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Abstract. We show how the discretization of integral equations by composite Gauss rules can be related to approximations
of integral operators that converge in the operator norm, rather than strongly. From this norm convergent formulation a two
level approximate inverse can be constructed whose evaluation requires no fine mesh evaluations of the integral operator.
The resulting multilevel algorithm, therefore, is roughly half as costly as the Atkinson-Brakhage iteration. The algorithm is
applicable to both linear and nonlinear equations.
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1. Introduction. The purpose of this paper is to show how the discretization of integral equations by
composite Gauss rules can be related to approximations of integral operators that converge in the operator
norm, rather than strongly. From this norm convergent formulation a two level approximate inverse can
be constructed whose evaluation requires no fine mesh evaluations of the integral operator. The resulting
multilevel algorithm, therefore, is roughly half as costly as the Atkinson-Brakhage iteration. The algorithm
is applicable to both linear and nonlinear equations.

We begin by reviewing the Atkinson-Brakhage [2], [5] algorithm for integral equations. The important
ideas are completely illustrated by consideration of the linear equation on C[0, 1],

u(x) = (Ku)(x) + g(x) =
∫ 1

0

k(x, y)u(y) dy + g(x).(1.1)

In (1.1) k and g are given continuous functions and u ∈ C[0, 1] is to be found. We assume throughout this
paper that the linear integral operator given in (1.1) is such that I − K is a nonsingular map on C[0, 1].
Continuity of k and the Fredholm alternative theorem imply that I−K is also a nonsingular map on Lp[0, 1]
for all p ∈ [1,∞]. Throughout this paper we will let L(X) denote the space of bounded operators on a
Banach space X endowed with the usual operator norm.

The Atkinson-Brakhage algorithm begins with a sequence of quadrature rules, indexed by m, with nodal
points {xm

j }
Nm
j=1 and weights {wm

j }
Nm
j=1. If

lim
m→∞

Nm∑
j=1

f(xm
j )wm

j =
∫ 1

0

f(x) dx(1.2)

then the sequence of operators {Km} ⊂ L(C[0, 1]) defined by

Km(u)(x) =
Nm∑
j=1

k(x, xm
j )u(xm

j )wm
j(1.3)

is collectively compact [1] and converges strongly to the operator K.
Equations of the form

(I −Km)u = f(1.4)

for f ∈ C[0, 1] can be solved by first solving the finite dimensional system

u(xm
i )−

Nm∑
j=1

k(xm
i , x

m
j )u(xm

j )wm
j = f(xm

i )(1.5)
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2 C. T. KELLEYfor the values of the solution at the nodal points and then recovering the values of u at an arbitrary x ∈ [0, 1]
by Nyström interpolation

u(x) = f(x) +
Nm∑
j=1

k(x, xm
j )u(xm

j )wm
j .(1.6)

There are several important consequences of the collective compactness and strong convergence of Km

to K. First of all, there is l0 such that if m ≥ l0 then then I −Km is nonsingular and

(I −Km)−1 s→ (I −K)−1.(1.7)

Equation (1.7) implies, of course, that the solutions of (1.4) converge uniformly to the solution of (1.1).
Another consequence of collective compactness and strong convergence is that that for any ρ > 0 there

is l0 such that if L ≥ l ≥ l0 the operator

BL
l = I + (I −Kl)−1KL(1.8)

satisfies

‖I −BL
l (I −KL)‖ ≤ ρ.(1.9)

(1.9) is the central estimate in the Atkinson-Brakhage two level method. This method was proposed in [2]
and [5] as a method to solve

u−KLu = g

for a given level L by using BL
l as a preconditioner for a Richardson iteration. The two level iteration,

described in terms of the transition from a current iterate uc to a new iterate u+, is

u+ = uc −BL
l (uc −KLuc − g).(1.10)

L is usually called the fine mesh or fine level and l the coarse mesh or level.
One might think that (I − Kl)−1 alone would make an effective approximate inverse. However the

convergence in (1.7) is only strong and not in the operator norm. The effect of this is that convergence of the
iteration with (I −Kl)−1 as the approximate inverse is two-step q-linear [2] and therefore no more efficient
than the iteration based on (1.8). The iteration based on (1.8) has a more predictible and regular behavior,
being one step q-linearly convergent. The algorithm proposed here may be thought of as replacement of
(I −Kl)−1 by a norm convergent sequence that is no more expensive to evaluate than (I −Kl)−1.

From (1.10) it is clear that two evaluations of KL are required for a single Atkinson-Brakhage iteration.
First KLuc is computed to form the linear residual

rc = g − (I −KL)uc

The second evaluation is for the computation of BL
l rc

BL
l rc = rc + (I −Kl)−1KLrc.

The approach suggested here eliminates this second evaluation of KL.
Various extensions of the Atkinson-Brakhage iteration have been proposed recently. [17] advocates a

nested iteration strategy in which the fine mesh L is refined as the iteration progresses. One may also use
piecewise linear interpolation to move from the coarse to the fine mesh in the evaluation of BL

l , rather than
the Nyström interpolation that is implicit in (1.8). The Atkinson-Brakhage method can also be applied to
linear and nonlinear compact fixed point problems in which the fixed point map is not given explicitly or
with full accuracy [20], is not smooth [12], [19], [21], or (in a nonlinear setting) is singular at the solution [17].
In all of this previous work, strong convergence and collective compactness was central to proving that some
form of the Atkinson-Brakhage iteration could be applied and in all cases the cost of a single iterate was two



FAST ALGORITHM FOR INTEGRAL EQUATIONS 3fine mesh evaluations of KL. Second-kind multigrid methods [11] are known to have similar computational
costs [3].

In a recent paper, [18], on application of the Atkinson-Brakhage iteration to the source iteration map
for the linear transport equation, we used the fact that certain discretizations could be formulated either as
collectively compact and strongly convergent sequences of maps [22] or as a norm convergent sequences [25].
In [18] we use show that the difference in the two viewpoints is, from the algorithmic point of view, equivalent
to a change in the fine to coarse mesh intergrid transfer from a point evaluation to an average. This enables
us to avoid the second evaluation of the fine mesh evaluation of the action of the linear source iteration map.

In this paper we show how the observation in [18] that this second evaluation of KL can be avoided
extends to integral equations if the coarse and fine mesh quadrature rules are composite Gauss rules in which
the fine mesh intervals are nested within the coarse mesh intervals. There is no requirement that the coarse
and fine mesh rules be based on the same order of Gaussian quadrature.

2. Description and Analysis of the Algorithm. We assume the quadrature rule at level m is a
composite Gauss rule with qm subintervals {Im

r }
qm

r=1 with pm + 1 ≥ 1 points used in each interval. Hence
Nm = qm(pm + 1). Now consider the sequence of operators {Km} defined by

Kmu(x) =
∫ 1

0

km(x, y)u(y) dy(2.1)

where km is the piecewise polynomial on [0, 1]× [0, 1] defined for x ∈ Int(Im
r ) and y ∈ Int(Im

s ) by

km(x, y) =
∑

xm
i
∈Im

r ,xm
j
∈Im

s

k(xm
i , x

m
j )lri (x)lsj(y).(2.2)

In (2.2), lri is the Lagrange interpolating polynomial on Im
r of degree pm. For x ∈ Im

r

lri (x) =
∏

j 6=i,xm
j
∈Im

r

x− xm
j

xm
i − xm

j

.

Here Int(S) denotes the interior of a set S. The kernels km are discontinuous and we define them at the
endpoints of the intervals {Im

r }
qm

r=1 as the arithmetic means of their limiting values from the right and
left. We use these kernels only as tools in the analysis and do not construct them in the implementation.
Km is a degenerate kernel operator. Such operators have been used as approximations for the purposes
of solution and error estimation for many years [4], [10], where the kernels are typically constructed using
orthonormal bases or operator product formulae for k. In this paper, the operator Km has been constructed
as a preconditioner, which is a quite different purpose.

We will require the following lemma, which is a direct consequence of elementary facts on polynomial
interpolation [13].

