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I This lecture

I Revised transport lecture

I Two papers

I MATLAB examples

Tuesday’s directory has also been revised.
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MG for Integral Equations

Fredholm 2nd kind integral equation on C [0, 1],

u(x) = (Ku)(x) + g(x) =

∫ 1

0
k(x , y)u(y) dy + g(x).

Here

I k and g are given continuous functions.

I u ∈ C [0, 1] is the unknown.

We assume that I − K is nonsingular.
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Atkinson (73) - Brakhage (60) Method

Notation:

I Sequence of quadrature rules: nodes {xm
j }

Nm
j=1 and weights

{wm
j }

Nm
j=1.

I Operators: Km(u)(x) =
∑Nm

j=1 k(x , xm
j )u(xm

j )wm
j

I Note that Km is defined on C [0, 1].

The sequence {Km} is collectively compact and converges strongly
to K .
Defining all operators on C [0, 1] is easier than thinking of
sequences of problems and operators.
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Solving u − Kmu = f

First solve the finite-dimensional system for the function values at
the nodes

u(xm
i )−

Nm∑
j=1

k(xm
i , x

m
j )u(xm

j )wm
j = f (xm

i )

(with GMRES, for example).
Then recover u with the Nyström interpolation

u(x) = f (x) +
Nm∑
j=1

k(x , xm
j )u(xm

j )wm
j .
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Some Facts from Functional Analysis

Given ρ > 0 there is l0 such that if L ≥ l ≥ l0 the operator

BL
l = I + (I − Kl)

−1KL

satisfies
‖I − BL

l (I − KL)‖ ≤ ρ.

NOTE!! (I − Kl)
−1 won’t work! We will fix that by changing Kl .
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Atkinson-Brakhage iteration

Solve u − KLu = g on a fine mesh by using BL
l as a preconditioner

to fixed point iteration.

u+ = uc − BL
l (uc − KLuc − g).

Cost: Two fine-mesh calls to KL.
rc = g − (I − KL)uc and BL

l rc = rc + (I − Kl)
−1KLrc .

Evaluate (I − Kl)
−1w via GMRES.
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Implementation

You have seen how to compute KL. The last part is the action of
BL

l on a function u.

I Evaluate KLu.

I Solve w − Klw = KLu as above.
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A More Efficient Way

I Suppose you have a compact operator K and

I can compute operator-function products.

I Suppose you haev a projection Pl onto a finite dimensional
subspace Vl and

I Pl converges strongly to I .

I Then KPL converges to K in the operator norm and

I (I − KPL)−1 → (I − K )−1 in norm.
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Faster Two-Grid Method

u+ = uc − (I − KPl)
−1((I − K )uc − g)

How to evaluate (I − KPl)
−1w .

I Solve the finite dimensional problem

wl − PlKPlwl = Plg

I Let
w = g − KPlwl .
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Nested Iteration: Ki = KPi ; K = KL

Algorithm gridnest(g , u, {Ki}, l , L)

Solve ul −Klu
l = g on the coarse level.

Set u = ul .
for m = l + 1, . . . L do

u = u − (I − KPl)
−1((I − K )u − g)

end for

C. T. Kelley MultiGrid
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Remarks

I Analysis shows that ‖Kl − KL‖ is small for sufficiently large l
and all L > l (including L =∞, the continuous problem.

I The algorithm can be realized by using piecewise linear
interpolation, evaluation at grid points, and full weighting for
the coarse-to-fine transfer.
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Easy example

u(x)− 1

2

∫ 1

0
sin(x − y)u(y) dy = cos(x)

I have already discretized this into the form (I − K )u = f , so the
hard job is the intergrid transfers.

I Coarse to fine: simple interpolation.

I Fine to coarse: repeated applications of full weighting.

I And here’s some MATLAB . . .
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Nested Iteration

Opimal approach

I Start on coarse grid l ; solve to high accuracy.

I Interpolate to fine grid. Solve with multilevel method.

I Keep the coarse level at l for the entire solve!k

I You’ll need one iteration/level to maintain accuracy to
truncation error if the coarse mesh is fine enough.

