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Today!

◮ Presentation and practical details

◮ Introduction to DG-FEM methods

◮ Getting setup for hands-on exercises
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Course content

This course is organized by

◮ Ass. Prof. Allan Peter Engsig-Karup
Building 321, r. 016
DTU Informatics, Scientific Computing Section, DTU,
Denmark.

◮ Prof. Jan Hesthaven
Building 321, r. 010
Division of Applied Mathematics, Brown University, USA.

The course is sponsored by two PhD schools at Technical
University of Denmark

◮ DTU Informatics Graduate School ITMAN

◮ The Danish Center for Applied Mathematics and Mechanics,
DCAMM
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Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics
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Course structure

Week 1:

Time Monday Thuesday Wednesday Thursday Friday

08.30-09.00 Breakfast

09.00-11.30 1 2 3 4 Project work

12.30-16.00 Hands-on Hands-on Hands-on Hands-on Project work

Week 2:

Time Monday Thuesday Wednesday Thursday Friday

08.30-09.00 Breakfast

09.00-11.30 5 5+6 7 8 Project work

12.30-16.00 Hands-on Hands-on Hands-on Hands-on Project work

◮ Lectures: approx. 2.5 h/day, including 15 mins review + 15
mins break.

◮ Hand-on exercises: approx. 3.5 h/day.
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Learning objectives
A student who has met the objectives of the course will be able to:

◮ Apply the basic ideas underlying discontinuous Galerkin
methods.

◮ Apply the building blocks of DG-FEM methods for the
simulation of phenomena descibed by partial differential
equations.

◮ Identify and exploit the properties and structure of the
underlying problem.

◮ Be able to complete basic analysis to formulate a suitable
scheme for a new problem.

◮ Implement such methods and extensions in Matlab using the
provided Matlab based toolbox.

◮ Skillfully perform numerical experiments.
◮ Analyse and explain the observed behavior of the methods

based on a basic theoretical insight.
◮ Apply important principles underlying the use of modern

numerical methods in selected applications.
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Coursework and assessment

This 2-week course has approx. 70 scheduled hours

◮ Breakfast and coffee/tee (0.5 hours/day)

◮ Lectures (approx. 2 hours/day)

◮ Discussions (as needed)

◮ Hands-on computer exercises (approx. 4 hours/day)

◮ Lunch (1 hours/day)

To pass the course and get a diploma the requirements are

◮ Completing a written report for assessment of work

◮ Satisfactory completion of assignment problems
(approx. 40 hours)

The assignment is divided in two parts

◮ Each part will be available friday morning of each week

◮ Initiate your work on the assignments
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Practical details

◮ Background
◮ What is your background?
◮ Why are you here?

◮ Access to the databar terminals, software and Internet

◮ Access to Matlab codes, http://www.nudg.org

◮ Access to hands-on exercises/slides/ect.,
http://www2.imm.dtu.dk/~apek/DGFEMCourse2009/

◮ Course material:
Nodal Discontinuous Galerkin Methods - Algorithms, Analysis,

and Applications

By J. S. Hesthaven & T. Warburton (2008), Springer.

◮ General information
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Course work

The work in the course should be carried out in teams

◮ Two persons per team

◮ Hands-on exercises and assignment work is made by the team

Everyone is encouraged to take the opportunity to

◮ Interact!

◮ Get to know each other!

◮ Discuss the work!

◮ Share experiences!
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Introduction

- discussion of numerical
schemes and properties

10 / 41



Our goals

For the application of numerical methods we want

◮ accuracy at minimal effort

◮ flexibility to solve classes of problems with same code

◮ easy problem prototyping and code maintenance
(avoid adhoc solutions)

◮ ensure that numerical results can be thrusted (validation)
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Numerical solution of PDEs

To construct a numerical method for solving PDEs we need to
consider

◮ How to represent the solution u(x , t) by an approximate
solution uh(x , t)?

◮ In which sense will the approximate solution uh(x , t) satisfy
the PDE?

The two choices separate and define the properties of different
numerical methods...

Bottom line is that we need ways to

◮ Generate a (coupled) system of equations from the well-posed
PDE and incorporate boundary conditions

◮ Solve the system and equations while minimizing
unavoidalable errors that are introduced in the process
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Conservation laws
Conservation laws appear in many brances of computational
science and engineering and are typically derived from physical
conservation principles, e.g. conservation of energy, momentum
and mass.

A general nonlinear conservation law (3D) can be stated in
differential form as

∂tu + ∇ · F(u) = S(u)

or

∂tu + ∂xF (u) + ∂yG (u) + ∂zH(u) = S(u)

where

u =











u1

u2

..

