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Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics
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Requirements

What do we want?

◮ A flexible and generic framework useful for solving different
problems

◮ Easy maintenance by a component-based setup

◮ Splitting of the mesh and solver problems for reusability

◮ Easy implementation

Let’s see how this can be achieved...
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Domain of interest

We want to solve a given problem in a domain Ω which is
approximated by the union of K nonoverlapping local elements Dk ,
k = 1, ...,K such that

Ω ∼= Ωh =

K⋃

k=1

Dk

Thus, we need to deal with implementation issues with respect to
the local elements and how they are related.

The shape of the local elements can in principle be of any shape,
however, in practice we mostly consider d-dimensional simplexes
(e.g. triangles in two dimensions).
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Sketch and notations for a one-dimensional domain

Consider a one-dimensional domain defined on x ∈ [L,R]

x
Dk−1 Dk Dk+1

hk+1

L = x1
l xk−1

r = xk
l xk

r = xk+1
l xK

r = R
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Local approximation in 1D

On each of the local elements, we choose to represent the solution
locally as a polynomial of arbitrary order N = Np − 1 as

x ∈ Dk : uk
h (x(r), t) =

Np∑

n=1

ûk
n (t)ψn(r) =

Np∑

i=1

uk
i (t)lki (r)

using either a modal or nodal representation on r ∈ I ([−1, 1]).

We have introduced the affine mapping from the standard element
I to the k ’th element Dk

x ∈ Dk : x(r) = xk
l +

1 + r

2
hk , hk = xk

r − xk
l

Dk

xk
l xk

r

I

−1 r 1
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Local approximation in 1D

The modal representation is usually based on a hierachical modal
basis, e.g. the normalized Legendre polynomials from the class of
orthogonal Jacobi polynomials

ψn(r) = P̃n−1(r) =
Pn−1(r)√
γn−1

, γn =
2

2n + 1

Note, the orthogonal property implies that for a normalized basis

∫ 1

−1
P̃i (r)P̃j(r)dr = δij

The nodal representation is based on the interpolating Lagrange
polynomials, which enjoys the Cardinal property

lki (x) = δij , δij =

{
0 , i 6= j

1 , i = j

7 / 58



Local approximation in 1D - modes

Interpolating normalized Legendre polynomials ψn(r) = P̃n−1(r).
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Local approximation in 1D - nodes
Interpolating Lagrange polynomials ln(r) based on the
Legendre-Gauss-Lobatto (LGL) nodes.
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Local approximation in 1D

The duality between using a modal or nodal interpolating
polynomial representation is related through the choice of modal
representation ψn(r) and the distinct nodal interpolation points
ξi ∈ [−1, 1], i = 1, ...,Np.

We can express this as

u(ξi ) =

Np∑

n=1

ûnψn(ξi ) =

Np∑

n=1

unln(ξi ), i = 1, ...,Np

which defines a relationship between modal and nodal coefficients

u = Vû

where

Vij = ψj(ξi ), ûi = ûi , ui = u(ξi )

10 / 58



Local approximation in 1D
For stable and accurate computations we need to ensure that the
generalized Vandermonde matrix V is well-conditioned. This
implies minimizing the Lebesque constant

Λ = max
r

Np∑

i=1

|li (r)|

and maximizing Det V.
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Global approximation

The global solution u(x , t) can then be approximated by the direct
summation of the local elemental solutions

uh(x , t) =
k⊕

k=1

uk
h (x , t)

Recall, at the traces of adjacent elements there will be two distinct
solutions. Thus, there is an ambiguity in terms of representing the
solution.

Dk−1

Dk

Dk+1
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Approximation of the PDE
As an example, consider the PDE for a general conservation law in
1D space

∂tu + ∂x f (u) = 0, x ∈ [L,R]

For the approximation of the unknown solution u(x , t) we make
use of the expansion uh(x , t) and insert it into the PDE we want
to solve.