C. T. Kelley MultiGrid



What’s in Wednesday’s Directory?
References

MG for Integral Equations
MG for Elliptic PDEs

Exercises

Example: Source Iteration in Transport Theory

I Let φ− KLφ = S be the fully discrete problem at level L.

I Map from level L to level l < L by full weighting.

I That map has the same properties as a continuous projection.

I Map from l to L by interpolation.

I So Kl = I l
LKLI

L
l will do the job.
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Multigrid

We showed that a Jacobi iteration for the central difference
discretization Ahuh = f h of

−u′′ = f , 0 < x < 1

with u(0) = u(1) = 0

I damped the error in the high frequencies fast, and

I the error in the low frequencies very slowly,

I so the iteration is a smoother,

which explains the methods poor convergence properties.
MG exploits this by attacking the smooth components on coarser
grids.
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Discrete Laplacian I

Recall that

Ah =
1

h2



2 −1 0 . . . 0, 0
−1 2 −1 , 0 . . . 0

0 −1 2 −1, . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . , , 0, −1 2 −1
0 . . . , . . . , , 0 −1 2


and

f h = (f (x1), . . . , f (xN))T .
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Discrete Laplacian II

The eigenvectors of Ah are {un}Nn=1 where

un = (ξn1 , . . . , ξ
n
N)T and ξni =

√
2/h sin(niπh),

with eigenvalues

λn = h−22 (1− cos(πnh)) = π2n2 + O(h2) for small n

We proved this with elementary trigonometry.
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A better smoother

Consider the damped Jacobi iteration:

xn+1 = (1− ω)xn − ωD−1(L + U)xn + D−1b

with iteration matrix Mh
DJ = (1− ω)I + ωMJAC , where

Mh
JAC = −D−1(L + U).

So ω = 1 is Jacobi and ω = 0 is nothing.
What’s the optimal ω if we want to damp the high-frequency
terms?
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Eigen-analysis

We showed that the eigenvalues of MJAC were

µn = 1− (h2/2)λn

with the same eigenvectors as Ah. Similarly

µn = (1− ω) + ω(1− (h2/2)λn) = 1− (h2/2)ωλn

1− ω(1− cos(πnh))
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Optimal ω

Now suppose n ≥ N/2 (high frequency), then

µn = 1− ω(1− cos(πnh)) = 1− ω + ω cos(πnh)

so
1− 2ω ≤ µn ≤ 1− ω.

Minimize |µn| to see that the optimal value of ω is 2/3. So

|µn| ≤ 1/3 for N/2 ≤ n ≤ N − 1

C. T. Kelley MultiGrid
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Idealized Two-Grid Method: I

Notation:

I h = 1/(N − 1), N − 1 even.

I Ωh: space of grid functions with step size h
so uh ∈ Ωh

I I h′
h : intergrid transfer from Ωh → Ωh′

I Ph
H and Ph

L project onto low and high frequencies.

C. T. Kelley MultiGrid
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Idealized Two-Grid Method: II

For Now: We will define I 2h
h and I h

2h by Fourier truncation.

u =
∑N−1

n=1 αnu
h
n ∈ Ωh

I 2h
h u =

∑(N−1)/2
n=1 αnu

2h
n ∈ Ω2h = I 2h

h Ph
Lu

and
w =

∑(N−1)/2
n=1 αnu

2h
n ∈ Ω2h

I h
2hw =

∑(N−1)/2
n=1 αnu

h
n ∈ Ωh

Note: I 2h
h PLA

u = A2hI 2h
h PLu and I h

2hI
2h
h = PL

C. T. Kelley MultiGrid
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Idealized Two-Grid Method: III

Simple method:

I Let uc ∈ Ωh

I Take one weighted Jacobi iteration on Ωh to obtain u1/2

I Compute the residual rh = f h − Ahu1/2

I Compute the coarse grid correction w = (A2h)−1I 2h
h rh

I u+ = u1/2 + I h
2hw
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Idealized Two-Grid Method: IV

If we did everything on Ωh, then

w = A−1r = A−1(f h − Ahu) = A−1f h − u = uh − u

so
u + w = uh

solves the problem. We will show that the two grid method does
pretty well.
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Idealized Two-Grid Method: V

Apply weighted Jacobi and let e = uh − u.