.
um











, F (u) =











f1
f2
..
.

fm











, G(u) =











g1

g2

..

.
gm











, H(u) =











h1

h2

..

.
hm











, S(u) =











s1
s2
..
.

sm











u(x, t) is a vector of conserved variables and F ,G ,H are flux
vectors. S is a source vector.
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Conservation laws

Examples of conservation laws

◮ Euler equations of compressible gas dynamics (1D)

∂ρ
∂t

+ ∂ρu
∂x

= 0 (Mass)
∂ρu
∂t

+ ∂(ρu2+p)
∂x

= 0 (Momentum)
∂E
∂t

+ ∂(E+p)u
∂x

= 0 (Energy)

p = (γ − 1)
(

E − 1
2ρu

2
)

, c =
√

γp
ρ (Ideal gas low)

◮ Nonlinear shallow water equations (1D)

∂h
∂t

+ ∂hu
∂x

= 0 (Mass)

∂hu
∂t

+
∂(hu2+

1
2gh2)

∂x
= 0 (Momentum)

◮ and many many more...
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Conservation laws

For now, we restrict ourselves to consider the one-dimensional
scalar conservation law

∂u

∂t
+
∂f

∂x
= g , x ∈ Ω

where f (u) is the flux function, g(x , t) is a source function.

Let’s discuss basic ideas, advantages and disadvantages of different
classical numerical methods for solving this PDE...
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Finite Difference Method

◮ Domain is represented by a set of collocation points
◮ Solution is represented locally as a polynomial

x ∈ [xk−1, xk+1] : uh(x , t) =
2

∑

i=0

ai (t)(x − xk )i , fh(x , t) =
2

∑

i=0

bi (t)(x − xk )i

◮ PDE is satisfied in a point-wise manner

Rh(x
k) =

duh(x
k , t)

dt
+

fh(x
k+1, t) − fh(x

k−1, t)

hk + hk−1
− g(xk , t) = 0

◮ Local smoothness requirement pose a problem for resolving
complex geometries, internal discontinuities and overall grid
structure.
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Finite Difference Method

Main benefits

◮ Simple to understand

◮ Straightforward implementation on structured meshes

◮ High-order acurate approximations feasible

◮ Method is local and can be made explicit in time

◮ Simple techniques for local adaptivity (upwinding)

◮ Extensive body of theoretical and practical work on these
methods since 1960’s

Main problems

◮ Implementation complexity increases if geometric flexibility is
needed

◮ Less well-suited for problems with discontinuities

◮ Grid smoothness requirements
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Finite Volume Method

◮ Domain is represented by non-overlapping cells
◮ Solution is represented locally as a cell average

ūk
≡

1

hk

∫

Ωk
ukdxk

◮ PDE is satisfied on conservation form

hk dūk

dt
+ f (xk+1/2, t) − f (xk−1/2, t) = hk ḡk

◮ The flux function needs to be reconstructed on cell interfaces
xk±1/2

f (xk−1/2, t) = F (ūk−1, ūk ), f (xk+1/2, t) = F (ūk , ūk+1)
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Finite Volume Method

Main benefits

◮ Robust

◮ Support resolution of complex geometries

◮ Well-suited for hyperbolic conservation laws (local upwinding)

◮ Method is local and can be made explicit in time

◮ Method is locally conservative (due to telescopic property)

◮ Extensive theoretical framework since 1970’s

Main problems

◮ Inability to achieve high-order accuracy in a staightforward
way on general grids due to requirement for extended stencils
(flux reconstruction problem)

◮ Grid smoothness requirements
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Finite Element Method

◮ Domain is represented by non-overlapping elements
◮ Solution is represented globally using piecewise polynomials

uh(x) =
K

∑

k=1

u(xk , t)Nk(x), N i (xj ) = δij

◮ PDE is satisfied in a global manner

∫

Ωh

(

∂uh

∂t
+

∂fh

∂x
− gh

)

N j (x)dx = 0, j = 1, ..., K ⇒ M
duh

dt
+ Sfh = Mgh

◮ The semi-discrete scheme is implicit by construction and
reduces overall efficiency
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Finite Element Method

Main benefits

◮ Robust

◮ High-order accuracy can be combined with complex
geometries

◮ Well-suited for elliptic problems (global statement)

◮ Extensive theoretical framework since 1970’s

Main problems

◮ Not well-suited for problems with direction (global statement)

◮ Implicit in time reduces overall efficiency
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Properties of numerical methods
Numerical methods for solving PDEs can in general be
characterized by the properties

◮ Accuracy
Can we reduce the error? and how fast?

◮ Flexbility
What is the range of problems that can be solved using the
chosen method?