Lemma 2.1. If k is continuous and the sequence of composite Gauss rules is such that (1.2) holds and
there is P such that pm ≤ P for all m, then km → k uniformly. In that case Km → K in the operator norm.

A consequence of Lemma 2.1 is that if I−K is nonsingular, so is I−Kl for l sufficiently large. Moreover,
(I −Kl)−1 is a good approximate inverse of I −K. We show that the action of (I −Kl)−1 on a function can
be evaluated in a more efficient way than that the Atkinson-Brakhage preconditioner (1.8). To do this we
seek solutions in L∞[0, 1], rather than C[0, 1]. Continuous solutions may be recovered to full accuracy with
a Nyström interpolation if needed.

2.1. Basic Algorithm. Let V m be the subspace of L∞ consisting of piecewise polynomials having
degree pm + 1 on each of the m subintervals Im

r . We assume that the intervals are nested and the degrees
are related in such a way that V m ⊂ V n if m ≤ n.

We can now propose the initial two level form of the iteration. We seek to find an approximate solution
uL ∈ V L of (I −KL)u = f and employ the iteration

uL
+ = uL

c − (I −Kl)−1(uL
c −KLu

L
c − g).(2.3)



4 C. T. KELLEYThis is simply Richardson iteration using (I −Kl)−1 as an approximate inverse for I −KL. Since

KLu = KLu for all u ∈ V L(2.4)

we may rewrite (2.3) as

uL
+ = uL

c − (I −Kl)−1(uL
c −KLu

L
c − g),(2.5)

which is identical to (1.10) except that BL
l is replaced by (I − Kl)−1. This means that the additional

computation of the action of KL that was required in the computation of the action of BL
l is not needed in

the iteration given by (2.5).
The multilevel form of the algorithm refines the fine mesh as the iteration progresses. If the spaces V m

are nested, as we have assumed, then we may compute uL+1 ∈ V L+1 from uL ∈ V L ⊂ V L+1 by

uL+1 = uL − (I −Kl)−1(uL −KL+1u
L − g).(2.6)

Note that the computation of uL+1 requires only a single evaluation of the action of KL+1, namely the
computation of KL+1u

L in the right hand side of (2.6). The main convergence result in this paper is
Theorem 2.2. Assume that k is continuous, that I − K is nonsingular, and that the sequence of

composite Gauss rules is such that (1.2) holds, pm ≤ P for some P , and that V m ⊂ V m+1. Then for l
sufficiently large and ul ∈ V l the iteration given by (2.6) converges uniformly to u∗ = (I −K)−1g.

Proof. Lemma 2.1 implies that there are l and M such that if L ≥ l then I −KL is nonsingular and

‖(I −KL)−1‖L(L∞) ≤M.

We define

νL
l = ‖I − (I −Kl)−1(I −KL)‖L(L∞) and τL = ‖(I −KL)u∗ − g‖∞.(2.7)

Our assumptions imply that

lim
l→∞,L≥l

νL
l = 0 and lim

L→∞
τL = 0.(2.8)

Let eL = uL − u∗. Using (2.5) and the fact that uL ∈ V L implies that KLu
L = KLu

L, we obtain

eL+1 = eL − (I −Kl)−1((I −KL+1)eL + (I −KL)u∗ − g).

Hence

‖eL+1‖∞ ≤ νL+1
l ‖eL‖∞ +MτL.(2.9)

This completes the proof if we require l to be large enough so that νL
l < 1/2 for all L ≥ l.

Suppose that we seek to maintain accuracy to truncation error as the iteration progresses. By this we
mean that

‖eL‖∞ ≤MτL(2.10)

for all L. While it is impossible to verify (2.10), one can test

‖uL −KLu
L − g‖∞ ≤MτL,(2.11)

provided an estimate can be found for τL. (2.11) implies (2.10) with a different choice of M . If there is µ
such that

lim
L→∞

τL+1/τL → µ

then a way to maintain (2.11) is to approximate τL+1 by µ‖uL − KL+1u
L − g‖∞. Hence, a useful strategy

would be to set NL+1 = NL (i. e. do not refine the mesh) until the residual had been reduced by a factor
of µ over the last time the mesh had been refined. In principle several iterations could be required for this
criterion to hold. However, (2.9) implies that if l is sufficiently large only a single iteration will be needed to
reduce the residual by a factor of µ.



