
Development of a GPU-accelerated MIKE 21 Solver
for Water Wave Dynamics

Peter Edward Aackermann1, Peter Juhler Dinesen Pedersen1,
Allan Peter Engsig-Karup1, Thomas Clausen2, Jesper Grooss2

1Technical University of Denmark (DTU), Kgs. Lyngby, Denmark, 2DHI Group, Hoersholm, Denmark

Motivation
I In the pursuit of faster modelling tools to simulate water wave

dynamics we investigate modern many-core computing architectures
in order to accelerate the simulations by computing in parallel using a
graphic card (GPU).

I A parallel solution scheme is investigated and developed. Designed
to utilize the massively parallel processors with CUDA C.

I The simulation tool MIKE 21 HD is developed by the international
company DHI and is one of their most utilized commercial products.
Improvements in simulation speed will increase the amount of
solvable problems and open new market segments for DHI.

Model Equations and Discretization
MIKE 21 HD simulates water wave dynamics by solving a set of
hyperbolic partial differential equations called shallow water equations
which are given as

∂ζ

dt
+
∂p

∂x
+
∂q

∂y
=
∂d

∂t
∂p

∂t
+
∂

∂x

pp
h

 +
∂

∂y

pq
h

 + gh
∂ζ

∂x
+
gp
√
p2 + q2

C2h2 = 0

∂q

∂t
+
∂

∂y


q2

h

 +
∂

∂x

pq
h

 + gh
∂ζ

∂y
+
gq
√
p2 + q2

C2h2 = 0

I Solution scheme: Alternating Direction Implicit (ADI) method.
I Many tri-diagonal matrix systems have to be solved each time step.

Parallelization/Solution Approach
Two different parallel solution schemes are developed.

I S1: Single CUDA thread solving one tri-diagonal system.
I Same solution algorithm as MIKE 21 HD (Thomas algorithm).

I S2: Several CUDA threads solving one tri-diagonal system.
I Adds more parallelism.
I Parallel solution algorithms investigated: PCR, CR-PCR.

Crucial Optimization
I Reduce global memory access.
I Access memory coalesced to fully utilize the available hardware.

Thread 0 Thread 1

X-sweep

Uncoalesced access pattern Coalesced access pattern

Y-sweep

System 1
System 2
System 3

System 0

System
 0

System
 1

System
 3

System
 2

Figure 1: Access pattern for S1 for an x- and y-sweep.

I Determine core functionality and perform calculations cleverly by
transposing arrays so the structure of the program is maintained.

x-sweep y-sweep

Tranpose

input arrays

y-sweep

Tranpose

output arrays

Figure 2: Flowchart through one simulation time step in the S1
approach shown in gray and the modified x-sweep in blue.

Results
I S1 beneficial for large systems.

I Scaling O(n) against O(n2) for the sequential implementation.
I S2 beneficial for small systems.

In double-precision
I Possible to solve systems in between 128×128 to 3584×3584

I Minimum 35x speedup. One hour simulation in less than 2 min.
I Maximum 82x speedup. One hour simulation in less than 45 sec.

I Solving a 3072×3072 system in double-precision on the GPU twice
as fast as a 512×512 system on the CPU.

I Achieve exact same solution as MIKE 21 HD.

In single-precision
I Obtain 145x and 203x speedup for S1 and S2, respectively.
I Reduced precision compared to MIKE 21 HD.

0

50

100

150

200

250

0 512 1024 1536 2048 2560 3072 3584 4096 4608 5120

Sp
ee

du
p

System size (no. grid points)

S14 double

S24 double

S24 float

S14 float

Figure 3: Speedup of S1 and S2 in single- and double-precision
compared to an corresponding CPU implementation. Executed on a
NVIDIA GeForce GTX 590

Conclusion and further research
I Accelerated MIKE 21 simulation speed dramatically by a formulated

parallel solution scheme for execution on many-core architecture.
I Enabled DHI to solve larger or more detailed systems.

I Next step: Investigating the precision impact of double- vs.
single-precision; using mixed-precision to core math calculation.

Conference Multicore-Challenge III, 2012. Mail: s093066@student.dtu.dk - s093066@student.dtu.dk WWW:


