, such that Xij = ‖pi − pj‖22. EDMs have applications in

multidimensional scaling in statistics [CC01], machine learning [WS06, XSB06],

and node localization in sensor networks [WZB07, CY07, KW10]. The cone

of EDMs is a convex cone, and it can be represented in terms of the positive

semidefinite cone. Hence many problems involving EDM cone constraints can

be solved via semidefinite programming. Furthermore, a result by Bakonyi and

131

Johnson [BJ95] relates EDM completion problems and chordal graphs: if V is

chordal, then X ∈ Sn
V has an EDM completion if and only if every fully specified

principal submatrix of X is an EDM, i.e., if XWkWk
is an EDM for all the cliques

Wk of V . Moreover, if X has an EDM completion, such a completion is easily

constructed. However, for general nonchordal V , numerical optimization methods

must be used to construct EDM completions [AKW99, Tro00]. Chordal matrix

techinques may therefore provide a way to solve large, sparse conic optimization

problems with EDM cone constraints efficiently.

132

APPENDIX A

Chordal Matrix Algorithms

This appendix provides a summary of the chordal matrix algorithms described in

Chapter 2. These algorithms are described in detail in [DVR08]. The notation

is the same as in Chapter 2. We assume a clique tree of a chordal pattern V is

given, with l cliques Wi numbered in reverse topological order. Each clique is

partitioned in two sets Ui, Vi, defined in (2.5). Although it is not essential, we

can assume that the matrices are permuted so that

W1 = {1, . . . , |W1|},

Wk =

{
k−1∑

j=1

|Wj|+ 1,
k−1∑

j=1

|Wj|+ 2, . . . ,

k∑

j=1

|Wj|
}

for k > 1.
(A.1)

As an example, Fig. 2.8 shows the sparsity pattern and the clique tree of the

sparsity pattern in Fig. 2.7, after applying a symmetric reordering of rows and

columns to satisfy (A.1).

To simplify the notation, we define the Cholesky factorization of S ∈ Sn
V,++

as a factorization

S = RDRT (A.2)

where D is block diagonal with dense diagonal blocks DVkVk
, and R is a square

matrix with unit diagonal and off-diagonal entries equal to zero, except for the

submatrices RUkVk
, k = 1, . . . , l, which are dense. The matrix RT +D + R then

has the same sparsity pattern as S, and if the nodes are numbered as in (A.1), the

133

matrix R is unit upper triangular. The ordering (A.1) is therefore referred to as a

perfect elimination ordering for the factorization (A.2). By factoring the diagonal

blocks of D and absorbing the factors in R, and then applying a symmetric

permutation to R, we obtain from (A.2) a standard Cholesky factorization of the

form

P TSP = LLT ,

with L lower triangular.

A.1 Cholesky Factorization

The following recursion overwrites a positive definite matrix S ∈ Sn
V,++ with its

Cholesky factors.

Algorithm A.1. Cholesky factorization (S = RDRT)

Input: S ∈ Sn
V,++

for k = l down to 1 do

Factor SVkVk
= LkL

T
k , for example, using a dense Cholesky factorization.

Compute

SUkVk
:= SUkVk

L−T
k , SUkUk

:= SUkUk
− SUkVk

ST
UkVk

, SUkVk
:= SUkVk

L−1
k .

end for

On completion, SUkVk
= RUkVk

, SVkVk
= DVkVk

for k = 1, . . . , l.

A.2 Gradient of Dual Barrier

The following algorithm computes PV (S
−1) = −∇φ(S) from the Cholesky fac-

torization S = RDRT . The recursion follows from a careful examination of the

equation DRTS−1 = R−1 [DVR08].

134

Algorithm A.2. Projected inverse.

Input: Cholesky factorization S = RDRT of S ∈ Sn
V,++.

Initialize X ∈ Sn
V as XUkVk

:= RUkVk
and XVkVk

:= DVkVk
.

for k = 1 to l do
Factor XUkUk

= LkL
T
k (for example, using a dense Cholesky factorization).

Compute

XUkVk
:= LT

kXUkVk
, XVkVk

:= X−1
VkVk

+XT
UkVk

XUkVk
, XUkVk

:= −LkXUkVk
.

end for

On completion, X = PV (S
−1).

The factorization in the first step can be obtained efficiently by updating and

downdating the factorization of XUiUi
, where i is the index of the parent of clique

Wk.

A.3 Hessian of Dual Barrier

Since

∇2φ(S)[Y] =
d

dt
∇φ(S + tY)

∣∣∣∣
t=0

,

we can compute ∇2φ(S)[Y] = PV (S
−1Y S−1) by linearizing the expressions for

the gradient, using the chain rule. The resulting algorithm can be written as

follows.

135

Algorithm A.3. Evaluate Hessian of dual barrier.