FAST ALGORITHM FOR INTEGRAL EQUATIONS 52.2. Implementation. In this subsection we indicate how the iteration given by (2.6) can be imple-
mented efficiently. We show how Πlr

L can be computed and give an example using a composite midpoint
rule as the coarse mesh rule. We also discuss the computational costs of the iteration and compare these
costs in detail to those of the Atkinson-Brakhage iteration.

Let Pm be the projection from C[0, 1] onto V m defined by piecewise polynomial interpolation. Let Πm

be the orthogonal projection, relative to the inner product of L2[0, 1], onto V m. This projection is also a
projection in C[0, 1] in the Banach space sense, but is not a norm one projection.

We begin the iteration by solving

ul −Klu
l = g

either exactly or approximately. We defer our discussion of how equations of the form (I − Kl)w = f are
solved until later in this subsection. Given uL we must first compute

rL = uL −KL+1u
L − g.(2.12)

It is sufficient to compute rL at the nodal points of the quadrature rules with indices l and L + 1. This
requires addition of vectors of length NL+1 and Nl and the evaluation of uL and the action of KL+1 on
uL ∈ V L at the nodal points of the quadrature rules with indices l and L + 1. As one can see from the
definition of KL, the cost of these evaluations is O(NL+1NL) floating point operations.

Next we solve

w −Klw = rL.(2.13)

Since

Km = KmΠm = PmKmΠm

for all m. We may solve (2.13) by first computing Πlw by solving

Πlw −KlΠlw = Πlr
L(2.14)

and then recovering w by the Nyström interpolation

w = rL +KlΠlw.(2.15)

Finally we compute uL+1 = uL − w. The Nyström interpolation in (2.15) has a cost of O(NlNL+1) floating
point operations which can be neglected when compared to the cost of the computation of rL.

The remaining issue is the solution of (2.14). Note that the action of Pil on rL ∈ vL requires integration
of polynomials of degree plpL on each subinterval IL

r . These integrals can be computed exactly using the
quadrature rule at level L and hence need only values of rL at the nodal points of the quadrature rule. For
example, if l = 0 corresponds to a composite midpoint rule and v ∈ V L then

(Πlv)(x) =
∑ql

i=1 χi(x)
∫

Il
i
v(x) dx

=
∑ql

i=1 χi(x)
∑

xL
j
∈IL

i
v(xL

j )wL
j .

(2.16)

In (2.16), χl
i denotes the characteristic function of the interval I l

i . Note that the cost of the computation of
the action of Πl on rL is O(NL) floating point operations, which can also be neglected when compared to
the cost of the computation of rL. This fine-to-coarse intergrid transfer by averaging is the key distinction
between our approach and the classical one, where the fine-to-coarse intergrid transfer is by point evaluation.

The solution of (2.14) can be reduced to the solution of a finite dimensional system for the values of Πlw
at the nodal points of the quadrature rule at level l.

u(xl
i)−

Nl∑
j=1

k(xl
i, x

l
j)u(xl

j)wl
j = (Πlr

L)(xl
i),(2.17)



6 C. T. KELLEYThe action of Πl on a function f can be computed by (2.16) if f ∈ V L or approximated by ΠlPLf if
f 6∈ V L. In our implementation we compute Πlr

L by applying (2.16) to compute Πl(uL − KL+1u
L) and

approximating Πlg by ΠLPLg. This approximation is accurate to within truncation error as the accuracy of
PLg as an approximation of g partially determines the accuracy of (I −KL)−1g as an approximation to the
solution.