‖PHe1/2‖ ≤ (1/3)‖PHe0‖

so

rh = f h − Ahu1/2 = PH(f h − Ahu1/2) + PL(f h − Ahu1/2)

= AhPHe1/2 + PLA
he1/2.

We are just about done because . . .
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Idealized Two-Grid Method: VI

The coarse grid correction eliminates the low frequency errors.

I I 2h
h PLA

he1/2 = A2hPLe1/2, so

I (A2h)−1I 2h
h PLA

he1/2 = I 2h
h PLe1/2,

I and w = I h
2hI

2h
h PLe1/2 = PLe1/2.

Hence
e+ = e1/2 − PLe1/2 = PHe1/2

and hence ‖e+‖ ≤ (1/3)‖ec‖
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Algorithmic Description

two grid(h, uh
c , u

h
+,A, f )

Smooth once to obtain uh
1/2 from uh

c

rh = f h − Ahuh
1/2

Solve A2hw = I 2h
h rh exactly.

uh
+ = uh

1/2 + I h
2hw

C. T. Kelley MultiGrid
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Algorithmic Description: MG

Multigrid replaces the coarse mesh solve with two-grid iteration.
h: desired (finest) grid; H: coarsest grid.
multi grid(h,H, uh

c , u
h
+,A, f )

if h = H then
Solve Ahuh = f h exactly.

else
Smooth once to obtain uh

1/2 from uh
c

rh = f h − Ahuh
1/2

multi grid(2h,H, 0,w ,A, I 2h
h rh)

uh
+ = uh

1/2 + I h
2hw

end if

This is a V -cycle. The convergence rate remains unchanged.
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Observations

I MG is faster that two-grid because the exact solves live only
on the coarsest mesh.

I This method only works for the simplest problem where
I we can connect the eigenfunctions of A to those of M
I the intergrid transfers have the same eigenfunctions
I I h

2hI
2h
h = Ph

L

I In general, we have none of those things.
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Realistic Intergrid Transfers

I Nested grids: xh
i = ih; xh

2i = x2h
i

I I h
2h: linear interpolation;

(I h
2hv

2h)2i = v2h
i and (I h

2hv
2h)2i−1 = (v2h

i + v2h
i−1)/2.

I I 2h
h : full weighting

(I 2h
h vh)i = (vh

2i−i + 2vh
2i + vh

2i+1)/4.

except on the boundary.
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Matrix Representation: I

I N = 2p − 1 internal grid points

I Internal grid points: {xh
i }Ni=1; h = 1/(N + 1)

I Boundary grid points: xh
0 = 0, xh

N+1 = 1

I I h
2h is 1 + (N − 1)/2× N

I Other option: restriction by injection: (I 2h
h v)i = v2i

C. T. Kelley MultiGrid
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Matrix Representation: II

I h
2h =

1

2



1 0 . . . 0 0 0
2 0 . . . 0 0 0
1 1 . . . 0 0 0
0 2 . . . 0 0 0
0 1 1 . . . 0 0
0 0 2 . . . 0 0
0 0 1 1 . . . 0
...

...
...

...
...

...
0 0 0 . . . 1 1
0 0 0 . . . 0 2
0 0 0 . . . 0 1



, I 2h
h =

1

2
(I h

2h)T .
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Comments

I Interpolatory intergrid transfers have aliasing effects.

I You have to smooth an extra time.

I But you get the convergence rate 1/9 instead of 1/3 you’d
expect.
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Intergrid Transfers for 1-D: I h
2h

w = I h
2h(u)

N = h−1 − 1; h2 = 2h; N2 = h−1
2 − 1

for i = 0 : N2 do
w2i = ui

w2i+1 = (ui + ui+1)/2
end for

C. T. Kelley MultiGrid
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Intergrid Transfers for 1-D: I 2h
h

w = I 2h
h (u)