Doing this, result in an expression for the residual Rh(x , t). We
require that the test functions are orthogonal to the Residual
function

Rh(x , t) = ∂tuh + ∂x f (uh)

in the Galerkin sense as
∫

Dk

Rh(x , t)ψn(x)dx = 0, 1 ≤ n ≤ Np

on each of the k = 1, ...,K elements.
13 / 58



Local approximation

As we have seen, in a DG-FEM discretization we can apply a
polynomial expansion basis of arbitrary order within each element.

Thus, to exploit this in a code we need procedures for

◮ computing polynomial expansions

u(ξi ) =

Np∑

n=1

ûnψn(ξi ) =

Np∑

n=1

unln(ξi ), i = 1, ...,Np

◮ numerical evaluation of integrals and derivatives

Mk duk
h

dt
+ Sf k

h −Mkgk
h = (f k

h − f ∗)δ1j − (f k
h − f ∗)δNp j
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Element-wise operations

To implement the algorithms we need a way to determine the
element-wise operators.

Consider the mass matrix Mk for the k ’th element defined as

Mk
ij =

∫ xk
r

xk
l

lki (x)lkj (x)dx =
hk

2

∫ 1

−1
li (r)lj(r)dr =

hk

2
Mij

with M the standard mass matrix.

Consider the stiffness matrix Sk for the k ’th element defined as

Sk
ij =

∫ xk
r

xk
l

lki (x)
dlkj (x)

dx
dx =

∫ 1

−1
li (r)

dlj(r)

dr
dr = Sij

with S the equivalent standard stiffness matrix.
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Element-wise operations

The integrals in the elements of the local matrix operators can be
determined using high-order accurate Gaussian quadrature rules of
the form

∫ 1

−1
u(ξ)(1 − ξ)α(1 + ξ)βdξ =

N∑

n=0

u(ξn)wn + R(u)

which can exactly integrate polynomials u(ξ) ∈ P2N+2−k if it is
based on Gauss points (k = 1), e.g. the Gauss-Legendre
quadrature (α = β = 0)

>> [x,w]=JacobiGQ(alpha,beta,N)

suitable for the types of integrals in the local operators of the 1D
DG-FEM formulation.

However, there is an alternative and computationally convenient
way to determine the needed local operators exactly...
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Element-wise operations

Earlier, a relationship between the coefficients of our modal and
nodal expansions was found

u = Vû

Also, we can relate the modal and nodal bases through

uT l(r) = ûTψ(r)

These relationships can be combined to relate the basis functions
through V

uT l(r) = ûTψ(r)

⇒ (Vû)T l(r) = ûTψ(r)

⇒ûTVT l(r) = ûTψ(r)

⇒VT l(r) = ψ(r)
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Element-wise operations

We have just found the compact relationship

VT l(r) = ψ(r)

which can be expressed directly as








ψ1(ξ1) ψ1(ξ2) · · · ψ1(ξNp
)

ψ2(ξ1) ψ2(ξ2) · · · ψ2(ξNp
)

...
...

. . .
...

ψNp
(ξ1) ψNp

(ξ2) · · · ψNp
(ξNp

)















l1(r)
l2(r)

...
lNp

(r)








=








ψ1(r)
ψ2(r)

...
ψNp

(r)








It turns out to be useful for determining the standard elemental
matrices...
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Element-wise operations
The i ’th Lagrange polynomial can be expressed as

li (r) =

Np∑

n=1

(

VT
)−1

in
ψn(r)

Insert into an element of the standard mass matrix

Mij =

∫ 1

−1

Np∑

n=1

(

VT
)−1

in
ψn(r)

Np∑

m=1

(

VT
)−1

jm
ψm(r)dr

=

Np∑

n=1

Np∑

m=1

(

VT
)−1

in

(

VT
)−1

jm
(ψn, ψm)I

=

Np∑

n=1

(

VT
)−1

in

(

VT
)−1

jn

which is equivalent to

M =
(

VVT
)−1

⇒ Mk =
hk

2
M
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Element-wise operations I

We choose to express the derivative of the i ’th Lagrange
polynomial as

dlj(r)

dr
=

Np∑

n=1

dlj(r)

dr

∣
∣
∣
rn

ln(r)

Now, consider an element of the stiffness matrix

Sij =

∫ 1

−1
li (r)