This is very similar to the system to the solved for the Atkinson-Brakhage iteration, the difference
between them being only in the right hand sides. In fact, (1.5) with m = l can be written as

u(xl
i)−

Nl∑
j=1

k(xl
i, x

l
j)u(xl

j)wl
j = (Plf)(xl

i)(2.18)

since (Plf)(xl
i) = f(xl

i).
The direct solution of (2.17) would incur one time cost O(N3

l ) floating point operations for a matrix
factorization and a cost of O(N2

l ) for each subsequent solve. For large problems, such as those considered
in [18] and [21], this cost may not be negligible when compared to the O(NL+1NL) cost for the evaluation
of rL. Moreover it may not be possible to store a matrix representation of Kl. For these reasons we prefer
an iterative method such as GMRES [26] which can give a sufficiently accurate solution at a cost of O(N2

l )
floating point operations for each solve. This clearly can be neglected when compared to the cost of the
computation of rL.

The Atkinson-Brakhage approach requires the same computational effort that we require and an addi-
tional evaluation of the action of KL+1 on a vector. If we let Cn

m be the cost in floating point operations
of the application of Km (or Km) to a function in V n, our approach is dominated by the CL

L+1 cost of the
computation of rL. The Atkinson-Brakhage iteration incurs the same cost and must also compute

KL+1r
L

in order to compute the action of BL+1
l on rL. This adds a cost of CL+1

L+1 floating point operations. Hence
our approach reduces the cost for each iterate by at least a factor of two. If the cost of an evaluation of
the action of KL on a function is O(N2

L), Nm = 2Nm−1 for all m, and the coarse mesh is fine enough so
that only one iterate is needed at each mesh level, then the total cost of an iteration based on the algorithm
proposed here is roughly 4/3 that of a KL evaluation at the finest mesh. This analysis is also valid for
nonlinear problems. Contrast this with the estimates, also valid for nonlinear problems, of 8/3 for the
Atkinson-Brakhage approach and 7/3 for the multigrid method of the second kind from [11].

Finally we remark that if we use (I−Kl)−1 as an approximate inverse, a possibility that was investigated
in [2], we would use pointwise evaluation (based on Pl and (2.18)) as the fine-to-coarse intergrid transfer.
This leads to two step linear convergence for l sufficiently large and is no more efficient than the Atkinson-
Brakhage algorithm as described in § 1. However, use of (I − Kl) as an approximate inverse will give one
step linear convergence for sufficiently large l by Lemma 2.1. The finite dimensional equation to be solved
is exactly the same as for (I −Kl)−1 but the fine-to-coarse intergrid transfer is an averaging (based on Πl

and (2.17)).

2.3. Modifications. In this subsection we show how modifications that have been used successfully
in the context of the Atkinson-Brakhage algorithm [12], [20], [21], [18], can also be used with the present
algorithm.

We begin by considering (2.12). Often it is desirable to replace uL in (2.12) by a more accurate in-
terpolation, an interpolation that enforces continuity, or a less expensive interpolation into the finer mesh.
Nyström interpolation as a coarse-to-fine intergrid transfer for solution information is an example of this. If
we denote by IL+1

L an prolongation operator for solution information and replace (2.12) by

r̃L = IL+1
L uL −KL+1I

L+1
L uL − g(2.19)

convergence will not be affected if there are CI and σL → 0 such that for all L and u ∈ V L

‖IL+1
L u− u∗‖∞ ≤ CI(‖u− u∗‖+ σL)(2.20)



FAST ALGORITHM FOR INTEGRAL EQUATIONS 7For example, our assumptions imply that (2.20) is satisfied by Nyström interpolation,

IL+1
L u = g +KLu,

with σL = τL, where τL is given by (2.7).
In many cases, such as the very large problems considered in [18], there is no sufficient storage to solve

even the coarse mesh problems by a direct method. In that event we replace the the computation of Πlw
from (2.14) by any w̃ ∈ V l that satisfies

‖w̃ −Klw̃ −Πlr̃
L‖L2 ≤ ρL

l ‖Πlr̃
L‖L2 ,(2.21)

which is a typical termination criterion for Krylov methods such as GMRES [26]. If ρL
l remains bounded

away from zero then the norm convergence of Kl implies that (2.21) will be satisfied after a number of
GMRES iterations that is independent of L [24] and therefore the cost of the approximate solution of (2.14)
is O(N2

l ) floating point operations. The L2 norms may be computed exactly in terms of the quadrature
weights and nodes at level l. (2.21) implies that w̃ is an L2-norm accurate approximation to Πlw and can
be used in (2.15) to obtain an L∞-norm accurate approximation to w.

