Problem Set 8

Ph.D. Course 2009:
 An Introduction to DG-FEM for solving partial differential equations

If you have not already done so, please download all the Matlab codes from the book from
http://www.nudg.org/
and store and unpack them in a directory you can use with Matlab.

The focus of todays exercises is the constuction and solution of DG-FEM for elliptic problems.

Let us first consider the problem

$$
u_{x x}(x)=f(x), \quad u(x)=\sin (\pi x)
$$

- Determine $f(x)$ to have the desired exact solution.
- Formulate and implement a DG-FEM scheme for the 1D Poisson equation. Generalize the flux so you can consider both a stabilized central flux and a "flip-flop" (LDG) flux.
- Check to see if the operator is symmetric for different combinations of boundary conditions - Dirichlet/Neumann at the two boundaries.
- Solve first the problem on $x \in[0,2]$ with $u(0)=u(2)=0$. Solve it using both flux types and discuss whether the accuracy is as expected.
- Solve the problem with $x \in[0,1.5]$ with $u(0)=u_{x}(2)=0$. Solve it using both flux types and discuss whether the accuracy is as expected.
- Generalize the solver to also include

$$
\left(a u_{x}\right)_{x}=f
$$

- Choose a smooth $a(x)$ and a solution to test the accuracy of the solver.

Let us now also consider the two-dimensional case,

$$
\nabla^{2} u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in[-1,1]^{2}
$$

- Generate several grids with DistMesh or some other grid generator.
- Assume first that $u(x, y)=\sin (\pi x) \sin (\pi y)$ and find $f(x, y)$.
- Formulate and implement a DG-FEM scheme for the 2D Poisson equation. Generalize the flux so you can consider both a stabilized central flux and a "flip-flop" (LDG) flux.
- Solve the problem assuming Dirichlet boundary conditions and look at accuracy of the schemes.
- Use a direct solver and consider the effect of reordering on solution speed and memory usage.
- Consider the generalized problem

$$
\nabla \cdot(a(\mathbf{x}) \nabla u)=f(\mathbf{x}), \mathbf{x} \in[-1,1]^{2}
$$

and alter the code to enable the solution of this problem.
If time permits it

- Check that the problem is symmetric and positive definite for different values of N and K.
- Solve the problem using an iterative solver.
- Consider the impact of different preconditioning techniques on solution speed.
- Extend the code to deal with inhomogeneous boundary conditions.

Enjoy!

