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Dependency parsing

subj obj

John smokes Lebanese

XP

XPsubj smokes XPobj

John Lebanese

1 John NP 2 SUBJ
2 smokes V 0 ROOT
3 Lebanese NP 2 OBJ

• The 1-best parsing problem for projective dependency grammars
is in O(|G|n3). Non-projective dependency parsing is NP-hard in
general (e.g. by the Traveling Salesman Problem).

• Popular approximate parsing algorithms exist for both projective
(deterministic transition-based; linear time) and non-projective
dependency parsing (minimum spanning tree, O(|G|n2).
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Edmonds (1969) introduced a two-step O(|G|n2) minimum spanning
tree algorithm for edge-factored models:
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(ii) cycle contraction.
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Transition-based dependency parsing

(i)
Shift . . . w . . .

. . . w . . .

(ii)
Reduce . . . w . . .

. . . . . . iff ∃v.v → w

(iii)
Left-Arc . . . w v . . .

. . . v . . . add w ← v

(iv)
Right-Arc . . . v w . . .

. . . v, w . . . add v → w

iff ∄w
′
.w

′
→ w
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How did John get to smoke Libanese?

Shift . . . John smokes Lebanese
Left-Arc . . ., John smokes Lebanese
Shift . . . smokes Lebanese John ← smokes
Right-arc . . ., smokes Lebanese
Reduce . . . smokes, Lebanese . . . smokes → Lebanese
Root . . . smokes . . .
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MA Programme in IT & Cognition

Computer Science Language Technology Linguistics

Psychology

4 4 5
2007 2008 2009 2010

1st 2nd 3rd 4th

RCS (F) Form.Ling. RCS(A) Thesis

Logic CP(F) CP(A)

Exp. mthd. Stats Adapt.Syst.

Linguistics LT(F) LT(A)

Progr(F/A) HCI(F) HCI(A)

RCS(F) and RCS(A) are compulsary.



Examples Programme Student experiences Initiatives Logic Machine learning

Student experiences 2007–9

Good Bad

Coherence X

Flexibility X

Level X

Social X

Thesis support X



Examples Programme Student experiences Initiatives Logic Machine learning

Student experiences 2007–9

Good Bad

Coherence X

Flexibility X

Level X

Social X

Thesis support X

• Students never stayed at the university after class to work in
groups.



Examples Programme Student experiences Initiatives Logic Machine learning

Student experiences 2007–9

Good Bad

Coherence X

Flexibility X

Level X

Social X

Thesis support X

• Students never stayed at the university after class to work in
groups.

• Students did not know much about each other.



Examples Programme Student experiences Initiatives Logic Machine learning

Student experiences 2007–9

Good Bad

Coherence X

Flexibility X

Level X

Social X

Thesis support X

• Students never stayed at the university after class to work in
groups.

• Students did not know much about each other.

• Several students did not have a thesis topic ready after having
completed the first 90 ECTS.
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Recent initiatives

• Mentoring, i.e. monthly interviews about:

→ coherence (1st year)
→ courses and exams
→ extra-curricular activities
→ thesis (primarily 2nd year)

• Student groups:

a. ensemble-based part-of-speech tagging
b. text prediction
c. text classification
d. model-checking for extensions of modal logic
e. word alignment in translated text

• Collaboration:

a. Center for Language Technology
b. Mikroværkstedet, Lund University
d. University of Tübingen (Germany)
e. Copenhagen Business School
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• Evening lectures:

→ J. Hansen (RUC): “Dynamic epistemic logic”
→ P. Lindström (Lund, Sweden): “How children learn math”
→ M. Haulrich (CBS): “Repair in transition-based parsing”
→ R. Dekova (BAS, Bulgaria): “Lexical semantics and the

mental lexicon”
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• Evening lectures:

→ J. Hansen (RUC): “Dynamic epistemic logic”
→ P. Lindström (Lund, Sweden): “How children learn math”
→ M. Haulrich (CBS): “Repair in transition-based parsing”
→ R. Dekova (BAS, Bulgaria): “Lexical semantics and the

mental lexicon”

• Reading groups, workshops, etc.:

→ CBS-RG Machine Learning
→ CBS-RG Natural Language Processing
→ Linguistic Circle of Copenhagen
→ ACL’10 (Uppsala, Sweden)
→ ESSLLI’10
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Challenge: 90 ECTS and a diverse group of students

1. Students do stay at the university after class.

2. The student groups “average out” the students.

3. Student groups are also a chance for excellent students to excel.

4. Finally, however, we synchronized our courses a bit:
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Challenge: 90 ECTS and a diverse group of students

1. Students do stay at the university after class.

2. The student groups “average out” the students.

3. Student groups are also a chance for excellent students to excel.

4. Finally, however, we synchronized our courses a bit:

(a) RCS(F) and RCS(A) model topics introduced in CP(F).
(b) Topics from (a) are reused in other courses (Logic, LT(F),

etc.).
(c) All course exercises are in Python/Orange, also used in the

student groups.
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Logic for dependency parsing

In the dependency graph:

1 : p,¬q 2 : p,¬q 3 : ¬p,¬q 4 : ¬p, q

• the formula 〈≺〉〈←〉q, i.e. the current node precedes a node
whose syntactic head is in the denotation of q, evaluates as true
in nodes 1 and 2.