Input: Cholesky factorization S = RDRT of S ∈ Sn
V,++, projected gradient

PV (S
−1), and a matrix Y ∈ Sn

V .

for k = l down to 1 do

Compute

YWkWk
:= R−1

WkWk
YWkWk

R−T
WkWk

. (A.3)

end for

for k = 1 to l do
Compute

YVkVk
:= D−1

VkVk
YVkVk

D−1
VkVk

, YUkVk
:= (S−1)UkUk

YUkVk
D−1

VkVk
.

end for

for k = 1 to l do
Compute

YWkWk
:= R−T

WkWk
YWkWk

R−1
WkWk

.

end for

On completion, Y is overwritten with PV (S
−1Y S−1).

Here we use multiplications with R−1
WkWk

to simplify the notation. In a practi-

cal implementation, these operations can be expressed in terms of multiplications

with the nonzero blocks RUkVk
of R (see [DVR08]). The update (A.3), for exam-

ple, can be written as

 YUkUk

YUkVk

YVkUk
YVkVk


 :=


 I −RUkVk

0 I




 YUkUk

YUkVk

YVkUk
YVkVk




 I 0

−RT
UkVk

I


 .

A.4 Factors of Hessian of Dual Barrier

The first and third steps of the Hessian evaluation perform adjoint operations,

and the second step is self-adjoint. We can therefore interpret the algorithm as

136

evaluating the Hessian in factored form:

∇2φ(S)[Y] = Ladj(L(Y)).

The forward mapping L is evaluated as follows. Note that the factorization of

(S−1)UkUk
is part of the computation of PV (S

−1) in Section A.2, so we assume

here it is given. We also assume that DVkVk
is stored in factored form.

Algorithm A.4. Evaluate factor of Hessian of dual barrier.

Input: Cholesky factorization S = RDRT of S ∈ Sn
V,++, factorizations DVkVk

=
PkP

T
k and (S−1)UkUk

= LkL
T
k , and a matrix Y ∈ Sn

V .
for k = l down to 1 do

Compute YWkWk
:= R−1

WkWk
YWkWk

R−T
WkWk

.
end for

for k = 1 to l do
Compute YVkVk

= P−1
k YVkVk

P−T
k and YUkVk

= LT
k YUkVk

P−T
k .

end for

On completion, Y is overwritten with LS(Y).

The adjoint Ladj can be evaluated by a similar recursion, by reversing the

order of the iteration and replacing the matrix operations by their adjoints.

Algorithm A.5. Evaluate adjoint factor of Hessian of dual barrier.

Input: Cholesky factorization S = RDRT of S ∈ Sn
V,++, factorizations DVkVk

=
PkP

T
k and (S−1)UkUk

= LkL
T
k , and a matrix Y ∈ Sn

V .
for k = 1 to l do
Compute YVkVk

= P−T
k YVkVk

P−1
k , and YUkVk

= LkYUkVk
P−1
k .

end for

for k = 1 to l do
Compute YWkWk

:= R−T
WkWk

YWkWk
R−1

WkWk
.

end for

On completion, Y is overwritten with Ladj(Y).

The calculations in the algorithms above are also easily inverted, so we can

evaluate the inverse Hessian ∇2φ(S)−1, or the inverse factors L−1 and (Ladj)−1,

in a very similar way.

137

A.5 Gradient of Primal Barrier

The following algorithm computes the solution Ŝ ∈ Sn
V,++ of the nonlinear equa-

tion PV (Ŝ
−1) = X where X ∈ Sn

V,c++. The matrix Ŝ is the negative gradient of

the primal barrier function at X (i.e., Ŝ = −∇φc(X)). It also defines the Hessian

of the primal barrier function via the identity ∇2φc(X) = ∇2φ(Ŝ)−1.

Algorithm A.6. Cholesky factorization of Ŝ where PV (Ŝ
−1) = X.

Input: X ∈ Sn
V,c++

for k = 1 to l do
Factor XUkUk

= LkL
T
k , for example, using a dense Cholesky factorization.

Compute

RUkVk
:= L−1

k XUkVk
,

DVkVk
:=

(
XVkVk

−RT
UkVk

RUkVk

)−1
,

RUkVk
:= −L−T

k RUkVk
.

end for

On exit, R and D contain the Cholesky factorization of Ŝ.

As in the algorithm for the dual gradient, the factorization in the first step

can be obtained by updating and downdating the factorization of XUiUi
, where

Wi is the parent of clique Wk.

A.6 Complexity

To gain some insight in the complexity of the algorithms, we examine in more

detail the case of a band or block-arrow pattern. A band pattern with half

bandwidth w has n− w cliques

Wk = {k, k + 1, . . . , k + w}, k = 1, . . . , n− w.

