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Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics
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Numerical solution of PDEs

To construct a numerical method for solving PDEs we need to
consider

◮ How to represent the solution u(x , t) by an approximate
solution uh(x , t)?

◮ In which sense will the approximate solution uh(x , t) satisfy
the PDE?

The two choices separate and define the properties of different
numerical methods...

The choice of how to represent the solution is intimately connected
with the need for meshes
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When do we need a mesh?

A mesh is needed when

◮ We want to solve a given problem on a computer using a
method which requires a discrete representation of the domain

Two main problems to consider

◮ Numerical method:
Which numerical method(s) to employ for defining a suitable
solution procedure for the problem.

◮ Mesh generation:
How to represent the domain of interest for use in our solution
procedure.
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When do we need a mesh?

It is convenient if

◮ We can independently consider the problem solution

procedure and mesh generation as two distinct problems.
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Domain of interest

In DG-FEM we have chosen to represent the problem domain Ω by
a partitioning of the domain into a union of K nonoverlapping
local elements Dk , k = 1, ...,K such that

Ω ∼= Ωh =
K
⋃

k=1

Dk

Thus, the local representation of our solution uk
h is intimately

connected with the representation of the elements of the mesh.

For our purposes we are interested in nonoverlapping meshes...
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What defines a mesh?

◮ A mesh is defined as a discrete
representation Ωh of some spatial domain
Ω.

◮ A domain can be subdivided into K smaller
non-overlapping closed subdomains Ωk

h .
The mesh is the union of such subdomains

Ωh =

K
⋃

k=1

Ωk
h

◮ The most common types of subdomains are
polygons such as triangles/tehedra and
quadrilaterals/cubes.

◮ Mesh generation can be a demanding and
non-trivial task, especially for complex
geometries.

◮ Easier to adapt unstructured meshes to
practical problems in multi-dimensions
involving complex geometry.

Figure: F-15. From
www.useme.org
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What defines a mesh?

Mesh terminology:

◮ Structured mesh
Nearly all nodes have the same number of neighbors
(interior vs. boundary nodes).

◮ Unstructured mesh
Non-obvious number of neighbors for each node in mesh.

◮ Conformal mesh
Nodes, sides and faces of neigboring elements are perfectly
matched.

◮ Hanging nodes
Nodes, which are not perfectly matched with a neighboring
element node.
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What defines a mesh? I

◮ A mesh is completely defined in terms of a set of (unique)
vertices and defined connections among these.

◮ coordinate tables, VX and VY (unique vertices)
◮ mesh element table, EToV (triangulation/quadrilaterals/etc.)

◮ In addition it is customary to define types of boundaries for
specifiying boundary conditions where needed.

◮ a boundary type table, BCType (element face types)
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What defines a mesh? I

◮ Very simple meshes can be created manually by hand.

◮ Automatic mesh generation is generally faster and more
efficient

◮ Some user input for accurately describing the geometry and
desired (initial) mesh resolution may be required.

◮ Note: Mesh data can be stored for reuse several times
- not necessary to generate every time!
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Mesh data
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From our favorite mesh generator we have obtained
◮ Basic mesh data tables, i.e. VX, VY and EToV

VX = [-1 1 1 -1];

VY = [-1 -1 1 1];

EToV = [1 2 4;

2 3 4];
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Connectivity tables

◮ The two grids can be described by exactly the same
connectivity table!

◮ The coordinate tables for the vertices are different!

◮ For simple meshes this can be exploited to generate the
connectivity table for a simple mesh and then use it together
with a user-defined coordinate table.
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Connectivity tables

◮ However, using a non-uniform triangularization allow for better
grid quality and adaptivity for representing the spatial domain.
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Mesh generators available

◮ Lots of standard open source or commercial mesh generation
tools available!

◮ Test and pick you own favorite!
◮ Disadvantage: may require a translation script to be created

for use with your own solver.

◮ Important properties of mesh generators
◮ Grid quality (e.g. aspect ratio and element angles)
◮ Efficiency
◮ Features for handling BCs, adaptivity, etc.

