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Motivation

A waveguide guides waves. A common type
for microwave communication is a metal pipe
of constant cross section. The electromagnetic
field propagation can only be solved analyti-
cally for certain canonical cross sections: Rect-
angular, circular, coaxial, elliptical. For this rea-
son, these waveguides are almost exclusively
used in practice. It is therefore desirable to be
able to model arbitrary cross section waveg-
uides accurately and efficiently. Additionally
many electromagnetic problems can be mod-
eled with waveguides; e.g. a grid of shaped
holes in a metal plate can be modeled as small
waveguides.

Model

The waveguide cross section is assumed to
lie in the xy-plane and be infinite along the z-
direction. This means that the z-dependence
on the field will be simple:

E(x, y, z) = E(x, y)e�j�z

H(x, y, z) = H(x, y)e�j�z.

Time harmonic fields with a suppressed time
factor of ej!t are assumed. Under this condition
one can show that Maxwells equations are sat-
isfied for field configurations with Hz = 0 (TM
modes), if the following scalar Helmholtz equa-
tion is satisfied
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is the transverse gradient operator. Since Ez

is tangential to the perfectly conducting walls
of the waveguide, it must be zero at this inter-
face. Thus, we have a zero Dirichlet boundary
condition.
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If kc is larger than the wavenumber, k, the solu-
tion will decay exponentially along z. Thus, kc

is called the cutoff wavenumber and the asso-
ciated cutoff frequency is

fc =
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Figure 1: Arbitrary waveguide. Source: Marcuvitz
1986.

Week Formulation

We multiply (1) by a test function v which is
zero on the boundary and integrate over the
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and using the property of the test functions
yields
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Choosing linear basis functions and the same
test functions (Galerkin) on discrete grid points
on the interior of the waveguide, we can define
the elements of two matrices
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and solve the generalized eigenvalue problem
AEz = k2

cBEz,

thus obtaining cutoff wave numbers and as-
sociated field distributions of the waveguide
modes.

Rectangular Waveguide

Analytical solution for TM modes in a rectangu-
lar waveguide:
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The FEM solution for the four modes with
the lowest eigenvalues are shown in Figure 2.
The plotted fields and cutoff frequencies corre-
spond well with the analytical TM11, TM21, TM31,
and TM12 modes.

fc = 16.8 GHz fc = 21.3 GHz

fc = 27.2 GHz fc = 31.1 GHz

Figure 2: FEM solution for the four first modes in
rectangular waveguide of dimensions a = 20mm and
b = 10mm (see Figure 5).

Non-canonical Waveguide

Figure 3 is a picture of a non-canonical waveg-
uide drawn and meshed with Gmsh. The ge-
ometry has been solved with the same code
as the rectangular waveguide. Zero Dirich-
let boundary conditions have been applied to
the horseshoe-like boundary of the waveguide.
The resultant cutoff frequencies and field dis-
tributions for the first four modes are shown in
Figure 4. The field distributions seem realistic
compared with the rectangular waveguide.

Figure 3: Waveguide cross section defined and
meshed in Gmsh. The dimensions from the bottom left
to top right corner are 20 by 20mm.

fc = 21.7 GHz fc = 22.6 GHz

fc = 25.3 GHz fc = 26.5 GHz

Figure 4: First four eigenmodes for the geometry in
Figure 3 (Note that the used mesh was finer).

Conclusion

The finite element method has proven effective
for solving the eigenvalue problem of a electro-
magnetic waveguide.

Figure 5: Geometry of a rectangular waveguide.
Source: Marcuvitz 1986.
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