138

These cliques can be arranged in a clique tree with U1 = ∅, V1 = {1, 2, . . . , w+1},
and

Uk = {k, k + 1, . . . , w + k − 1}, Vk = {w + k}, k = 2, . . . , n− w.

A block-arrow pattern with w dense leading columns and rows has n−w cliques

Wk = {1, 2, . . . , w, w + k}, k = 1, . . . , n− w,

which can be arranged in a clique tree with U1 = ∅, V1 = {1, 2, . . . , w + 1}, and

Uk = {1, 2, . . . , w}, Vk = {w + k}, k = 2, . . . , n− w.

For these two patterns, |U1| = 0, |V1| = w + 1, and |Uk| = w, |Vk| = 1 for

k = 2, . . . , n− w, so they have maximal overlap between cliques. Note also that

for a band pattern Uk has w − 1 elements in common with Uk−1 if k ≥ 2, and

that for a block-arrow pattern the sets Uk are constant for k = 2, . . . , n− w.

The dominant terms in the flop count of the Cholesky factorization are (1/3)w3+

(n− w)w2. This is always less than the cost (1/3)n3 of a dense Cholesky factor-

ization of order n, and linear in n for fixed w.

The algorithm for the dual gradient in §A.2 requires a Cholesky factorization

of the dense matrix XUkUk
at each step. For a block-arrow pattern this matrix is

the same for all cliques, so only one factorization is needed. For a band pattern,

the matrix has a submatrix of order w − 1 in common with XUk−1Uk−1
, and its

factorization can be computed in O(w2) operations by updating the factorization

of XUk−1Uk−1
. The complexity of the rest of the algorithm is dominated by matrix

multiplications with a complexity of w2. The total cost is therefore O((n−w)w2).

Similar observations apply to the algorithm for the primal gradient.

The dominant terms in each step of the evaluation of the dual Hessian (§A.3)
or its factors (§A.4) are of order w2 (for the updates of YUkUk

). The resulting

total cost is O((n− w)w2).

139

References

[ADD96] P. Amestoy, T. Davis, and I. Duff. “An approximate minimum de-
gree ordering.” SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[AG03] F. Alizadeh and D. Goldfarb. “Second-order cone programming.”
Mathematical Programming Series B, 95:3–51, 2003.

[AHM88] J. Agler, J. W. Helton, S. McCullough, and L. Rodman. “Positive
semidefinite matrices with a given sparsity pattern.” Linear Algebra
and Its Applications, 107:101–149, 1988.

[AHO98] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. “Primal-dual
interior-point methods for semidefinite programming: convergence
rates, stability and numerical results.” SIAM J. on Optimization,
8(3):746–768, 1998.

[AKW99] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. “Solving Euclidean
distance matrix completion problems via semidefinite programming.”
Computational Optimization and Applications, 12(1-3):13–30, 1999.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. “On implementing a primal-
dual interior-point method for conic quadratic optimization.” Math-
ematical Programming, 95(2):249–277, 2003.

[AY98] E. D. Andersen and Y. Ye. “A computational study of the homoge-
neous algorithm for large-scale convex optimization.” Computational
Optimization and Applications, 10:243–269, 1998.

[BBH04] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. “Maximum
cardinality search for computing minimal triangulations of graphs.”
Algorithmica, 39:287–298, 2004.

[Ben73] M. W. Benson. “Iterative Solutions of Large Scale Linear Systems.”
Master’s thesis, Lakehead University, Thunder Bay, Ontario, 1973.

[BF82] M. W. Benson and P. O. Frederickson. “Iterative solution of large
sparse linear systems arising in certain multidimensional approxima-
tion problems.” Utilitas Math, 22(127), 1982.

[BJ95] M. Bakonyi and C. R. Johnson. “The Euclidian distance matrix com-
pletion problem.” SIAM Journal on Matrix Analysis and Applica-
tions, 16(2):646–654, 1995.

140

[BJ05] F. R. Bach and M. I. Jordan. “Predictive low-rank decomposition for
kernel methods.” In Proceedings of the 22nd International Conference
on Machine Learning, pp. 33–40. ACM Press, 2005.

[BJL89] W. W. Barrett, C. R. Johnson, and M. Lundquist. “Determinantal
formulation for matrix completions associated with chordal graphs.”
Linear Algebra and Appl., 121:265–289, 1989.

[BMT96] M. Benzi, C. D. Meyer, and M. Tuma. “A Sparse Approximate In-
verse Preconditioner for the Conjugate Gradient Method.” SIAM
Journal on Scientific Computing, 17(5):1135–1149, 1996.

[BN98] A. Ben-Tal and A. Nemirovski. “Robust convex optimization.” Math-
ematics of Operations Research, 23:769–805, 1998.

[BN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimiza-
tion. Analysis, Algorithms, and Engineering Applications. SIAM,
2001.