◮ An example of a free software distribution package for
generating unstructured triangular meshes is DistMesh for
Matlab.
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Translation scripts in Matlab

◮ Translation scripts take a filename as input and return
necessary mesh data as output

function [Nv, VX, VY, K, EToV] = MeshReaderGambit2D(FileName)

% function [Nv, VX, VY, K, EToV] = MeshReaderGambit2D(FileName)

% Purpose : Read in basic grid information to build grid

% NOTE : gambit(Fluent, Inc) *.neu format is assumed

Some useful Matlab commands:

◮ fgetl - read line from file into Matlab string.

◮ fscanf- read formatted data from file.

◮ sscanf- read string under format control.

◮ fopen - open a file for read access.

◮ fclose- close file.
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Introduction to DistMesh for Matlab

◮ Persson, P.-O. and Strang, G. 2004 A simple mesh generator
in Matlab. SIAM Review. Download scripts at:
http://www-math.mit.edu/~persson/mesh/index.html

◮ A simple algorithm that combines a physical principle of force
equilibrium in a truss structure with a mathematical
representation of the geometry using signed distance
functions.

◮ Can generate meshes in 1D, 2D and 3D with few lines of code.
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Introduction to DistMesh for Matlab

◮ Algorithm (Conceptual):

1. Define a domain using signed distance functions.
2. Distribute a set of nodes interior to the domain.
3. Move interior nodes to obtain force equilibrium.
4. Apply terminate criterion when all nodes are (nearly) fixed in

space.

◮ Post-processing steps (Preparation):
(Note: not done by DistMesh)

5. Validate final output!
6. Reorder element vertices to be defined counter-clockwise

(standard convention).
7. Setup boundary table.
8. Store mesh for reuse.
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Introduction to DistMesh for Matlab
Definition: A signed distance function, d(x)

d(x) =







< 0 , x ∈ Ω (interior)
0 , x ∈ ∂Ω (boundary)
> 0 , x /∈ Ω (exterior)

Define metric using an appropriate norm, e.g. the Euclidian metric.

Ω
d < 0

d = 0
∂Ω

d > 0

Figure: Example of a signed distance function for a circle.
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Introduction to DistMesh for Matlab

Combine and create geometries defined by distance functions using
the Union, difference and intersection operations of sets
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Introduction to DistMesh for Matlab
Example 1. Create a nonuniform mesh in 1D with local refinement
near center.
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Using DistMesh (in Matlab) only 3 lines of code needed:

>> d=inline(’sqrt(sum(p.^2,2))-1’,’p’);

>> h=inline(’sqrt(sum(p.^2,2))+1’,’p’);

>> [p,t]=distmeshnd(d,h,0.1,[-1;1],[]);

Weight function h measures distance from origo and adds a unit to
the measure.
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Introduction to DistMesh for Matlab

Example 1. Create a uniform mesh for a square with hole.

Using DistMesh (in Matlab) only 3 lines of code needed:

>> fd=inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))’,’p’);

>> pfix = [-1,-1;-1,1;1,-1;1,1];

>> [p,t] = distmesh2d(fd,@huniform,0.125,[-1,-1;1,1],pfix);
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Introduction to DistMesh for Matlab
Example 2. A refined mesh for a square with hole.
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Using DistMesh (in Matlab) only 4 lines of code needed:

>> fd = inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))’,’p’);

>> pfix = [-1,-1;-1,1;1,-1;1,1];

>> fh = inline([’min( sqrt( p(:,1).^2 + p(:,2).^2 ) , 1 )’],’p’);

>> [p,t] = distmesh2d(fd,fh,0.125/2.5,[-1,-1;1,1],pfix);

◮ Size function fh defines relative sizes of elements (fh constant result in a
uniform mesh distribution)

◮ The initial characteristic size of the elements is h0.