• the formula 〈← ∩ ≺;←〉⊤ is not true in any node.
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Logic for dependency parsing (cont’d)

• A modal logic for dependency parsing was first introduced in
Bröker (1997).
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Logic for dependency parsing (cont’d)

• A modal logic for dependency parsing was first introduced in
Bröker (1997).

• Kepser (2008) uses monadic second order logic to query
dependency treebanks.



Examples Programme Student experiences Initiatives Logic Machine learning

Logic for dependency parsing (cont’d)

• A modal logic for dependency parsing was first introduced in
Bröker (1997).

• Kepser (2008) uses monadic second order logic to query
dependency treebanks.

• Søgaard (2009) uses hybrid logic and crude repair to improve
accuracy of dependency parsers.
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Logic for dependency parsing (cont’d)

• A modal logic for dependency parsing was first introduced in
Bröker (1997).

• Kepser (2008) uses monadic second order logic to query
dependency treebanks.

• Søgaard (2009) uses hybrid logic and crude repair to improve
accuracy of dependency parsers.

• Modal logics for other parsing formalisms are presented in Keller
(1993), Søgaard (2007) and Søgaard and Lange (2009).
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• Dependency parsing is typically cast as supervised learning.

• Sufficient labeled data exists for a wide variety of languages.

• The CONLL-X Shared Task used datasets from 12
languages.

• The CONLL 2007 Shared Task used datasets from 10
languages (with three repeats).

• Labeled data exists for other languages, incl. Hebrew,
Latin, Romanian, Thai.
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Machine learning for dependency parsing

• Dependency parsing is typically cast as supervised learning.

• Sufficient labeled data exists for a wide variety of languages.

• The CONLL-X Shared Task used datasets from 12
languages.

• The CONLL 2007 Shared Task used datasets from 10
languages (with three repeats).

• Labeled data exists for other languages, incl. Hebrew,
Latin, Romanian, Thai.

• The CONLL format and evaluation procedure are standard in
the community.
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Exercise from Lect. 1, RCS(F): Naive Bayes
Features: pos(w′). Class: pos(w). Labeled data:

1 John NP 2
2 drives V 0
3 cars NP 2

1 John NP 3
2 is V 3
3 fast ADJ 0

1 John NP 2
2 walks V 0
3 and CONJ 2
4 talks V 2
5 fast ADJ 2

P (← Root) 3/11 P (← V) 6/11 P (← ADJ) 2/11

d = NP d = V d = ADJ
P (d| ← Root) 0/3 P (d| ← Root) 2/3 P (d| ← Root) 1/3
P (d| ← V) 3/6 P (d| ← V) 1/6 P (d| ← V) 1/6
P (d| ← ADJ) 1/2 P (d| ← ADJ) 1/2 P (d| ← ADJ) 0/2
0.09: V 0.19 : Root 0.09:Root/V

If single-rooted:

1 John 2
2 drives 0
3 fast 2
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Dependency parsing, now

Algorithm Learner Complexity
MaltParser Transition-based SVM O(|G|n)
MSTParser Graph-based MIRA O(|G|n2)*

*Faster on average, since models are smaller.
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Dependency parsing, now

Algorithm Learner Complexity
MaltParser Transition-based SVM O(|G|n)
MSTParser Graph-based MIRA O(|G|n2)*

*Faster on average, since models are smaller.

• Nivre and McDonald (2008) use stacking to combine the
strengths of the two parsers.

• Martins et al. (2008) use recursive stacking to obtain previously
best reported results.

• Semisupervised methods have also been used to boost
state-of-the-art (Koo et al., 2008; Sagae and Gordon, 2009;
Suzuki et al., 2009).

• Søgaard (t.a.) combines ensemble-based and semisupervised
methods to obtain best reported results.
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Søgaard (t.a.)

C1(F ) C2(F ) C3(F )

Ens

C1(R1) C2(R1) C3(R1)

Sem

C1(R1 + U2,3) C2(R1 + U1,3) C3(R1 + U1,2)

Ens

C1(R2) C2(R2) C3(R2)

...
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CONLL-X datasets

C06 Mar08 Ours
Arabic 66.91 69.12 70.12

Danish 84.79 86.79 86.47
Dutch 79.19 81.51 81.87

German 87.34 88.68 89.08

Japanese 91.65 91.61 92.28

Portuguese 76.60 88.30 88.76

Slovene 76.12 76.72 77.98

Spanish 82.25 83.73 84.67

Swedish 84.58 85.16 85.92

Turkish 65.68 65.21 67.42
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Logic and machine learning? (2do-list)

Checked items:

• Model-checking is used to verify labeled data.

• Crude repair is used to improve parsing quality.

• Finally, logic is used to study the properties of linguistic theories
(Blackburn and Spaan, 1993; Søgaard, 2007).

Non-checked items:

• Transition-based dependency parsing in Cross-style probabilistic
modal logic.

• Learning crude repair functions.

• Modal characterizations of mildly non-projective dependency
grammars.

• Model-checking polyadic dynamic logic.
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Data-driven dependency parsing in collaborative
research projects at CST

• Question answering:

• MOSES (university websites); led by Patrizia Paggio.
• ESICT (patient diagnosis); led by Bente Maegaard.

• Machine translation:

• ESSMT (practical); led by me.
• EMCOTT (theoretical; under review); led by Jürgen

Wedekind and me.
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