As was pointed out in [17], the Nyström interpolation implicit in (2.15) may be replaced by any inter-
polation that converges strongly to the identity. This may be necessary in cases, such as those considered
in [18] for which an explicit representation of the kernel of the integral operator is not available, or convenient
for enforcement of continuity. In [18] we used a piecewise linear interpolation Qm which we now define. For
a given m we set xj = xm

j , N = Nm, and order the quadrature nodes as

x1 < x2 < . . . < xN .

For a given m, x ∈ [0, 1], and j = 1, . . . , N − 1,define

hj = xj+1 − xj and lj(x) = (x− xj),

If u ∈ C[0, 1] we define Qmu to be the piecewise linear function given by

Qmu(x) =



u(x1), 0 ≤ x ≤ x1,

(−lj+1(x)u(xj) + lj(x)u(xj+1))/hm
j , xj ≤ x ≤ xj+1,

j = 1, . . . , N − 1,

u(xN ), xN ≤ x ≤ 1.

(2.22)

The iteration that incorporates these changes is given by

r̃L = IL+1
L uL −KL+1I

L+1
L uL − g

Find w̃ ∈ V L such that ‖w̃ −Klw̃ −Πlr̃
L‖L2 ≤ ρL

l ‖Πlr̃
L‖L2

uL+1 = uL − r̃L +QlKlw̃.

(2.23)

Ql may be replaced by any map such that QlKl → K.
We summarize these observations as a corollary of Theorem 2.2.
Corollary 2.3. Assume that k is continuous, that I − K is nonsingular, and that the sequence of

composite Gauss rules is such that (1.2) holds, pm ≤ P for some P , and that V m ⊂ V m+1. Let Qm be any
map such that QmKm → K in L(L∞). Let IL+1

L satisfy (2.20). Then for l sufficiently large and ρ sufficiently
small, the iteration given by (2.23) converges uniformly to u∗ = (I −K)−1g.



8 C. T. KELLEY2.4. Nonlinear Problems. We can apply the ideas in this section to nonlinear integral equations of
the form

u(x) = T (u)(x) = Φ
(
x,Ψ(u)(x)

)
,(2.24)

where Ψ is a nonlinear integral operator of the form

Ψ(u)(x) =
∫ 1

0

ψ(x, y, u(y)) dy.

We make the standard assumptions from nonlinear equations.
Assumption 2.1. Here Φ is continuous and Lipschitz continuously differentiable in its second argument

and ψ is continuous and Lipschitz continuously differentiable in its third argument. There is a solution
u∗ ∈ C[0, 1] to (2.24) and I − T ′(u∗) is nonsingular.

Note that the differentiability assumptions on Φ and ψ imply that T is Fréchet differentiable in L∞ and
C[0, 1].

We approximate T at level m by

Tm(u)(x) = Φ
(
x,Ψm(u)(x)

)
where

Ψm(u)(x) =
Nm∑
j=1

ψ(x, xm
j , u(xm

j ))wm
j .

The analog of the iteration (2.23), of which (2.6) is a special case, is an approximate Newton iteration.
Here the role of the kernels kl is played by partial derivatives of ψ. The Fréchet derivative of Tm is defined
for u, v ∈ V m ∪ C[0, 1] by

T ′m(u)(v)(x) = Φ2

(
x,Ψm(u)(x)

) Nm∑
j=1

ψ3(x, xm
j , u(xm

j ))v(xm
j )wm

j .(2.25)

Here Φ2 and ψ3 denote differentiation with respect to the second argument in Φ and the third in ψ.
For a fixed u ∈ C[0, 1], {Tm(u)} is a collectively compact strongly convergent sequence of operators and

the classical Atkinson-Brakhage algorithm could be applied to the linear equations for Newton steps. We
now define a norm convergent sequence {Tm(u)} for u ∈ C[0, 1] ∪ V l. For u, v ∈ C[0, 1] ∪ V l