[Bor99a] B. Borchers. “CSDP, a C library for semidefinite programming.”
Optimization Methods and Software, 11(1):613–623, 1999.

[Bor99b] B. Borchers. “SDPLIB 1.2, A Library of Semidefinite Programming
Test Problems.” Optimization Methods and Software, 11(1):683–690,
1999.

[BP93] J. R. S. Blair and B. Peyton. “An introduction to chordal graphs
and clique trees.” In A. George, J. R. Gilbert, and J. W. H. Liu, edi-
tors, Graph Theory and Sparse Matrix Computation. Springer-Verlag,
1993.

[BT99] M. Benzi and M. Tuma. “A comparative study of sparse approximate
inverse preconditioners.” Applied Numerical Mathematics, 30(2–
3):305–340, 1999.

[Bur03] S. Burer. “Semidefinite programming in the space of partial positive
semidefinite matrices.” SIAM Journal on Optimization, 14(1):139–
172, 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

[BY05] S. J. Benson and Y. Ye. “DSDP5: Software For Semidefinite Pro-
gramming.” Technical Report ANL/MCS-P1289-0905, Mathemat-
ics and Computer Science Division, Argonne National Laboratory,

141

Argonne, IL, September 2005. Submitted to ACM Transactions on
Mathematical Software.

[CC01] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman &
Hall/CRC, second edition, 2001.

[CDH08] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. “Al-
gorithm 887: CHOLMOD, supernodal sparse Cholesky factorization
and update/downdate.” ACM Transactions on Mathematical Soft-
ware, 35(3):1–14, 2008.

[Che05] K. Chen. Matrix Preconditioning Techniques and Applications. Cam-
bridge University Press, 2005.

[CL01] C.-C. Chang and C.-J. Lin. LIBSVM: a library
for support vector machines, 2001. Available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[CS94] E. Chow and Y. Saad. “Approximate Inverse Preconditioners for
General Sparse Matrices.” Technical Report UMSI 94/101, University
of Minnesota Supercomputer Institute, Minneapolis, MN 55415, 1994.

[CW02] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large
Symmetric Eigenvalue Computations: Theory. Society for Industrial
and Applied Mathematics, 2002.

[CY07] A. M.-C. Cho and Y. Ye. “Theory of semidefinite programming for
sensor network localization.” Mathematical Programming, Series B,
109:367–384, 2007.

[DGO10] Z. Deng, M. Gu, and M. L. Overton. “Structured primal-dual interior-
point methods for banded semidefinite programming.” In I. Gohberg,
editor, Topics in Operator Theory, volume 202 of Operator Theory:
Advances and Applications, pp. 111–141. Birkhäuser Basel, 2010.

[Die10] R. Diestel. Graph Gheory. Springer, fourth edition, 2010.

[DM05] P. Drineas and M. W. Mahoney. “On the Nyström Method for Ap-
proximating a Gram Matrix for Improved Kernel-Based Learning.”
Journal of Machine Learning Research, 6:2153–2175, 2005.

[DSW88] P. M. Dearing, D. R. Shier, and D. D. Warner. “Maximal chordal
subgraphs.” Discrete Applied Mathematics, 20(3):181–190, 1988.

142

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[DV08] J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for
Convex Optimization. abel.ee.ucla.edu/cvxopt, 2008.

[DV09a] J. Dahl and L. Vandenberghe. CHOMPACK: Chordal Matrix Pack-
age. abel.ee.ucla.edu/chompack, 2009.

[DV09b] J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for
Convex Optimization. abel.ee.ucla.edu/cvxopt, 2009.

[DVR08] J. Dahl, L. Vandenberghe, and V. Roychowdhury. “Covariance se-
lection for non-chordal graphs via chordal embedding.” Optimization
Methods and Software, 23(4):501–520, 2008.

[EL97] L. El Ghaoui and H. Lebret. “Robust solutions to least-squares prob-
lems with uncertain data.” SIAM Journal of Matrix Analysis and
Applications, 18(4):1035–1064, 1997.

[FCH08] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
“LIBLINEAR: A Library for Large Linear Classification.” Journal of
Machine Learning Research, 9:1871–1874, 2008.

[FFN06] K. Fujisawa, M. Fukuda, and K. Nakata. “Preprocessing sparse
semidefinite programs via matrix completion.” Optimization Meth-
ods and Software, 21:17–39, 2006.

[FG65] D. R. Fulkerson and O. Gross. “Incidence matrices and interval
graphs.” Pacific Journal of Mathematics, 15(3):835–855, 1965.

[FKM00] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. “Exploiting
sparsity in semidefinite programming via matrix completion I: general
framework.” SIAM Journal on Optimization, 11:647–674, 2000.

