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Introduction

DG-FEM is a variaধon of classical FEM Methods where elements are only weakly

coupled. The test funcধons are polynomial funcধons on their respecধve element

and vanish everwhere else. The global soluধon is therefore not necessarily conধnu-

ous. Coupling is achieved using a numerical flux between element borders.

This poster aims to present the results of an exploraধon into the implementaধon and

properধes of DG-FEM methods. A DG-FEM method for the 1D advecধon equa-

ধon was implemented and tested. Higher dimensional and more general diffusion-

advecধon problems were solved with the help of the Netgen/NGSolve sođware.

Advection Equation in 1D

Consider the linear advecধon equaধon in 1D with periodic boundary condiধons

ut + f (u) = 0, x ∈ [0, 1],
u(−1, t) = u(1, t),

u(x, 0) = sin(πx),

where f = aux the exact soluধon is given by u(x, t) = sin(πx − aπt). The domain

[−1, 1] is divided into K consecuধve sub-intervals (elements) of size h := 2
K . On

each element k, we discreধze the differenধal equaধon using a nodal spectral galerkin
method with N + 1 Gauss-Lobaħo nodes. The elements are coupled by introducing

a numerical flux f ∗, resulধng in a discrete operator Lh
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where Lk
i are the Lagrange polynomials of element k and M, Dx are the correspond-

ing mass and differenধaধon matrices.

With the average operator {u} := u−+u+

2 and the jump operator [u] := u− + u+ we

can define the numerical flux

f ∗ = (au)∗ := {au} + |a|1 − α

2
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with a parameter α > 0. Here, + refers to the exterior of an element, − to the

interior and n± to the corresponding normal vector. This is called upwind flux for

α = 0 and central flux for α = 1.
In order to solve this semi-discrete problem, we have to decide on a ধme-stepping

method. Figure 1 shows the eigenvalues of Lh for N = 16. For a central flux, the

eigenvalues are purely imaginary (which also means there is no dissipaধon). For

an upwind flux, the eigenvalues also have a real part. It can also be shown that

the magnitude of the largest eigenvalue behaves asymptoধcally like O(N 2) meaning

that heurisধcally, the ধme-step ∆t has to be chosen so that ∆t ≤ C
N2 , where the

constant C depends on the ধme-integraধon method used. Here, a RK4 method

with a suitably small ধme-step is chosen.

Figure 2 shows that this method converges with order hN+1.

Figure: Eigenvalues of Lh for N = 16. Figure: Errors for different N over h.

Netgen/NGSolve

NGSolve is a high performance mulࣅphysics finite element sođware. It is widely used to analyze

models from solid mechanics, fluid dynamics and electromagneࣅcs. Due to its flexible Python

interface new physical equaࣅons and soluࣅon algorithms can be implemented easily.

NGSolve takes care of meshing, building the finite element space and the discrete

operators and can efficiently solve the resulধng linear systems. Users have to

Define the problem geometry and boundary condiধons.

Specify a suitable variaধonal formulaধon of the PDE.

Time-integrate the resulধng discreধzaধons.

In the case of DG methods, NGSolve works with an L2 finite element space Vh con-

sisধng of L2-orthogonal element-wise polynomial funcধons of arbitrary order.

Stationary Diffusion-Advection Equation

Consider now the more general case, D ∈ R, b ∈ C(Ω,Rd) and f ∈ L2(Ω):

−D∆u + ∇ · (bu) = f, x ∈ Ω ⊂ Rd,

u = 0, x ∈ ∂Ω.

For u, v ∈ H1
0 , this can be wriħen in variaধonal formulaধon as

A(u, v) :=
∫

D∇u∇v −
∫

b · u∇v =
∫

fv =: l(v).

The element-wise DG formulaধon ADG(u, v) = l(v) for u, v ∈ L2 is then given by

ADG(u, v) = Adif(u, v) + Aadv(u, v),
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b · n u∗v.

with Adif and Aadv corresponding to the diffusion and advecধon term respecধvely

and a user-definable parameter β > 0. Here, K denotes the elements of the mesh

(e.g. triangle, tetrahedon) and F the faces of those elements.

As in the 1D case we choose an upwind numerical flux u∗ := b · n{u} + 1
2|b · n|[u].

Given ADG NGSolve constructs a discrete operator Ah and right-hand side lh such

that the modal coefficients uh of the soluধon are given by Ahuh = lh.

Instationary Diffusion-Advection Equation

Consider the (bi)linear formsADG and l from above and the ধme-dependent problem

∂tu = D∆u + ∇ · (bu) + f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

with starধng condiধon u(x, 0) = u0(x). It's disconধnuous Galerkin formulaধon is

∂t

∫
uv︸ ︷︷ ︸

=:M(u,v)

= ADG(u, v) + l(v)

NGSolve provides the discreধzaধon of M , the mass matrix Mh, so that the soluধon

uh is given by the ODE Mh∂tuh = ADG
h uh + lh.

Solving the Poisson Equation

Using the formulaধons from before, solving the Poisson equaধon with NGSolve

−∆u = 2y(1 − y) + x(1 − x), (x, y) ∈ [0, 1]2,
u(x, y) = 0, (x, y) ∈ ∂[0, 1]2

requires specifying a mesh, the linear forms ADG and l and then solving the resulধng
linear system. The exact soluধon is u = x(1 − x)y(1 − y)).
The choice of the parameter β is important because if it is chosen too small, ADG

is not coercive and the system therefore not solvable. A larger β also results in a

smoother soluধon (Figures 3 and 4).

Figure: Plot of uh with β = 2.5, N = 1, hmax = 0.3. Figure: Plot of uh with β = 25, N = 1, hmax = 0.3.

For polygonal geometries the method converges with O(hN+1
max ). For other geome-

tries, e.g. circles/spheres a geometric error of magnitude O(h) is introduced.

Solving the Time-Dependent Diffusion Advection Equation

Given an iniধal condiধon u0 we have to advance the semi-discrete system

Mh∂tuh = ADG
h uh + lh

in ধme by choosing an appropriate ধme-stepping method.

For D > 0 and β >> 0 the ODE is sধff, meaning implicit methods must be used.

One implicit Euler step for this problem is given by

(Mh + ∆tADG
h )un+1

h = Mhun
h + lnh,

which can be solved efficiently since both Mh and Ah are sparse matrices.

In a similar fashion, higher-order ধme-integraধon methods can be constructed from

singly diagonally implicit Runge-Kuħa methods.

Figures 5a-5d show the ধme-evoluধon of the diffusion-advecধon equaধon for D =
0.05 and b(x, y) = (1 − x, 1 − y) with u0 = e−32((x−0.1)2+(y−0.1)2

.

(a) t = 0 (b) t = 0.1 (c) t = 0.5 (d) t = 1

Figure: Time evoluধon with ∆t = 0.01, N = 3, hmax = 0.1.