Tm(u)(v)(x) =
∫ 1

0

ψ3,m(x, y;u)v(y) dy

where ψ3,m(x, y;u) is the piecewise polynomial on [0, 1]× [0, 1] defined for x ∈ Int(Im
r ) and y ∈ Int(Im

s ) by

ψ3,m(x, y;u) =∑
xm

i
∈Im

r ,xm
j
∈Im

s
Φ2(
(
xm

i ,Ψm(u)(xm
i )
)
ψ3(xm

i , x
m
j , u(xm

j ))lri (x)lsj(y).
(2.26)

The nonlinear analog of the iteration (2.23) is

r̃L = TL+1(IL+1
L uL)

Find w̃ ∈ V L such that ‖w̃ − Tl(ul)w̃ −Πlr
L‖L2 ≤ ρL

l ‖Πlr
L‖L2

uL+1 = uL − r̃L +QlTl(ul)w̃.

(2.27)

Here we require that QmTm(u) → T ′(u) in norm uniformly in u for u sufficiently near u∗. We require that
the (possibly nonlinear) intergrid transfers IL+1

L satisfy (2.20). Nonlinear Nyström interpolation will do this.



FAST ALGORITHM FOR INTEGRAL EQUATIONS 9The convergence of the nonlinear algorithm is also a corollary of the proof of Theorem 2.2 and known
results on Newton-like methods [17], [8].

Corollary 2.4. Let Assumption 2.1 hold. Assume that the sequence of composite Gauss rules is such
that (1.2) holds, pm ≤ P for some P , and that V m ⊂ V m+1. Let Qm be any map such that QmTm(u)→ T ′(u)
in norm uniformly in u for u sufficiently near u∗. Let IL+1

L satisfy (2.20). Then for l sufficiently large, ul

sufficiently near u∗, and ρ sufficiently small, the iteration given by (2.27) converges uniformly to u∗.
The final algorithmic modification that one can make in the nonlinear case is to replace exact computation

of Φ2 and ψ3 by difference operators. The effects of such a change are have been described in [20] in the
setting of compact fixed point problems and in [27] and [9] in the context of nonlinear equations. If the
differencing is done carefully, there is no observable change in the convergence rates if the nonlinearities are
not too severe. The papers cited above offer a complete analysis that carries over to the case here. In the
nonlinear example in § 3 we computed the action of Tm(u) on a function with forward differences.

Finally we remark that no changes are needed in the analysis or algorithms to solve systems of integral
equations, rather than single equations, over compact sets Ω ⊂ RN rather than [0, 1].

3. Numerical Results. In the computations in this section the quadrature rules were composite mid-
point rules on [0, 1] with Nm = qm = 2m,

xm
i = (i− 1/2)/Nm, and wm

i = 1/Nm.

We report on two examples, one linear and the other nonlinear. All computations were performed on a
SUN SPARCstation 1+ running SUN OS 4.1 in SUN FORTRAN version 1.3.1.

Coarse mesh linear equations were solved with GMRES using a modification of the Brown-Hindmarsh
GMRES code [6] with changes made in the inner product to allow the approximate L2 inner product to be
used instead of the RN inner product. We terminated the GMRES iteration when the relative residual was
below 10−2. Intergrid transfers of solution information (IL+1

L ) were done by Nyström interpolation in all
cases. We terminated the iteration on the coarse mesh l when the residual was below 10−4. For subsequent
iterates we terminated when the residual had been reduced by a factor of µ = .25, the expected reduction
from the accuracy of the quadrature rule. In all cases a single iterate was required at levels L > l.

As the iteration progresses we tabulate, for L ≥ l, the number of fine mesh points NL, the iteration
counter i, the number of GMRES iterations required for that iteration ig, the norm of the residual Ri, and,
for i > 0, the ratio of successive residuals at the current mesh level.