Np∑

n=1

dlj(r)

dr

∣
∣
∣
rn
ln(r)dr

=

Np∑

n=1

dlj(r)

dr

∣
∣
∣
rn

∫ 1

−1
li (r)ln(r)dr
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Element-wise operations II

Introduce the differentiation matrix

Dr ,(i ,j) =
dlj

dr

∣
∣
∣
ri

Then, we find that

S = MDr

The entries of the differentiation matrix is found directly from

VTDT
r = VT

r , Vr ,(i ,j) =
dψj

dr

∣
∣
∣
ri

Thus, we can compute the differentiation matrix from

Dr = (VT )−1(Vr )
T = VrV−1
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Element-wise operations

The classical orthogonal Jacobi polynomials P
(α,β)
n (r) of order n

can be selected as the local modal basis functions ψn(r).

The orto-normalized Jacobi polynomials form the following
weighted inner product

∫ 1

−1
P

(α,β)
i (r)P

(α,β)
j (r)w(r)dr = δij , r ∈ [−1, 1]

where the weight function is w(r) = (1 − r)α(1 + r)β .

Furthermore, an important property relates the derivatives of one
class of polynomials to the functions of another class as

d

dx
P

(α,β)
n (r) =

√

n(n + α+ β + 1)P
(α+1,β+1)
n

which can be exploited to determine the described local operators
in a straightforward and computationally convenient way.
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Element-wise operations

A summary of useful scripts for the 1D element operations in
Matlab

JacobiP Evaluate normalized Jacobi polynomial
GradJacobiP Evaluate derivative of Jacobi polynomial
JacobiGQ Compute Gauss points and weights for use in quadrature
JacobiGL Compute the Legende-Gauss-Lobatto (LGL) nodes
Vandermonde1D Compute V
GradVandermonde1D Compute Vr

Dmatrix1D Compute Dr
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Spectral accuracy

u(x) = exp(sin(πx)), x ∈ [−1, 1]
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Smoothness of functions and numerical accuracy

u(0)(x) =

{
− cos(πx) ,−1 ≤ x < 0

cos(πx) , 0 ≤ x ≤ 1
,

du(i+1)

dx
= u(i), i = 0, 1, 2, ...

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Poly. order, N

E
rr

o
r,
||u

x
−
D
u

h
|| 2

u(1)

u(2)

u(3)

N−1/2

N−3/2

N−5/2

Note: only algebraic convergence observed since u(i+1) ∈ C i .

∣
∣|du(i)

dx
−Dru

(i)
h

∣
∣|

Ωh
∝ N1/2−i
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A second look at DG-FEM
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The basics of DG-FEM
Let us consider the proto-type problem

ut + fx = 0, x ∈ Ω([L,R]), f (u) = au

By applying an Energy Method we find the energy estimate

d

dt
||u||2Ω = −a(u2(R) − u2(L))

Which suggest the need for imposing the following BCs in finite
domains

u(L, t) = g(t), if a ≥ 0

u(R, t) = g(t), if a ≤ 0

Energy conservation when problem has a periodic nature

u(R) = u(L)

With this in mind, let’s consider the DG-FEM scheme...
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The basics of DG-FEM
Let us consider the strong form of DG-FEM for the same problem

Mk d

dt
uk
h + S(auk

h ) = [lk(x)(auk
h − f ∗)]

xk
r

xk
l

For the analysis of the scheme, we note that

uT
h Mkuh =

∫

Dk

u2
hdx = ||uk

h ||2Dk

uT
h Suh =

∫

Dk

uk
h (x)

d

dx
uk
h (x)dx = 1

2 [(uk
h )2]

xk
r

xk
l

Thus, we can derive the following discrete local energy estimate

d

dt
||uk

h ||2Dk = −a[(uk
h )2]

xk
r

xk
l

+ 2[uk
h (auk

h − f ∗)]
xk
r

xk
l

Contruct a discrete global energy estimate and require

d

dt
||uh||2Ω,h =

K∑

k=1

d

dt
||uk

h ||2Dk ≤ 0

If this is fullfilled the scheme should be stable...
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The basics of DG-FEM

From the discrete local energy estimate

d

dt
||uk

h ||2Dk = [a(uk
h )2 − 2uk

h (au)∗]
xk
r

xk
l

we conclude that stability for our scheme must be controlled by

◮ choice of numerical flux, f ∗ = (au)∗

◮ handling of outer boundary conditions
(imposed weakly through f ∗)

Both of these choices should be motivated by the physical nature
of the problem.