◮ In final triangulation, the characteristic size of the smallest elements will
be approx. h0.
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Introduction to DistMesh for Matlab

DistMesh output in two tables;
p Unique vertice coordinates
t Element to Vertice table

(random element orientations by DistMesh)

From these tables we can determine, e.g.

>> K=size(t,1); % Number of elements

>> Nv=size(p,1); % Number of vertices in mesh

>> Nfaces=size(t,2); % Number of faces/element

>> VX = p(:,1); % Vertice x-coordinates

>> VY = p(:,2); % Vertice y-coordinates

>> EToV = t; % Element to Vertice table

To ensure same element node orientations use DistMesh function

>> [p,t]=fixmesh(p,t); % remove duplicate nodes and orientate
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Introduction to DistMesh for Matlab

Example 3. Selecting boundary nodes for a square with hole.

(a) Inner boundary nodes (b) Outer boundary nodes

Nodes can be selected using distance functions; |d | = 0 or |d | <tol.

>> fdInner = inline(dcircle(p,0,0,0.4),p);

>> nodesInner = find(abs(fdInner([p]))<1e-3);

>> fdOuter = inline(drectangle(p,-1,1,-1,1),p);

>> nodesOuter = find(abs(fdOuter([p]))<1e-3);

>> nodesB = find(abs(fd([p]))<1e-3);
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Introduction to DistMesh for Matlab

Example 4. Uniform mesh for a unit ball (3D).

>> fh = @huniform;

>> fd=inline(’sqrt(sum(p.^2,2))-1’,’p’); % ball

>> Bbox = [-1 -1 -1; 1 1 1]; % cube

>> Fix = [-1 -1 -1; 1 -1 -1; 1 1 -1; -1 1 -1;...

-1 -1 1; 1 -1 1; 1 1 1; -1 1 1];

>> [Vert,EToV]=distmeshnd(fd,fh,h0,Bbox, Fix);
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Visualization

MATLAB commands for visualization:

% 2-D Triangular plot (also works for quadrilaterals!)

>> triplot(t,p(:,1),p(:,2),’k’)

% 3-D Visualization of solution

>> trimesh(t,p(:,1),p(:,2),u)

% 3-D Visualization of solution

>> trisurf(t,p(:,1),p(:,2),u)

% 3-D Visualization of part of solution

>> trisurf(t(idxlist,:),p(:,1),p(:,2),u)

% Visualization of node connections in matrix

>> gplot(A,p)
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Computing geometric information

We seek to determine outward pointing normal vectors for an
element edge of a straight-sided polygon.

Assume that the order of element vertices is counter-clockwise,
then for an boundary edge defined from (x1, y1) to (x2, y2) we find

∆x = x2 − x1, ∆y = y2 − y1

and thus a tangential vector becomes

t = (t1, t2)
T = (∆x , ∆y)T

which should be orthogonal to the normal vector. Hence an
outward pointing normalized vector is given as

n = (n1, n2)
T = (t2,−t1)

T/
√

t2
1 + t2

2

Normal vectors useful for imposing boundary conditions.
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Local vertice ordering

To make sure that the vertices are ordered in an counter-clockwise
fashion, the following metric can be used

D =

(

x1 − x3

y1 − y3

)

·

(

y2 − y3

−(x2 − x3)

)

= t̂31 · n̂32

If D < 0 then ordering is clockwise and if D > 0 counter-clockwise.

function [EToV] = Reorder(EToV,VX,VY)

% Purpose: Reorder elements to ensure counter clockwise orientation

x1 = VX(EToV(:,1)); y1 = VY(EToV(:,1));

x2 = VX(EToV(:,2)); y2 = VY(EToV(:,2));

x3 = VX(EToV(:,3)); y3 = VY(EToV(:,3));

D = (x1-x3).*(y2-y3)-(x2-x3).*(y1-y3);

i = find(D<0);

EToV(i,:) = EToV(i,[1 3 2]); % reorder
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Creating special index maps I

For imposing boundary conditions or extracting information from
the solution it can be useful to create special index maps.