Our first computation is on the linear problem

u(x)− 1
λ

∫ 1

0

u(y) dy
1 + (x− y)2

= g(x)/λ.(3.1)

g was set so that the solution was u(x) = 1. We report on two computations, one with λ = 1, an easy problem,
and the other with λ = .01. The more difficult problem required a finer coarse mesh for convergence and
the convergence from level to level took longer to settle down. However the performance of the approximate
inverse was still good.

For a nonlinear example we consider the Chandrasekhar H-equation [7]

H(x) =
(
I − c

2

∫ 1

0

xH(y)
x+ y

dy

)−1

.(3.2)

We computed derivatives by forward differences.
The nonlinear equation has two solutions for 0 < c < 1, only one of which has physical meaning. That

solution will naturally be found by a preconditioned Richardson iteration [15] which preserves analyticity in
the parameter c. There is a simple fold singularity [23], [16], [14], and therefore a singular Fréchet derivative
at the solution when c = 1. The solution has a logarithmic singularity at x = 0 and hence only first order
accuracy is observed. We report on two computations, one for c = .5 and the other at c = .99 near the
singularity.
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Table 3.1
Linear equation, λ = 1.

N i ig Ri Ri/Ri−1

8 0 0.18D+00
1 2 0.45D-03 0.25D-02
2 1 0.13D-05 0.29D-02

16 0 0.63D-03
1 2 0.64D-04 0.10D+00

32 0 0.15D-03
1 2 0.23D-04 0.15D+00

64 0 0.38D-04
1 2 0.68D-05 0.18D+00

128 0 0.95D-05
1 2 0.18D-05 0.19D+00

256 0 0.24D-05
1 2 0.47D-06 0.20D+00

512 0 0.60D-06
1 2 0.12D-06 0.20D+00

1024 0 0.15D-06
1 2 0.30D-07 0.20D+00

Table 3.2
Linear equation, λ = .01.

N i ig Ri Ri/Ri−1

16 0 0.92D+02
1 1 0.23D-01 0.25D-03
2 3 0.41D-04 0.18D-02

32 0 0.14D-01
1 3 0.21D-02 0.15D+00

64 0 0.25D-01
1 3 0.10D-02 0.41D-01

128 0 0.14D-01
1 3 0.49D-03 0.36D-01

256 0 0.71D-02
1 2 0.21D-03 0.29D-01

512 0 0.30D-02
1 3 0.16D-03 0.53D-01

1024 0 0.18D-02
1 2 0.32D-04 0.18D-01
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Table 3.3
H-equation, c = .5.

N i ig Ri Ri/Ri−1

8 0 0.10D+01
1 2 0.46D-01 0.46D-01
2 2 0.42D-04 0.91D-03

16 0 0.15D-02
1 2 0.13D-04 0.85D-02

32 0 0.74D-03
1 2 0.61D-05 0.82D-02

64 0 0.36D-03
1 2 0.23D-05 0.62D-02

128 0 0.18D-03
1 2 0.75D-06 0.42D-02

256 0 0.90D-04
1 2 0.24D-06 0.26D-02

512 0 0.45D-04
1 2 0.72D-07 0.16D-02

1024 0 0.23D-04
1 2 0.21D-07 0.94D-03

Table 3.4
H-equation, c = .99.

N i ig Ri Ri/Ri−1

8 0 0.10D+01
1 2 0.34D+00 0.34D+00
2 2 0.83D-01 0.25D+00
3 2 0.12D-01 0.14D+00
4 2 0.44D-03 0.37D-01
5 3 0.72D-06 0.16D-02

16 0 0.31D-02
1 3 0.76D-04 0.24D-01

32 0 0.15D-02
1 3 0.39D-04 0.26D-01

64 0 0.73D-03
1 3 0.15D-04 0.21D-01

128 0 0.36D-03
1 3 0.53D-05 0.15D-01

256 0 0.18D-03
1 3 0.17D-05 0.97D-02

512 0 0.90D-04
1 3 0.55D-06 0.62D-02

1024 0 0.45D-04
1 3 0.17D-06 0.38D-02
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