
Assignment - Part II
Ph.D. Course 2009:

An Introduction to DG-FEM for solving partial
differential equations

This the second part of the mandatory part of the course and completion
of it is required to pass the course with full credit.

This part should, in combination with the results for Assignment part I,
form a report which must be submitted electronically no later than

Friday, October 2, 2009

We shall consider the solution of the two-dimensional Navier-Stokes
equations for a compressible gas. The Navier-Stokes equations are given
as

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (1)

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

=
1

Re

(
∂τxx

∂x
+

∂τxy

∂y

)
, (2)

∂(ρv)
∂t

+
∂(ρuv)

∂x
+

∂(ρv2 + p)
∂y

=
1

Re

(
∂τxy

∂x
+

∂τyy

∂y

)
, (3)

∂E

∂t
+

∂(E + p)u
∂x

+
∂(E + p)v

∂y

=
1

Re

(
∂(uτxx + vτxy − qx)

∂x
+

∂(uτxy + vτyy − qy)
∂y

)
, (4)

These equations reflect conservation of density, ρ, momentum, (ρu, ρv), and
total energy, E. The pressure, p, is expressed through the connection be-
tween the energy and momentum as
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(
T +

1
2

(
u2 + v2)

))
,

and the ideal gas law

p = (γ − 1)ρT.

Here γ = 1.4 = cp/cv is the ratio of specific heats for atmospheric air.
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The temperature relates to the heat flux, ∇q, as

∇q = −γ
1

Pr
∇T,

where Pr = 0.72 is the Prandtl number.
All variables are normalized with respect to the free-steam quantities,

ρ∞, U∞, µ∞, and a reference length, D, which yields a free-stream Reynolds
number, Re, defined as

Re =
ρ∞U∞D

µ∞
.

This is the Reynolds number we will use for comparisons later in this work.
In many problems one accounts for the temperature dependence of the dy-
namic viscosity, µ∞. However, in this work we assume that it is constant.

The viscous tensors, τ , is given as
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We shall consider solving this problem for a problem of flow around a cylin-
der of radius D. The boundary conditions on the boundary of the cylinder
are, ucyl = vcyl = 0 and Tcyl = T0 where T0 is the normalized temperature of
the cylinder, i.e., if T0 = T∞ the cylinder is isothermal. No boundary con-
dition is needed on the density, ρcyl, which can be taken to be the internal
value determined by the solver, i.e., the boundary condition of the density
is a Neumann condition along the wall.

At the outer boundary we assume a uniform mean flow, (ρ, ρu, ρv,E) =
(1, 1, 0, E∞). The energy is computed from the free-steam Mach number,
M∞, as
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U∞
c∞

, c∞ =
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which implies that
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,

assuming that U∞ = 1.
At inflow parts of the outer boundaries, you can impose the uniform

mean flow conditions. At the outflow part of the out boundary, you can im-
pose the pressure at infinite where the pressure at infinity can be determined
from the temperature, the density and the ideal gas law.

For the second order terms you can take all derivates to be determined by
the code itself, i.e., only Dirichlet conditions are needed at the boundaries.
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1. Implement a two-dimensional DG-FEM solver for the compressible
Navier-Stokes solver. You can chose the external boundary to have
any shape you wish but the diameter of the cylinder should be one,
i.e., D = 1.

2. Discuss how you decide on the time-step.

3. The initial conditions of the solver can be a uniform flow throughout
the domain. To account for initial conditions satisfying the boundary
conditions at the cylinder surface, it is recommend that the solver is
running the first 100-200 timesteps with a very strong filter which is
then gradually removed. It is also recommended that the time-step
initially is very small and then gradually increased to the stable time-
step.

4. Run the code at Re = 100 and M∞ = 0.4 – after a while you should
observe the famous von Karman vortex streak after the cylinder – the
reason a flag wiggles in the wind !

To validate the accuracy of the code we will consider the Stroudal number
– the frequency associated with the von Karman streak. You can measure
this by taking a time series of the pressure some where behind the cylinder
and then determine the frequecy from the data. For Re = 100, the measured
value is 0.164.

1. Validate to see if you can reproduce this value in your code.

2. Determine whether the size or shape of the computational domain,
i.e., the distance from the cylinder to the outer boundary, has any
substantial effect on the accuracy of the Stroudal number prediction.

3. For M∞ = 0.2 and 60 ≤ Re ≤ 180, an empirical relation between the
Stroudal number and Re is given as

S =
−3.3265

Re
+ 0.1816 + 0.00016Re.

Validate the code for 5 different Reynolds numbers using this scaling
formula.

4. Try to run the code for different values of M∞, e.g., 0.1 and 2.0 –
what do you observe for the timestep and the general behavior of the
solution in the two cases ? – can you explain your observations ?

5. Plot a couple of snap-shots of the computed solution

Now that we have implemented and tested the code, pick a different
geometry - a square cylinder, a plate or something entirely different - and
run the code for this.
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1. Generate different grids to enable a convergence study and test that
the computed solution(s) are converged.

2. Run the code for different values of the Re and discuss your observa-
tions.

3. Plot a couple of snap-shots of the computed solution

Enjoy !
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