On a term-by-term we can try to ensure that the energy is
non-increasing...

29 / 58



Standard notation for elements

It is customary to refer to the interior information of the element
by a superscript ”-” and the exterior by a ”+”.

Furthermore, this notation is used to define the average operator

{{u}} ≡ u− + u+

2

where u can be both a scalar and a vector.

Jumps can be defined along an outward point normal n̂ (to the
element in question) through the jump operator

[[u]] ≡ n̂−u− + n̂+u+

[[u]] ≡ n̂− · u− + n̂+ · u+
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The basics of DG-FEM

We have the freedom to choose a numerical flux to guarantee the
stability requirement. For example, consider

f ∗ = (au)∗ = {{au}} + |a|1 − α

2
[[u]]

◮ α = 0 : upwind flux, α = 1 : central/average flux

This yields the local term for each internal interface

−|a|(1 − α)[[uh]]
2

which is less than or equal to zero (≤ 0) for 0 ≤ α ≤ 1.

◮ when α 6= 1, the role of the term is to introduce some
dissipation whenever there is a jump on the interface.
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The basics of DG-FEM

We assume the case

a > 0 : u(L, t) = g(t)

and we come up with two ways to handle the outer BCs

◮ Approach #1: (direct)

fL = ag(t), fR = auK
h (xK

r )

◮ Approach #2: (symmetry)

fL = −au1
h(x

1
l ) + 2ag(t), fR = auK

h (xK
r )

Now, assume that g(t) = 0 to mimic that no external source can
change the energy of the system.
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The basics of DG-FEM
◮ Approach #1: (direct)

d

dt
||uh||

2
Ω,h = − |a|(1 − α)

K−1∑

k=1

[[uk
h (xk

r )]]2 −(1 − α)|a|(u1
h(x

1
l ))2

︸ ︷︷ ︸

Left BC

−a(uK
h (xK

r ))2
︸ ︷︷ ︸

Right BC

◮ Approach #2: (symmetry)

d

dt
||uh||

2
Ω,h = −|a|(1 − α)

K−1∑

k=1

[[uk
h (xk

r )]]2 −a(u1
h(x

1
l ))2

︸ ︷︷ ︸

Left BC

−a(uK
h (xK

r ))2
︸ ︷︷ ︸

Right BC

Conclusion: The conditions for a stable scheme are

a ≥ 0, 0 ≤ α ≤ 1 ⇒ Stability!

◮ Energy dissipation for α 6= 1

◮ Energy conservation for α = 1 and periodic condition
u(L) = u(R) (no BC terms then)

33 / 58



The basics of DG-FEM

What did we learn from this?

◮ Stability is enforced through the local flux choice(s)

◮ The numerical solutions are discontinuous between elements

◮ Boundary and interface conditions are imposed weakly

◮ All operators are local

◮ Due to the weak interface-based coupling, there are no
restrictions on element size and local approximation

◮ choice is to provide accuracy

These properties are what contributes to DG-FEM being a very
flexible method
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Putting the pieces together in a code
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Putting the pieces together in a code

Consider the linear advection equation

∂tu + a∂xu = 0, x ∈ [0, L]

with IC and BC conditions

u(x , 0) = sin
(

2π
L

x
)
, u(0, t) = − sin

(
2π
L

t
)

The exact solution to this problem is given as

u(x , t) = sin
(

2π
L

(x − at)
)
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Putting the pieces together in a code

The DG-FEM method for solving the linear advection equation on
the k ’th element is derived from the residual equation

∫

Ωk

lki (x)∂tu
k
hdx + a

∫

Ωk

lki (x)∂xu
k
hdx = 0

where the local solution is represented as

uk
h (x , t) =

Np∑

i=1

uk
h (xk

i , t)l
k
i (x)

