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Introduction
In DG-FEM the elements are decoupled and the solu-
tion is approximated by discontinuous polynomial func-
tions. This means the local solution is approximated
by a function only smooth on the local element and the
global solution, consisting of combined local solutions,
can be discontinuous. In order to enable decoupling, all
the nodes are duplicated and the elements are coupled
only via the so-called numerical flux, f∗. We wish to
explore properties of the Discontinuous Galerkin FEM,
which has experienced a big growth in interest over the
last two decades.

Deriving a DG-FEM scheme
We consider the linear advection boundary value prob-
lem in 1 dimension

ut + fx = 0, x ∈ [0, 2π]

fx = aux
u(x, 0) = sin(x)

u(0, t) = − sin(2πt)

The exact solution is

u(x, t) = sin(x− 2πt)

We approximate the global solution on a mesh with K
elements as some combination of local solutions

u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t)

and require that the residual Rh(x, t) = ∂uh
∂t

+ ∂auh
∂x

of
each local solution be orthogonal to allNp test functions:∫

Dk

Rh(x, t)vndx =

∫
Dk

∂uh

∂t
vn + a

∂uh

∂x
vndx = 0

which, via integration by parts, leads to the weak formu-
lation of the BVP on each element∫

Dk

∂uh

∂t
v − a

∂v

∂x
uhdx = −

∫
Dk

(n̂(auh)
∗v)dx

By doing integration by parts again, we derive the strong
formulation:∫
Dk

∂uh

∂t
v + av

∂uh

∂x
dx =

∫
Dk

(n̂v[(auh)− (auh)
∗])dx

where (auh)
∗ denotes the numerical flux. We take test

functions from the space of interpolating Lagrange poly-
nomials, and insert the resulting approximation of the
local solution ukh(x, t) =

∑Np

j=1 u
k
h(x

k
j , t)l

k
j (x) into the

strong formulation ∫
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and choose the basis functions from the same space as
the test functions ∫
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ukh(x
k
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k
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∗)]
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This is equivalent to

Mk d

dt
ukh+S

kaukh = (auh−au∗)lk(xkr)−(auh−au
∗)lk(xkl )

where Mk
ij =

∫ xkr
xkl
lki (x)l

k
j (x)dx

and Skij =
∫ xkr
xkl
lki (x)

dlkj (x)

dx
dx

Isolating the time derivative, we see that
d

dt
ukh = −a(Mk)−1Skukh+

(Mk)−1[(auh − au∗)lk(xkr)− (auh − au∗)lk(xkl )]
(1)

The matrix (Mk)−1Sk corresponds to a differential
operator Dx, showing the connection between the
continous differential equation, and the semi-discrete
form we have derived.

Elementwise Operations
We introduce a mapping between x and a reference
variable r, such that r ∈ [−1, 1]. The i’th Lagrange
polynomial can be expressed as

li(r) =

Np∑
n=1

(V T)−1in ψn(r)

where V is the Vandermonde matrix, and ψn(r) are
orthonormal Legendre polynomials. In general,

l = (V T)−1ψ

Using this, we look at the entries of the mass matrix M :

Mk
ij =

∫ xkr

xkl

lki (x)l
k
j (x)dx =

∫ 1

−1
li(r)lj(r)dr

and after substituting and rearranging, we arrive at

M = (V V T)−1

Similarly, we find

Dr = VrV
−1

where Vr,(i,j) =
dψj(ri)

dr
. Thus, all elementwise

operations involve small, dense matrices, and there was
no numerical integration, nor problem-specific analytical
integration.

Putting the pieces together
One of the defining features of DG-FEM is that the
solution is discontinous between elements. Unless we
somehow impose boundary conditions on the local
solutions and the test functions, the solution at the
interfaces between elements is multiply defined. Also,
we want to ensure numerical stability of the solutions.
The way these conditions are satisfied in DG-FEM, is by
using a numerical flux, f∗. We seek a numerical flux
that is consistent, meaning that for two values on an
interface u− and u+, f∗(u−) approaches f∗(u+), is
unique, and mimics the dynamics, or information flow,
of the PDE. An interpretation is that the numerical flux
is the flux we wish to have at the interface. The flux we
use is

(au)∗ = a
u− + u+

2
+ a

1− α
2

(n̂−u− + n̂+u+)

For α = 1, we get the central flux, which is simply the
average of the fluxes on the interface. For α = 0, we
get the upwind flux

(au)∗ = a
u− + u+

2
+
a

2
(n̂−u− + n̂+u+)

With the elementwise operations, and the flux, we have
the whole right hand side (rhs) in (1). The only thing left
is to use an ODE integrator like the Runge-Kutta
method, to integrate the problem in time.

Results

(a) α = 0, N = 1 (b) α = 0, N = 2

(c) α = 1, N = 1 (d) α = 1, N = 2

Figure 1: Different fluxes and order of polynomials,
K = 8.

(a) N = 1 (b) N = 2

(c) N = 4 (d) N = 8

Figure 2: Global L2 error convergence for varying order
of polynomials.

N\K 2 4 8 16 32 64 Conv. Rate Th. Rate
1 6.9E-01 2.2E-01 7.3E-02 2.2E-02 6.0E-03 1.6E-03 1.93 2
2 2.1E-01 4.0E-02 5.1E-03 6.5E-04 8.2E-05 1.0E-05 3.00 3
4 6.9E-03 2.7E-04 8.8E-06 2.8E-07 8.6E-09 2.7E-10 4.97 5
8 9.7E-07 2.1E-09 7.2E-12 3.7E-12 3.9E-12 3.7E-11 8.89 9

The convergence rates are investigated by calculating
the error for a variety of N and number of elements, K,
and fitting appropriate points. The results listed in the
Table are obtained for upwind flux and final time,
T = π.

Discussion
I All operations of the rhs are local, resulting in small,

dense matrices.
I Element size and polynomial order can be different in

each element, allowing local change and making
hp-adaptivity easy.

I No need for numerical integration, main computational
work is elementwise - well suited for parallel
computing

I The decoupling of elements in DG-FEM comes at the
price of an increase of the total degrees of freedom
compared to classical FEM. For certain problems this
can become an important issue in terms of the
computational work.

I For problems where flexibility and locality of the
scheme is of less importance, other better suited
methods might be more efficient than DG-FEM.


