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Motivation
The Finite Element Method (FEM) is a numeri-
cal framework for solving Differential Equations
that is widely used when a great flexibility on
the shape of the domain is needed. Incom-
pressible Navier-Stokes equations (INSE) are
a set of partial differential equations which de-
scribe the motion of viscous fluid substances
by assuming that the volume of fluid elements
is constant.We solve the equations by using the
python library FEniCS [2] for obtaining the ve-
locity profile and the pressure in several do-
mains by changing the shape of the walls of
a pipe and inserting different type of obsta-
cles for the fluid. In this project the INSE are
solved using the Incremental Pressure Correc-
tion Scheme (IPCS)[1]. The results shows the
flexibility of the numerical framework in cases
that imitate some real-world problems such as
fusiform aneurysm and stenosis in arteries, the
double slit experiment, fluid resistance on an
Airfoil.

Model equations
The Incompressible Navier-Stokes equation{

ρ
(
∂u
∂t

+ u · ∇u
)

= ∇ · σ(u, p) + f

∇ · u = 0

(1)
where σ is the Cauchy stress tensor which
for a Newtonian fluid is defined as σ(u, p) =
2µε(u)− pI
The first equation comes (we can see that is
similar to Newton’s second law) from the con-
servation of momentum and the second one
comes from the conservation of mass and the
incompressibility of the fluid.
Here, u(x, y) is the unknown velocity vector,
p(x, y) is the unknown pressure as the scalar
field, ρ is the fluid density, µ is the dynamic
viscosity, f is the body force per unit mass, and
ε(u) = (∇u + (∇u)T)/2 is the symmetric
gradient.

Variational Formulation
The weak formulation for the homogeneous
problem is

ρ

∫
Ω

(
∂u

∂t
+ u · ∇u

)
v dΩ

−
∫

Ω

(∇ · σ(u, p)) v dΩ = 0

the second term can be further expanded inte-
grating by parts

−
∫

Ω

(∇ · σ(u, p)) v dΩ =∫
Ω

(σ(u, p))∇v dΩ−
∫
∂Ω

σ(u, p)n̂ v d∂Ω

where σ(u, p)n̂ is the Boundary traction.
We can assume that the derivative in the direc-
tion of the channel is zero at the outflow

σ(u, p)n̂ = µ(∇un̂+ (∇u)T n̂)− pIn̂ =

µ∇un̂− pIn̂
Hence using the short hand notation

ρ 〈∂u/∂t+ u · ∇u, v〉+ 〈σ(u, v), ε(v)〉+
〈pn̂− µ∇un̂, v〉∂Ω = 0 (2)

Splitting Strategy
The system has a so-called saddle point
structure and requires special techniques to
be solved efficiently. The idea We want to
consider the two equations in (1) separately.
The IPCS is a modification of the Chorin’s
method based on the (Helmholtz)
decomposition of any vector field into a
solenoidal part and an irrotational part. The
IPCS [1] consists of three steps
I Compute a tentative velocity u∗ using the

old-step pressure

ρ 〈(u∗ − un)/∆t+ un · ∇un, v〉+
+
〈
σ(un+1/2, v), ε(v)

〉
+

+
〈
pnn̂− µ∇un+1/2n̂, v

〉
∂Ω

= 0 (3)

I Use u∗ for computing the new pressure〈
∇pn+1,∇q

〉
=

〈∇pn,∇q〉 − 〈∇ · u∗, q〉 /∆t (4)

I Requiring that∇ · un+1 = 0 we end up
with the〈

un+1, v
〉

=

〈u∗, v〉 −
〈
∇(pn+1 − pn), v

〉
/∆t (5)

Implementation and
Performance

FEniCS is a open-source python library that
allows us to solve PDE’s numerically using
FEM. A domain can be generating by adding
or substracting simple geometrical domains.It
can produce automatically a triangular mesh
for any domain entered (with the use of
‘generate mesh()’).
The implementation performed by our group
consists on defining the needed boundaries,
boundary conditions and sizes of the mesh in
order for everything to be computed without
any major numerical errors (divergences).

Simulation ∆t mesh res. cpu time CO2[g] cons.
One Cylinder 10−3 4585 1557.5 s 3.375
Two Cylinders 10−3 2436 499.710 s 1.083

Double Slit 5·10−5 5204 2345.77 s 5.0825
Aneurysm 10−3 4225 886.29 s 1.92

Stenosis 1 ob. 2·10−4 1453 1368.994 s 2.967
Stenosis 2 ob. 12·10−5 1338 1298.181 s 2.814

Airfoil ob. 10−4 3510 3492.11 s 7.566

Conclusions
We can clearly see turbulence (due to high
Reynolds numbers) in almost all figures, since
the parameters have been chosen in order to
show so. The turbulence is being shown
without introducing high enough errors in the
algorithm (even with its chaotic nature).
For most of the simulations in domains with
sharp corners a smaller time-step was needed
for avoiding numerical divergence.
Finally, the INSE can be applied to various
solid geometries and it can be used to solve
real life problems in various fields of science.
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Numerical Results

Figure 1: Flow through a channel with a cylinder as an obstacle

Figure 2: Flow through a channel with two cylinders as obstacles

Figure 3: Flow through a channel with a double slit as an obstacle

Figure 4: Flow through a channel simulating an Arterial Aneurysm

Figure 5: Flow through a channel simulating an Arterial Stenosis with one obstacle

Figure 6: Flow through a channel simulating an Arterial Stenosis with two obstacles

Figure 7: Flow through a channel with a NACA0018 airfoil at a 15º angle (takeoff Boeing
314) as an obstacle
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