By integration by parts twice and exchanging the numerical flux

∫

Ωk

lki (x)∂tu
k
hdx + a

∫

Ωk

lki (x)∂xu
k
hdx =

∮

∂Ωk

lk n̂ · (f k
h − f ∗h )dx

where i = 1, ...,Np.
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Putting the pieces together in a code

By inserting the local approximation for the solution we can now
obtain the local semidiscrete scheme

Mk duk
h

dt
+ aSuk

h = δNp j(f
k
h (xk

r ) − f ∗) − δ1j(f
k
h (xk

l ) − f ∗)

Then, we need to pick a suitable numerical flux f ∗ for the problem,
e.g. the Lax-Friedrichs-type flux

f ∗ = {{cu}} + a
1 − α

2
[[u]], 0 ≤ α ≤ 1

which we have already shown leads to a stable scheme.
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Putting the pieces together in a code
To build your own solver using the DGFEM codes

AdvecDriver1D Matlab main function for solving the 1D advection equation.
Advec1D(u,FinalTime) Matlab function for time integration of the semidiscrete PDE.
AdvecRHS1D(u,time,a) Matlab function defining right hand side of semidiscrete PDE

DGFEM Toolbox\1D

AdvecDriver1D Advec1D AdvecRHS1D

◮ Several examples, functions, utilities in DGFEM package
◮ Fast proto-typing
◮ Write your own solver independent on mesh
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Element-wise operations

A summary of scripts needed for preprocessing for 1D DG-FEM
computations in Matlab

Globals1D Define list of globals variables
MeshGen1D Generates a simple equidistant grid with K elements
Startup1D Main script for pre-processing
BuildMaps1D Automatically create index maps from conn. and bc tables
Normals1D Compute outward pointing normals at elements faces
Connect1D Build global connectivity arrays for 1D grid
GeometricFactors1D Compute metrics of local mappings
Lift1D Compute surface integral term in DG formulation

◮ Components listed here are general and reusable for each solver - enables fast
proto-typing.

◮ MeshGen1D can be susbstituted with your own preferred mesh
interface/generator.
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Putting the pieces together in a code

% Driver script for solving the 1D advection equations

Globals1D;

% Order of polymomials used for approximation

N = 8;

% Generate simple mesh

[Nv, VX, K, EToV] = MeshGen1D(0.0,2.0,10);

% Initialize solver and construct grid and metric

StartUp1D;

% Set initial conditions

u = sin(x);

% advection speed

a = 2*pi;

% numerical flux (stable: 0<=alpha<=1)

alpha = 1;

% CFL constant

CFL=0.75;

% Solve Problem

FinalTime = 10;

[u] = Advec1D(u,FinalTime,a,alpha);
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Putting the pieces together in a code
To solve a semidiscrete problem of the form

duh

dt
= Lh(uh, t)

employ some appropriate ODE solver to deal with time, e.g. the
low-storage explicit fourth order Runge-Kutta method (LSERK4)1

p(0) = un

i ∈ [1, ..., 5] :

{
k(i) = aik

(i−1) + ∆tLh(p
(i−1), tn + ci∆t)

p(i) = p(i−1) + bik
(i)

un+1
h = p(5)

◮ For evevery element, the time step size ∆t has to obey a CFL
condition of the form

∆t ≤ C

a
min
k,i

∆xk
i

1See book p. 64.
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Putting the pieces together in a code

function [u] = Advec1D(u, FinalTime, a, alpha)

% Purpose : Integrate 1D advection until FinalTime starting with

% initial the condition, u

Globals1D;

time = 0;

% Runge-Kutta residual storage

resu = zeros(Np,K);

% compute time step size

dxmin = min(abs(x(1,:)-x(2,:)));

dt = CFL*dxmin/a;

Nsteps = ceil(FinalTime/dt); dt = FinalTime/Nsteps;

% outer time step loop

for tstep=1:Nsteps

for INTRK = 1:5

timelocal = time + rk4c(INTRK)*dt;