N = h−1 − 1; h2 = 2h; N2 = h−1
2 − 1

w0 = u0; wN2+1 = uN+1

for i = 1 : N2 do
wi = (u2i−1 + 2u2i + u2i+1)/4

end for

C. T. Kelley MultiGrid
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Smoother

Notation: Smooth ν times at level h with initial iterate uh

uh ← S(uh, f h, ν)

for is = 1 : ν do
for i = 1 : N do

wi = h2(f h
i + uh

i−1 + uh
i+1)/2

end for
for i = 1 : N do

uh
i = (1− ω)uh

i + ωwi

end for
end for

C. T. Kelley MultiGrid
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The V-cycle

uh ← V h(uh, f h)

if h = H then
Solve Ahuh = f h to high accuracy.

else
uh ← S(uj , f h, ν1)
Compute f 2h = I 2h

h (f h − Ahuh)
u2h = 0
u2h ← V 2h(v2h, f 2h)
uh ← uh + I h

2hu
2h

uh ← S(uh, f h, ν2)
end if

C. T. Kelley MultiGrid
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Comments

I Typical choice ν1 = ν2 = 1.

I V-cycle for high-order term is a good preconditioner for PDEs.

I V-cycle reduces the error by fixed amount independent of h.

I We consider very easy problems and simple grids

I Solve step for ΩH can be iterative.
I There’s more, much more

I Other smoothers (Gauss-Seidel, . . . )
I Algebraic multigrid (AMG)
I MG for Navier-Stokes, combustion . . .
I Non isotropic flows/grids

C. T. Kelley MultiGrid
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Matlab Example: Coarse Mesh Solve

You can avoid the exact solve on the coarse mesh with no loss.
This example shows that

I Convergence rate is independent of h

I You can simply do a few (24) smoothing steps at the coarse
level

I You are not restricted to Poisson’s equation

C. T. Kelley MultiGrid
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Helmholtz in 1-D

u′′ + σu = f ; u(0) = u(1) = 1.

Arrange things so the exact solution is

u(x) = ex sin(πx).

Comparisons from Coarse Solve Test directory

I Several fine levels: h = 2−l , 5 ≤ l ≤ 10

I Exact solve vs 24 smooths on Coarse mesh.

C. T. Kelley MultiGrid
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Nested Iteration or Full Multigrid (FMG): h = 2−pH

Solve AHuH = f H on ΩH ; h = H.
for il = 1 : p do

h = h/2
uh = I h

2hu
2h

uh ← V h(uh, f h)
end for

C. T. Kelley MultiGrid
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Data Structures

You do not want to repeatedly allocate storage for the solutions on
the various grids. You can avoid this by creating a large structure
which preallcoates the storage.
Some of the examples in the FMG Test do this.
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Comments

I Optimal complexity (see next slide)

I Complexity leads to debugging tool

I FMG is a solver. If error is O(h2) then
one V-cycle per level will suffice.

I A V-cycle can be a preconditioner

C. T. Kelley MultiGrid
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Complexity Example: I

I Ah discrete Laplacian in R, N interior grid points

I Cost of smoother, mat-vec, intergrid transfer = 3N

I Cost or residual, correction = N

I Cost of solve at level H is V0

I Then, cost of V-cycle at level hj = 2−jH is

Vj = 3(Nj(ν1 + ν2) + 2Nj) + 2Nj + Vj−1

where Nj = (1/hj)− 1 ≈ 2Nj−1.

C. T. Kelley MultiGrid
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Complexity Example: II

So, if ν1 = ν2 = 1, then

Vj = 14Nj + Vj−1 = 14
∑j

l=1 Nl + V0

≤ 28Nj + V0

Cost of FMG for h = 2−pH; N = Np

FMGi ≤
∑p

l=0 Nl + Vl ≤
∑p

l=0 29Nl + pV0

≤ 58N + pV0 = O(N).

C. T. Kelley MultiGrid
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Testing Complexity

In one dimension, you should see the computing time double if
h→ h/2.
In practice, MATLAB-sized problems take so little time that you
will find this hard to measure.
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Exercises

I Solve the transport equation with mutligrid in space using the
modified Atkinson-Brakhage method.

I Write a MG V-cycle for the 2-D Poisson Equation. Test it as
both a solver and a preconditioner within the klpde2ddemo.m.

I How does the performance of your V-cycle preconditioner for
the convection-diffusion problem in klpde2ddemo.m change if
you use two V-cycles instead of one?

C. T. Kelley MultiGrid
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