[FKN97] K. Fujisawa, M. Kojima, and K. Nakata. “Exploiting Sparsity in
Primal-Dual Interior-Point Methods for Semidefinite Programming.”
Mathematical Programming, 79(1-3):235–253, October 1997.

[FM68] A. Fiacco and G. McCormick. Nonlinear programming: sequential
unconstrained minimization techniques. Wiley, 1968. Reprinted 1990
in the SIAM Classics in Applied Mathematics series.

[FM93] R. Fourer and S. Mehrotra. “Solving symmetric indefinite systems
in an interior-point approach for linear programming.” Mathematical
Programming, 62:15–39, 1993.

143

[FM03] M. C. Ferris and T. S. Munson. “Interior-Point Methods for Mas-
sive Support Vector Machines.” SIAM Journal on Optimization,
13(3):783–804, 2003.

[FS02] S. Fine and K. Scheinberg. “Efficient SVM training using low-
rank kernel representations.” Journal of Machine Learning Research,
2:243–264, 2002.

[Gav74] F. Gavril. “The intersection graphs of subtrees in trees are exactly
the chordal graphs.” Journal of Combinatorial Theory, Series B,
16(1):47–56, 1974.

[GB12] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex
Programming, version 2.0 (beta). cvxr.com, 2012.

[Geo73] A. George. “Nested Dissection of a Regular Finite Element Mesh.”
SIAM Journal on Numerical Analysis, 10(2):345–363, 1973.

[GH97] M. J. Grote and T. Huckle. “Parallel Preconditioning with Sparse
Approximate Inverses.” SIAM Journal on Scientific Computing,
18(3):838–853, 1997.

[GI03] D. Goldfarb and G. Iyengar. “Robust convex quadratically con-
strained programs.” Mathematical Programming Series B, 97:495–
515, 2003.

[GJS84] R. Grone, C. R. Johnson, E. M Sá, and H. Wolkowicz. “Positive
definite completions of partial Hermitian matrices.” Linear Algebra
and Appl., 58:109–124, 1984.

[Gol04] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. El-
sevier, second edition, 2004.

[Gon09] J. Gondzio. “Matrix-Free Interior Point Method.” Technical Report
ERGO-2009-012, School of Mathematics and Maxwell Institute for
Mathematical Sciences, The University of Edinburgh, 2009.

[GS04] D. Goldfarb and K. Scheinberg. “A product-form Colesky factoriza-
tion method for handling dense columns in interior point methods for
linear programming.” Mathematical Programming, Series A, 99:1–34,
2004.

[GS05] D. Goldfarb and K. Scheinberg. “Product-form Cholesky factoriza-
tion in interior point methods for second-order cone programming.”
Mathematical Programming Series A, 103:153–179, 2005.

144

[Gul96] O. Güler. “Barrier functions in interior point methods.” Mathematics
of Operations Research, 21:860–865, 1996.

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 3rd edition, 1996.

[HCL08] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Keerthi, and S. Sundarara-
jan. “A dual coordinate descent method for large-scale linear SVM.”
In ICML ’08: Proceedings of the 25th international conference on
Machine learning, pp. 408–415, New York, NY, USA, 2008. ACM.

[Heg06] P. Heggernes. “Minimal triangulation of graphs: a survey.” Discrete
Mathematics, 306:297–317, 2006.

[HRV96] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. “An
Interior-Point Method for Semidefinite Programming.” SIAM J. on
Optimization, 6(2):342–361, 1996.

[Joa99] T. Joachims. “Making large-Scale SVM Learning Practical.” In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 11, pp. 169–184. MIT
Press, Cambridge, MA, 1999.

[Joa06] T. Joachims. “Training Linear SVMs in Linear Time.” In ACM
SIGKDD International Conference On Knowledge Discovery and
Data Mining (KDD), pp. 217–226, 2006.

[JPA00] D. Johnson, G. Pataki, and F. Alizadeh. “Seventh DIMACS im-
plementation challenge: Semidefinite and related problems.”, 2000.
http://dimacs.rutgers.edu/Challenges/Seventh.

[JY09] T. Joachims and C.-N. J. Yu. “Sparse kernel SVMs via cutting-plane
training.” Machine learning, 76(2):179–193, 2009.

[Kak10] N. Kakimura. “A direct proof for the matrix decomposition of
chordal-structured positive semidefinite matrices.” Linear Algebra
and Its Applications, 433:819–823, 2010.

[Kar84] N. Karmarkar. “A New Polynomial-Time Algorithm for Linear Pro-
gramming.” Combinatorica, 4(4):373–395, 1984.

[KBM96] M. V. Kothare, V. Balakrishnan, and M. Morari. “Robust constrained
model predictive control using linear matrix inequalities.” Automat-
ica, 32(10):1361–1379, 1996.

145

[KKK08] K. Kobayashi, S. Kim, and M. Kojima. “Correlative sparsity in
primal-dual interior-point methods for LP, SDP, and SOCP.” Ap-
plied Mathematics and Optimization, 58(1):69–88, 2008.

[KKM10] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. “Exploit-
ing sparsity in linear and nonlinear matrix inequalities via positive
semidefinite matrix completion.” Mathematical Programming, pp. 1–
36, 2010.

[KMT09a] S. Kumar, M. Mohri, and A. Talwalkar. “Ensemble Nyström
Method.” In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, editors, Advances in Neural Information Processing
Systems 22, pp. 1060–1068. Nips Foundation, 2009.

[KMT09b] S. Kumar, M. Mohri, and A. Talwalkar. “Sampling Techniques for
the Nyström Method.” In D. van Dyk and M. Welling, editors, Pro-
ceedings of the 12th International Conference on Artificial Intelligence
and Statistics. JMLR, 2009.

[KRT97] E. de Klerk, C. Roos, and T. Terlaky. “Initialization in semidefinite
programming via a self-dual skew-symmetric embedding.” Operations
Research Letters, 20(5):213–221, 1997.

[KSH97] M. Kojima, S. Shindoh, and S. Hara. “Interior-point methods for the
monotone linear complementarity problem in symmetric matrices.”
SIAM J. on Optimization, 7:86–125, February 1997.

[KW10] N. Krislock and H. Wolkowicz. “Euclidean Distance Matrices and Ap-
plications.” Technical Report CORR 2010-06, Department of Combi-
natorics and Optimization, University of Waterloo, Ontario, Canada,
2010.

[KY93] L. Yu. Kolotilina and A. Yu. Yeremin. “Factorized sparse approxi-
mate inverse preconditionings I: theory.” SIAM Journal on Matrix
Analysis and Application, 14(1):45–58, 1993.

[Lau96] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford,
1996.

[LC98] Y. LeCun and C. Cortes. “The MNIST Database of Handwritten
Digits.” Available at http://yann.lecun.com/exdb/mnist/, 1998.

[LH06] Y. J. Lee and S. Y. Huang. “Reduced support vector machines: A
statistical theory.” IEEE Transactions on Neural Networks, 18(1):1–
13, 2006.

146

http://yann.lecun.com/exdb/mnist/

[LM01] Y. J. Lee and O. L. Mangasarian. “RSVM: Reduced support vector
machines.” In Proceedings of the First SIAM International Confer-
ence on Data Mining, 2001.

[LNM07] Z. Lu, A. Nemirovski, and R. Monteiro. “Large-scale semidefinite pro-
gramming via a saddle point Mirror-Prox algorithm.” Mathematical
Programming, 109:211–237, 2007.

[Lof04] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in
MATLAB, 2004.

[LS83] R. Laskar and D. Shier. “On powers and centers of chordal graphs.”
Discrete Applied Mathematics, 6(2):139–147, 1983.

[LSZ00] Z.-Q. Luo, J. F. Sturm, and S. Zhang. “Conic convex program-
ming and self-dual embedding.” Optimization Methods and Software,
14:169–218, 2000.

[Mar57] H. M. Markowitz. “The Elimination Form of the Inverse and Its Ap-
plication to Linear Programming.” Management Science, 3(3):255–
269, 1957.

[MM65] J. Moon and L. Moser. “On cliques in graphs.” Israel Journal of
Mathematics, 3:23–28, 1965.

[Mon95] R. D. C. Monteiro. “Primal-dual path following algorithms for
semidefinite programming.” SIAM J. on Optimization, 7:663–678,
1995.

[Mon98] R. D. C. Monteiro. “Polynomial convergence of primal-dual algo-
rithms for semidefinite programming based on Monteiro and Zhang
family of directions.” SIAM J. on Optimization, 8(3):797–812, 1998.

[Nes96] Yu. Nesterov. “Long-step strategies in interior point potential reduc-
tion methods.” Mathematical Programming, 76:47–94, 1996.

[Nes06a] Yu. Nesterov. “Nonsymmetric potential-reduction methods for gen-
eral cones.” Technical Report 2006/34, CORE Discussion Paper, Uni-
versité catholique de Louvain, 2006.

[Nes06b] Yu. Nesterov. “Towards nonsymmetric conic optimization.” Techni-
cal Report 2006/28, CORE Discussion Paper, Université catholique
de Louvain, 2006.

147

[NFF03] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota.
“Exploiting sparsity in semidefinite programming via matrix comple-
tion II: implementation and numerical details.” Mathematical Pro-
gramming Series B, 95:303–327, 2003.

[NN94] Yu. Nesterov and A. Nemirovskii. Interior-Point Polynomial Methods
in Convex Programming, volume 13 of Studies in Applied Mathemat-
ics. SIAM, Philadelphia, PA, 1994.