[rhsu] = AdvecRHS1D(u, timelocal, a, alpha);

resu = rk4a(INTRK)*resu + dt*rhsu;

u = u+rk4b(INTRK)*resu;

end;

% Increment time

time = time+dt;

end;

return
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Putting the pieces together in a code

Mesh tables:

EToV = [1 2; 2 3];
VX = [0 0.5 1.0];

Global node numbering defined:

vmapM = [1 4 5 8];
vmapP = [1 5 4 8];

Face node numbering defined:

mapM = [1 2 3 4];
mapP = [1 3 2 4];
mapI = [1];
mapO = [4];

Outward point face normals:

nx = [-1 1; -1 1];
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Putting the pieces together in a code

duk
h

dt
= −a(Mk)−1Suk

h + (Mk)−1δNp j(f
k
h (xk

r ) − f ∗)

− (Mk)−1δ1j(f
k
h (xk

l ) − f ∗)

f ∗ = {{au}} + a
1 − α

2
[[u]], 0 ≤ α ≤ 1

Note: all interfaces treated same way in a single line of code.
function [rhsu] = AdvecRHS1D(u,time, a,alpha)

% function [rhsu] = AdvecRHS1D(u,time)

% Purpose : Evaluate RHS flux in 1D advection

Globals1D;

% form flux differences at faces

df = zeros(Nfp*Nfaces,K);

df(:) = 0.5*a*(u(vmapM)-u(vmapP)).*(nx(:)-(1-alpha));

% impose boundary condition at x=0

uin = -sin(a*time);

df(mapI) = 0.5*a*(u(vmapI)-uin).*(nx(mapI)-(1-alpha));

df(mapO) = 0;

% compute right hand sides of the semi-discrete PDE

rhsu = -a*rx.*(Dr*u) + LIFT*(Fscale.*(df));
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1D Advection equation
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Figure: Computations in a finite domain. a) Central flux and b) Upwind
flux. No. elements K = 16 and poly. order N = 1.
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Examples: error behavior

Consider the simple advection equation on a periodic domain

∂tu − 2π∂xu = 0, x ∈ [0, 2π], u(x , 0) = sin(lx), l = 2π
λ

Exact solution is then u(x , t) = sin(l(x − 2πt))).

Errors at final time T = π.

N\ K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Error is seen to behave as

||u − uh||Ω,h ≤ ChN+1
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Examples: error behavior

What about time dependence?

Final time (T) π 10π 100π 1000π 2000π

(N,K)=(2,4) 4.3E-02 7.8E-02 5.6E-01 >1 >1
(N,K)=(4,2) 3.3E-03 4.4E-03 2.8E-02 2.6E-01 4.8E-01
(N,K)=(4,4) 3.1E-04 3.3E-04 3.4E-04 7.7E-04 1.4E-03

Error is seen to behave as

||u − uh||Ω,h ≤ C (T )hN+1 ∼= (c1 + c2T )hN+1
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Examples: error behavior

What about cost?

N\K 2 4 8 16 32 64
1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.
16 57.8 121. 279. 664. 1958. 5256.

Time∼= C (T )K (N + 1)2

N\K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Higher order is cheaper
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A few remarks

We know now

◮ It is the flux that gives stability

◮ It is the local basis that gives accuracy

◮ The scheme is very (VERY) flexible(!!!)

BUT - we have doubled the number of degrees of freedom along
the interfaces.

In 1D not a big deal – penalty is N+1
N

, however in multi-dimensional
spaces this is something we need to be concerned about.
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Does it generalize?
Let us first consider the scalar conservation law

∂u

∂t
+
∂f (u)

∂x
= 0, x ∈ [L,R]

and rewrite into quasi-linear form

∂u

∂t
+ fu(u)

∂u

∂x
= 0, x ∈ [L,R]

Then in analogy with the linear advection equation the boundary
conditions need to be according to

u(L, t) = g1(t) when fu(u(L, t)) ≥ 0

u(R, t) = g2(t) when fu(u(R, t)) ≤ 0

Assume as usual that

x ∈ Dk : uk
h (x , t) =

Np∑

n=1

ûk
n (t)ψn(x) =

Np∑

i=1

uk
h (xk

i , t)l
k
i (x)
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Does it generalize?
From the conservation form we directly recover the weak form