Having already created a mesh, create a new boundary table for all
element faces

>> BCType = int8(not(EToE)); % initialization

This table can then be used to store information about different
types of boundaries, e.g. Inflow/Outflow, West/East, etc.

PhD Course: ”An Introduction to DGFEM for partial differential equations”An introduction to Mesh generation



Creating special index maps I

To create different index maps for imposing special types of
boundary conditions, e.g. Dirichlet and Neumann BC’s on all or
selected boundaries

% for selecting all outer boundaries

>> x1 = -1; x2 = 1; y1 = -1; y2 = 1;

>> fd = @(p) drectangle(p,x1,x2,y1,y2);

>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,AllBoundaries);

% for selecting south and west boundaries

>> fd = @(p) drectangle(p,-1,2,-1,2);

>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,Dirichlet);

% select north and east boundaries

>> fd = @(p) drectangle(p,-2,1,-2,1);

>> BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,Neuman);

Note: new version v2 of CorrectBCTable in ServiceRoutintes/
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Creating special index maps I

Then, using the BCType table we can create our special index
maps

% face maps

>> mapB = ConstructMap(BCType,AllBoundaries);

>> mapD = ConstructMap(BCType,Dirichlet);

>> mapN = ConstructMap(BCType,Neuman);

% volume maps

>> vmapB = vmapM(mapB);

>> vmapN = vmapM(mapN);

>> vmapD = vmapM(mapD);

Remember to validate the created index maps
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Creating special index maps

In problems with periodic boundaries the standard indexmaps can
be modified systematically in the following way

1 Create and modify a BCType table to hold information about
boundary types
- ServiceRoutines/CorrectBCTable_v2

2 For simple opposing boundaries create a distance function for
generating a sorted list of face center distances

3 From the sorted list, create indexmaps for each boundary
- ConstructPeriodicMap

4 Modify volume-to-face index map vmapP to account for
periodicity.

5 Validate implementation!

Let’s consider a square mesh Ωh([−1, 1]2)...
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Creating special index maps

Step 1: Create and modify a BCType table

BCType = int16(not(EToE));

fdW = @(p) drectangle(p,-1,2,-2,2);

fdE = @(p) drectangle(p,-2,1,-2,2);

BCcodeW = 1; BCcodeE = 2;

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdW,BCcodeW);

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdE,BCcodeE);

fdS = @(p) drectangle(p,-2,2,-1,2);

fdN = @(p) drectangle(p,-2,2,-2,1);

BCcodeS = 3; BCcodeN = 4;

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdS,BCcodeS);

BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fdN,BCcodeN);
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Creating special index maps

Step 2: Create a distance function useful for sorting opposing face
centers

pv = [-1 1; 1 -1;];

fd = @(p) dsegment(p,pv); % line segment from (-1,1) to (1,-1)

Step 3: Create indexmaps for each periodic boundary

[mapW,mapE] = ConstructPeriodicMap(EToV,VX,VY,BCType,BCcodeW,BCcodeE,fd);

[mapS,mapN] = ConstructPeriodicMap(EToV,VX,VY,BCType,BCcodeS,BCcodeN,fd);

Step 4: Modify exterior vmapP to be periodic with vmapM

vmapP(mapW) = vmapM(mapW);

vmapP(mapE) = vmapM(mapE);

vmapP(mapS) = vmapM(mapS);

vmapP(mapN) = vmapM(mapN);
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Creating special index maps

Step 5: Validation!
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◮ Periodic initial condition uh(x , y , 0)

◮ Constant advection speed vector arbitrary c = (cx , cy )T

◮ Upwind flux gives as expected ideal convergence O(hN+1)
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Creating special index maps

function [rhsu] = AdvecRHS2DupwindPeriodic(u, timelocal, cx, cy, alpha)

% function [rhsu] = AdvecRHS2D(u, timelocal, a, alpha)

% Purpose : Evaluate RHS flux in 2D advection equation

% using upwinding

Globals2D;

% Define flux differences at faces

df = zeros(Nfp*Nfaces,K);

% phase speed in normal directions

cn = cx*nx(:) + cy*ny(:);

% upwinding according to characteristics

ustar = 0.5*(cn+abs(cn)).*u(vmapM) + 0.5*(cn-abs(cn)).*u(vmapP);

df(:) = cn.*u(vmapM) - ustar;

% local derivatives of fields

[ux,uy] = Grad2D(u);

% compute right hand sides of the PDE’s

rhsu = -(cx.*ux + cy.*uy) + LIFT*(Fscale.*df);

return
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What defines a ”good” mesh?