[NT97] Yu. E. Nesterov and M. J. Todd. “Self-scaled barriers and interior-
point methods for convex programming.” Mathematics of Operations
Research, 22(1):1–42, 1997.

[NT98] Yu. E. Nesterov and M. J. Todd. “Primal-dual interior-point methods
for self-scaled cones.” SIAM Journal on Optimization, 8(2):324–364,
May 1998.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

[OFG97] E. Osuna, R. Freund, and F. Girosi. “An improved training algo-
rithm for support vector machines.” In Proceedings of the 7th IEEE
Workshop on Neural Networks for Signal Processing, pp. 276–285,
1997.

[Par61] S. Parter. “The use of linear graphs in Gauss elimination.” SIAM
Review, 3(2):119–130, 1961.

[Pla99] J. C. Platt. “Fast training of support vector machines using sequential
minimal optimization.” In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector Learning, pp.
185–208. MIT Press, Cambridge, MA, 1999.

[PS95] F. A. Potra and R. Sheng. “Homogeneous interior-point algorithms
for semidefinite programming.” Reports on Computational Mathe-
matics 82/1995, Department of Mathematics, The University of Iowa,
1995.

[Ren01] J. Renegar. A Mathematical View of Interior-Point Methods in Con-
vex Optimization. SIAM, 2001.

[Ros70] D. J. Rose. “Triangulated graphs and the elimination process.” Jour-
nal of Mathematical Analysis and Applications, 32:597–609, 1970.

148

[Ros72] D. J. Rose. “A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations.” In R. C. Read,
editor, Graph Theory and Computing, pp. 183–217. Academic Press,
1972.

[Ros74] D. J. Rose. “On simple characterizations of k-trees.” Discrete Math-
ematics, 7:317–322, 1974.

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic aspects
of vertex elimination on graphs.” SIAM Journal on Computing,
5(2):266–283, 1976.

[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

[SS00] A. J. Smola and B. Schölkopf. “Sparse greedy matrix approxima-
tion for machine learning.” In Proceedings of the 17th International
Conference on Machine Learning, pp. 911–918. Morgan Kaufmann,
2000.

[SS02] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cam-
bridge, MA, 2002.

[SSM98] B. Schölkopf, A. Smola, and K.-R. Müller. “Nonlinear compo-
nent analysis as a kernel eigenvalue problem.” Neural Computation,
10(5):1299–1319, 1998.

[Ste80] G. W. Stewart. “The Efficient Generation of Random Orthogonal
Matrices with an Application to Condition Estimators.” SIAM Jour-
nal on Numerical Analysis, 17(3):403–409, 1980.

[Stu99] J. F. Sturm. “Using SEDUMI 1.02, a Matlab Toolbox for Optimiza-
tion Over Symmetric Cones.” Optimization Methods and Software,
11-12:625–653, 1999.

[Stu02] J. F. Sturm. “Implementation of interior point methods for mixed
semidefinite and second order cone optimization problems.” Opti-
mization Methods and Software, 17(6):1105–1154, 2002.

[Stu03] J. F. Sturm. “Avoiding numerical cancellation in the interior point
method for solving semidefinite programs.” Mathematical Program-
ming Series B, 95:219–247, 2003.

149

[SV04] G. Srijuntongsiri and S. A. Vavasis. “A Fully Sparse Implementa-
tion of a Primal-Dual Interior-Point Potential Reduction Method for
Semidefinite Programming.”, 2004.

[Tro00] M. W. Trosset. “Distance matrix completion by numerical optimiza-
tion.” Computational Optimization and Applications, 17(1):11–22,
2000.

[TTT98] M. J. Todd, K. C. Toh, and R. H. Tütüncü. “On the Nesterov-Todd
direction in semidefinite programming.” SIAM J. on Optimization,
8(3):769–796, 1998.

[TTT03] R. H. Tütüncü, K. C. Toh, and M. J. Todd. “Solving semidefinite-
quadratic-linear programs using SDPT3.” Mathematical Program-
ming Series B, 95:189–217, 2003.

[TW67] W. F. Tinney and J. W. Walker. “Direct solutions of sparse network
equations by optimally ordered triangular factorization.” Proceedings
of the IEEE, 55(11):1801–1809, 1967.

[TY84] R. E. Tarjan and M. Yannakakis. “Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs.” SIAM Journal on Computing,
13(3):566–579, 1984.

[VB96] L. Vandenberghe and S. Boyd. “Semidefinite programming.” SIAM
Review, 38(1):49–95, 1996.

[VBM07] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix Computa-
tions and Semiseparable Matrices: Linear Systems. Johns Hopkins
University Press, 2007.