◮ Robustness
Can we always expect a solution from our numerical model?

◮ Efficiency
How long does it take to compute our solution?

Note: Very often it is difficult to achieve all properties at once!

⇒ Thus, we need to prioritize!

◮ Choice is often dictacted by domain complexity and required
levels of accuracy.
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General properties of the numerical methods

Assesment of general properties of some classical numerical
methods

Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems

FDM × X X X X

FVM X × X X (X)
FEM X X × (X) X

DG-FEM X X X X (X)

We want a scheme which have the properties

◮ The local high-order elements of FEM.

◮ The geometric flexbility of FEM and FVM.

◮ The local statement of the FVM.

These are exactly the components of the

Discontinuous Galerkin Method Finite Element Method
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A first look at DGFEM
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Formulating a DG-FEM scheme

By subdividing the domain Ω ∈ [L,R] similar to FVM/FEM into a
union of non-overlapping elements Dk

Ω ∼= Ωh =
K
⋃

k=1

Dk

x

Dk−1 Dk Dk+1

hk+1

L = x1
l xk−1

r = xk
l

xk
r = xk+1

l
xK
r = R

we have the basis for geometric flexibility (any type of grid).
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Formulating a DG-FEM scheme

We seek to represent the global solution using local high-order
polynomial approximations similar to FEM

u(x , t) ∼= uh(x , t) =

K
⊕

k=1

uk
h (x , t),

uk
h (x , t) =

Np
∑

j=1

ûk
j (t)ψj(x) =

Np
∑

j=1

uk
h (xk

j , t)lj(x)

using either a modal or nodal form.

This is the basis for high-order accurate approximations.

Note: both low and high-order approximations then an option in
the scheme.
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Formulating a DG-FEM scheme

We want to find an approximation uh to the solution u of the
general scalar conservation law

∂tu + ∂x f (u) = g(x , t), x ∈ Ω

To do this, we form the local residual on the k = 1, ..,K elements

x ∈ Dk : Rk
h(x , t) = ∂tu

k
h + ∂x f

k
h − gk

h

and require this to vanish locally in a Galerkin sense

∫

Dk

Rk
h(x , t)lki (x)dx = 0

This is the basis for a nodal DG-FEM scheme.

However, we are not done yet... all elements are disconnected due
to the local statement on the residual.
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Formulating a DG-FEM scheme
To connect elements, we apply Gauss’s Theorem

∫

Dk

Rk
h(x , t)lki (x)dx =

∫

Dk

[

∂tu
k
h lkj + ∂xu

k
h lkj − gk

h lkj

]

dx = 0

to convert the term with a spatial derivative such that
∫

Dk

[

∂tu
k
h lkj − uk

h∂x l
k
j − gk

h lkj

]

dx = −

∮

∂Dk

n̂ · f k
h lkj dx

where the boundary integral in 1D takes the form
∮

∂Dk

n̂ · f k
h lkj dx =

[

f k
h lkj

]xk
l

xk
r

= f k
h (xk

r )δNp j − f k
h (xk

l )δ1j

The solution is not unique at interfaces between adjacent elements.

Dk−1

Dk

Dk+1

We have multiple solutions! How can we address this problem?
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Formulating a DG-FEM scheme

Similar to FVM, we could introduce a numerical flux f ∗ which
approximate the physical flux, i.e.

n̂ · f ∗ ∼= n̂ · f k
h

to address the lack of solution uniqueness at the interfaces. We
require that the numerical flux is somehow defined in terms of
interior (-) and exterior (+) interface states

f ∗ = f ∗(u−

h , u
+
h )

Dk−1 u
k−1,+
r

u
k,−
ru

k,−
l

u
k+1,+
l

Dk

Dk+1

Clearly, the choice of the numerical flux must be important!
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Formulating a DG-FEM scheme

So, after having applied Gauss’s Theorem we found

∫

Dk

[

∂tu
k
h lkj − uk

h∂x l
k
j − gk

h lkj

]

dx = −

∮

∂Dk

n̂ · f k
h lkj dx

With the introduction of a numerical flux f ∗, the local scheme in
the weak form then becomes

∫

Dk

[

∂tu
k
h lkj − uk

h∂x l
k
j − gk

h lkj

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx
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Formulating a DG-FEM scheme

From the weak form
∫

Dk

[

∂tu
k
h lkj − uk

h∂x l
k
j − gk

h lkj

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx

we can generate a local linear system by inserting the polynomial
approximation uk

h arriving at the compact scheme

Mk duk
h

dt
− (Sk)T f k

h −Mkgk
h = −f ∗δ1j + f ∗δNp j

where δij is Kronecker’s delta and the element mass and stiffness1

matrices have been introduced. These are defined from

Mk
ij =

∫

Dk

lki (x)lkj (x)dx , Sk
ij =

∫

Dk

lki (x)
dlkj

dx
dx

1In classical finite element terminology, the discrete operator approximating
the first derivative is called a convection/advection matrix.
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Formulating a DG-FEM scheme