To define a ”good” mesh we are usually concerned about

◮ can we adequately represent the (usually) unknown solution(!)

◮ using minimal number of elements for minimal cost in solution
process for a given numerical accuracy requirement, recall for
DG-FEM

CPU ∝ C (T )K (N + 1)2, ||u − uh||2,Ωh
∝ O(hp)

◮ approximating the right geometry of the problem(!)
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Three general rules for ”good” meshes

There are three general rules dictated by error analysis;

◮ very large and small element angles should be avoided
- this suggest that equilateral triangles are optimal

◮ elements should be placed most densely in regions where the
solution of the problem and its derivatives are expected to
vary rapidly,

◮ high accuracy requires a fine mesh or many nodes per element
(the latter conditions yields high accuracy, however, only if the
solution is sufficiently smooth).

As a user, it is always a good idea to visualize the mesh and to
check if these criteria are met.

◮ To improve mesh quality, it can be beneficial to apply some
mesh smoothing procedure
Fx. use smoothmesh.m from Mesh2D v23, Matlab Central
Exchange.
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A simple measure of mesh quality

The mesh quality measure described by Persson & Strang (2004) is
adopted in the following.

A common mesh quality measure is the following ratio

q = 2
rin

rout

where rin is the radius of the largest inscribed circle and rout is the
smallest circumscribed circle.

◮ Equilateral triangles has q = 1

◮ Degenerate triangles has q = 0

◮ ”Good triangles” we define as having q > 0.5 (rule of thumb)
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Laplacian smoothing

To improve the mesh quality, we can apply a simple Laplacian
smoothing procedure

x
[k+1]
i =

1

Ni ,connect

Ni,connect
∑

j=1

αix
[k]
j , ∀i : xi /∈ ∂Ωh

with αj weight factors and Ni ,connect the number of nodes
connected to the i ’th node dictated by the mesh structure.

There are a few pitfalls

◮ Mesh tangling can occur near reentrant corners and needs
special treatment.

◮ Local mesh adaption (anisotropic mesh density) can be
reduced in the process.
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Mesh quality
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fd = inline(’drectangle(p,-1,1,-1,1)’,’p’,’param’);

fh = @huniform;

h0 = 0.35;

Bbox = [-1 -1; 1 1];

pfix = [-1 -1; 1 -1; 1 1; -1 1];

param = [];

% Call distmesh

[Vert,EToV]=distmesh2d(fd,fh,h0,Bbox,pfix,param);

[q] = MeshQuality(EToV,VX,VY);
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Mesh quality
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Remark: Degenerated triangle fixed by Laplacian smoothing.

% Call distmesh

[Vert,EToV]=distmesh2d(fd,fh,h0,Bbox,pfix,param);

% Call Mesh2d v23 function

maxit = 100; tol = 1e-10;

[p,EToV] = smoothmesh([VX’ VY’],EToV,maxit,tol);

VX = p(:,1)’; VY = p(:,2)’;
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Mesh quality
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Open source mesh software

Unstructured mesh generation software

◮ DistMesh (http://www-math.mit.edu/~persson/mesh/)

◮ Triangle
(http://www.cs.cmu.edu/~quake/triangle.html)

◮ Mesh2D (http://www.mathworks.com/matlabcentral/)

◮ Gmsh (http://www.geuz.org/gmsh/)

Note: list is not exhaustive.

Do you have a favorite?
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