[VBM09] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix Compu-
tations and Semiseparable Matrices: Eigenvalue and Singular Value
Methods. Johns Hopkins University Press, 2009.

[Wer80] N. Wermuth. “Linear recursive equations, covariance selection, and
path analysis.” Journal of the American Statistical Association,
75(372):963–972, 1980.

[WGY10] Z. Wen, D. Goldfarb, and W. Yin. “Alternating direction augmented
Lagrangian methods for semidefinite programming.” Mathematical
Programming Computation, 2(3-4):203–230, 2010.

150

[WKK06] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. “Sums of squares
and semidefinite program relaxations for polynomial optimization
problems with structured sparsity.” SIAM Journal on Optimization,
17(1):218–241, 2006.

[Wri95] S. J. Wright. “Stability of linear equations solvers in interior-point
methods.” SIAM Journal on Matrix Analysis and Applications,
16(4):1287–1307, 1995.

[Wri97a] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadel-
phia, 1997.

[Wri97b] S. J. Wright. “Stability of augmented system factorizations in
interior-point methods.” SIAM Journal on Matrix Analysis and Ap-
plications, 18(1):191–222, 1997.

[WS01] C. K. I. Williams and M. Seeger. “Using the Nyström method to
speed up kernel machines.” Advances in neural information process-
ing systems, pp. 682–688, 2001.

[WS06] K. Q. Weinberger and L. K. Saul. “Unsupervised learning of image
manifolds by semidefinite programming.” International Journal of
Computer Vision, 70:77–90, 2006.

[WZB07] Z. Wang, S. Zheng, S. Boyd, and Y. Ye. “Further relaxations of
the SDP approach to sensor network localization.” Technical report,
Department of Management Science and Engineering, Stanford Uni-
versity, 2007.

[XSB06] L. Xiao, J. Sun, and S. Boyd. “A duality view of spectral methods for
dimensionality reduction.” In Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), 2006.

[Yam08] N. Yamashita. “Sparse quasi-Newton updates with positive definite
matrix completion.” Mathematical Programming, Series A, 115(1):1–
30, 2008.

[Yan81] M. Yannakakis. “Computing the minimum fill-in is NP-complete.”
SIAM Journal on Algebraic and Discrete Methods, 2(1):77–79, 1981.

[YFK03] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and
evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0).”
Optimization Methods and Software, 18(4):491–505, 2003.

151

[YTM94] Y. Ye, M. J. Todd, and S. Mizuno. “An O(
√
nL)-iteration homoge-

neous and self-dual linear programming algorithm.” Mathematics of
Operations Research, 19(1):53–67, 1994.

152

	Front matter
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Acknowledgements
	Vita and Publications
	Abstract

	Introduction
	Conic Optimization with Sparse Matrix Cones
	Sparse Inverse Approximation
	Notation

	Optimization with Sparse Matrix Cones
	Cone Programs with Matrix Inequalities
	Sparse Matrix Cones
	Nonsymmetric Sparse Matrix Cones
	Related Work

	Chordal Sparsity
	Chordal Graphs and Matrices
	Examples of Chordal Sparsity
	Clique Trees
	Maximum Determinant Positive Definite Completion

	Chordal Matrix Algorithms
	Cholesky Factorization
	Value and Gradient of Dual Barrier
	Hessian and Inverse Hessian of Dual Barrier
	Value and Gradient of Primal Barrier
	Hessian and Inverse Hessian of Primal Barrier
	Step-length Calculation

	Chordal Embedding, Restriction, and Decomposition
	Chordal Embedding of Nonchordal Sparsity Patterns
	Chordal Restriction
	Chordal Decomposition

	Summary

	Nonsymmetric Interior-Point Methods
	Primal and Dual Path-following Methods
	Central Path
	Search Directions
	Feasible Start Path-Following Method

	Newton System
	Primal Scaling Methods
	Dual Scaling Methods
	Complexity

	Initialization From Infeasible Starting-points
	Phase I
	Self-dual Embedding

	Implementation
	Algorithm Outline
	Numerical Stability

	Numerical Experiments
	SDPs with Band Structure
	Matrix Norm Minimization
	Overlapping Cliques
	Robust Convex Quadratic Optimization
	Sparse SDPs from SDPLIB
	Nonchordal SDPs

	Summary

	Applications in Nonlinear Programming
	Sparse Approximate Inverses
	Optimization Approach
	Block-arrow Completion
	Band Completion

	Applications in Machine Learning
	Approximate Support Vector Machine Training
	Numerical Experiments
	Other Applications

	Summary

	Conclusions
	Chordal Matrix Algorithms
	Cholesky Factorization
	Gradient of Dual Barrier
	Hessian of Dual Barrier
	Factors of Hessian of Dual Barrier
	Gradient of Primal Barrier
	Complexity

	References