∫

Dk

(

∂uk
h

∂t
φk

j − f k
h (uk

h )
dφk

j

dx

)

dx = −
∫

∂Dk

n̂ · f ∗φk
j dx

and the corresponding strong form
∫

Dk

(
∂uk

h

∂t
+
∂f k

h (uk
h )

∂x

)

φk
j dx =

∫

∂Dk

n̂ · (f k
h (uk

h ) − f ∗)ψk
j dx

By multiplying with each of the test functions φk
j ∈ Vh,

j = 1, ...,Np yields exactly Np equations for the local Np unknowns.

Here a polynomial representation of the flux function has been
introduced

x ∈ Dk : fh(u
k
h ) =

Np∑

n=1

f̂ k
n ψn(x) =

Np∑

i=1

fh(x
k
i )lki

In 1D, the edge integral term is straightforward to evaluate.
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Does it generalize?

The only thing that remains unknown is the flux

f ∗ = f ∗(u−
h , u

+
h )

We rely on the hugely succesfull theory of finite volume monotone
schemes

◮ The numerical flux is consistent, f ∗(uh, uh) = f (uh)

◮ The numerical flux is monotone

f ∗(a, b) = f ∗(↑, ↓)
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Does it generalize?

There are many choices for the numerical flux to choose from

◮ Lax-Friedrichs flux

f LF (a, b) =
f (a) + f (b)

2
+

C

2
n̂ · (a − b)

◮ where the global LF flux is given by

C ≥ max
inf uh(x)≤s≤sup uh(x)

|fu(s)|

◮ and the local LF flux is obtained by

C ≥ max
min(a,b)≤s≤max(a,b)

|fu(s)|
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Does it generalize?

... but the FV literature is filled with alternatives

◮ Exact Riemann solvers

◮ Gudonov fluxes

◮ Engquist-Osher fluxes

◮ Approximate Riemann fluxes (Roe, Van Leer, HLLC, etc.)

Which choice is right is essentially determined by

◮ the problem physics

To keep things simple we shall mainly focus on the LF flux which
generally works very well, but is also the most dissipative flux.
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Does it generalize?

Let us now consider the system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ [L,R]

u = [u1(x , t), ..., um(x , t)]T

where the inflow boundary conditions are determined by the
eigenvalues of the jacobian for the system

BLu(L, t) = g1(t) at x = L

BRu(L, t) = g2(t) at x = R

The only essential difference is that C in the LF flux depends on
the eigenvalues of the jacobian for the system

C = max
u

∣
∣
∣
∣
λ

(
∂f

∂u

)∣
∣
∣
∣
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Does it generalize?
For multidimensional problems of the form

∂u

∂t
+ ∇ · f(u) = 0

with initial and inflow boundary conditions imposed. There is
essentially no difference. The weak form

∫

Dk

(
∂uk

h

∂t
φk

i − fkh (uk
h) · ∇φk

i

)

dx = −
∫

∂Dk

n̂ · f∗φk
i dx

The strong form
∫

Dk

(
∂uk

h

∂t
+ ∇ · fkh (uk

h)

)

φk
i dx =

∫

∂Dk

n̂ · (fkh (uk
h) − f∗)φk

i dx

with the LF-flux

f∗ = {{fh(uh)}} +
C

2
[[uh]], C = max

u

∣
∣
∣
∣
λ

(

n̂ · ∂f
∂u

)∣
∣
∣
∣

Boundary integrals over edges/faces in 2D/3D requires
representation of flux function.
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Summary

We already know a lot about the basic DG-FEM

◮ Stability is provided by carefully choosing the numerical flux.

◮ Accuracy appear to be given by the choice of local solution
representation.

◮ Flexibility both in terms of geometry and range of problems
that can be solved.

◮ We can utilize major advances on monotone schemes to
design fluxes.

◮ The DG-FEM scheme generalizes with very few changes to
very general problems – particularly it is well-suited for
multidimensional systems of conservation laws.

At least in principle – but what can we actually prove?
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