It is also possible to derive yet another scheme from the weak form

∫

Dk

[

∂tu
k
h lkj − uk

h∂x l
k
j − gk

h lkj

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx

by applying Gauss’s Theorem once more

∫

Dk

[

∂tu
k
h lkj + ∂xu

k
h lkj − gk

h lkj

]

dx =

∮

∂Dk

n̂ · (f k
h − f ∗)lkj dx

This is the so-called strong form.

From this we can generate a local linear system of the form

Mk duk
h

dt
+ Sk f k

h −Mkgk
h = (f k

h − f ∗)δ1j − (f k
h − f ∗)δNp j

We now have two basic DG-FEM schemes. How will they perform?
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The first examples...

33 / 41



Examples: error behavior

Consider the simple advection equation on a periodic domain

∂tu − 2π∂xu = 0, x ∈ [0, 2π], u(x , 0) = sin(lx), l = 2π
λ

Exact solution is then u(x , t) = sin(l(x − 2πt))).

Errors at final time T = π.

N\ K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Error is seen to behave as

||u − uh||Ω,h ≤ ChN+1

Clearly, paths to convergence are based on adjusting the size of
elements (h-convergence), the polynomial order (p-convergence) or
combinations hereoff.
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Examples: error behavior
Consider the linear shallow water equations in one horizontal
dimension on a periodic domain

∂

∂t

[

η

u

]

=

[

0 −h

−g 0

]

∂

∂x

[

η

u

]

Tests of h− and p-refinement
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−10
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−5
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Again, the error behaves as

||u − uh||Ω,h ≤ ChN+1
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Example - High-order makes the difference
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h−version (P=2)
p−version (K=20)
p−version (K=10)

Figure: Optimized CPU-time vs. integration time for a fixed relative error
in amplitude of 5%.

◮ Conclusion: a significant improvement in performance can be
achieved using high-order elements over long times of
integration. 36 / 41



Numerical solution of PDEs

Important reasons for the interest in DG-FEM methods are

◮ Need for numerical methods of high accuracy in space and
time

◮ Support for locally adaptive numerical solutions
hp-adaptivity, meshes can be both non-conforming and
unstructured.

◮ General and very flexible framework for solving large classes of
PDEs

◮ Conceptually no difference between 1-D, 2-D or N-D

◮ The method is local (to the elements)

Note: For a high-order accurate method demand asymptotic
behavior O(hp) of truncation error for h → 0 for p > 2.
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A brief history

◮ DG-FEM was first proposed by Reed & Hill in 1973 for a
neutron transport equation

σu + ∇ · (au) = f

◮ First analysis by Lesaint & Raviart (1974) showing in general
O(hN) and optimal O(hN+1) for special meshes.

◮ Sharp analysis by Johnson (1986) showed O(hN+1/2) for
general meshes

◮ However, the schemes did not enjoy much use until further
developments...

38 / 41



A brief history

◮ Extension from scalar conservation laws to systems
1980s-late 1990s, Cockburn/Shu

◮ Development of limiters and RKDG for problems with
discontinuities
Late 1980s, Shu/Cockburn

◮ Nodes, modes and large codes
from 1995, Warburton/Karniadakis

◮ Maxwell’s eqations, MHD, water waves, elasticity, etc.
- last decade has seen an explosion in development and
applications

◮ Higher order problems
◮ Interior-Penalty (IP), Arnold (1982)
◮ Bassi-Rebay (BR), Bassi & Rebay (1997)
◮ Local Discontinuous Galerkin (LDG), Cockburn & Shu (1998)
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A brief history

The last decade has seen an explosion in activities

◮ Hamilton-Jacobi equations

◮ Non-coercive problems and spectral accuracy

◮ Adaptive solution techniques

◮ Improved solvers

◮ Advanced time-integration methods

◮ Large-scale production codes

◮ etc.
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Brief summary

We have established basic understanding of DG-FEM

◮ How to formulate DG-FEM schemes

◮ Local expansions to achieve a high-order accurate basis

◮ Geometric flexibility in the spirit of FEM/FVM

◮ Explicit scheme and ’problem control’ in the spirit of FVM

However, many questions remains

◮ How do we choose the numerical flux?

◮ Is the scheme stable?

◮ How does the idea generalize to multi-dimensions?

◮ What is the price?

◮ etc...
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