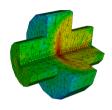


# DG-FEM for PDE's Lecture 8

Jan S Hesthaven
Brown University
Jan.Hesthaven@Brown.edu





#### Lecture 8

- ✓ Let's briefly recall what we know
- ✓ Part I: 3D problems and extensions
  - √ Formulations and examples
  - √ Adaptivity and curvilinear elements
- ✓ Part II: The need for speed
  - √ Parallel computing
  - ✓ GPU computing
  - √ Software beyond Matlab

#### A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

#### Lets summarize

We are done with all the basics -- and we have started to see it work for us -- we know how to do

- ✓ ID/2D problems
- √ Linear/nonlinear problems
- √ First and higher operators
- √ Complex geometries
- ✓... and we have insight into theory

All we need is 3D -- and with that comes the need for speed!

#### Extension to 3D?

It is really simple at this stage!

Weak form:

$$\int_{\mathsf{D}^k} \left[ \frac{\partial u_h^k}{\partial t} \ell_n^k(\boldsymbol{x}) - \boldsymbol{f}_h^k \cdot \nabla \ell_n^k(\boldsymbol{x}) \right] d\boldsymbol{x} = - \oint_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot \boldsymbol{f}^* \ell_n^k(\boldsymbol{x}) d\boldsymbol{x},$$

Strong form:

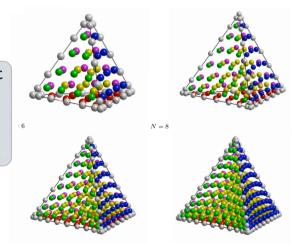
$$\int_{\mathsf{D}^k} \left[ \frac{\partial u_h^k}{\partial t} + \nabla \cdot \boldsymbol{f}_h^k \right] \ell_n^k(\boldsymbol{x}) \, d\boldsymbol{x} = \oint_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot \left[ \boldsymbol{f}_h^k - \boldsymbol{f}^* \right] \ell_n^k(\boldsymbol{x}) \, d\boldsymbol{x},$$

$$m{f}^* = \{\{m{f}_h(m{u}_h)\}\} + rac{C}{2} \llbracket m{u}_h 
rbracket. \qquad C = \max_u \left| \lambda \left( \hat{m{n}} \cdot rac{\partial m{f}}{\partial m{u}} 
ight) 
ight|,$$

Nothing is essential new

#### Extension to 3D

For other element types, one simply need to define nodes and modes for that elements



#### Extension to 3D

Apart from the 'logistics' all we need to worry about is to choose our element and how to represent the solution

$$egin{aligned} u(m{r}) &\simeq u_h(m{r}) = \sum_{n=1}^{N_p} \hat{u}_n \psi_n(m{r}) = \sum_{i=1}^{N_p} u(m{r}_i) \ell_i(m{r}), \ m{u} &= \mathcal{V} \hat{m{u}}, \;\; \mathcal{V}^T m{\ell}(m{r}) = m{\psi}(m{r}), \;\; \mathcal{V}_{ij} = \psi_i(m{r}_i). \end{aligned}$$

We need points  $N_p = \frac{(N+1)(N+2)(N+3)}{6}$ 

We need an orthonormal basis

$$\psi_{ijk}(r,s,t) = 2\sqrt{2}P_i^{(0,0)}(a)P_j^{(2i+1,0)}(b)P_k^{(2i+2j+2,0)}(b)(1-b)^i(1-c)^{i+j},$$

#### Extension to 3D

Everything is identical in spirit

Mass matrix  $\mathcal{M}^k = J^k(\mathcal{V}\mathcal{V}^T)^{-1}$ .

**Diff matrix**  $\mathcal{D}_r \mathcal{V} = \mathcal{V}_r, \ \mathcal{D}_s \mathcal{V} = \mathcal{V}_s, \ \mathcal{D}_t \mathcal{V} = \mathcal{V}_t,$ 

$$\begin{split} \frac{\partial}{\partial x} &= \frac{\partial r}{\partial x} \mathcal{D}_r + \frac{\partial s}{\partial x} \mathcal{D}_s + \frac{\partial t}{\partial x} \mathcal{D}_t, \\ \frac{\partial}{\partial y} &= \frac{\partial r}{\partial y} \mathcal{D}_r + \frac{\partial s}{\partial y} \mathcal{D}_s + \frac{\partial t}{\partial y} \mathcal{D}_t, \\ \frac{\partial}{\partial z} &= \frac{\partial r}{\partial z} \mathcal{D}_r + \frac{\partial s}{\partial z} \mathcal{D}_s + \frac{\partial t}{\partial z} \mathcal{D}_t, \end{split}$$

Stiffness matrix  $S_r = \mathcal{M}^{-1}\mathcal{D}_r, \ S_s = \mathcal{M}^{-1}\mathcal{D}_s, \ S_t = \mathcal{M}^{-1}\mathcal{D}_t.$ 

#### Example - Maxwell's equations



Consider Maxwell's equations

$$\varepsilon \partial_t E - \nabla \times H = -j, \qquad \mu$$

$$\mu \partial_t H + \nabla \times E = 0,$$

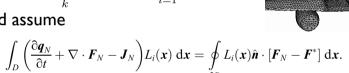
Write it on conservation form as

$$\frac{\partial q}{\partial t} + \nabla \cdot F = -J \quad F = \begin{bmatrix} -\hat{e} \times H \\ \hat{e} \times E \end{bmatrix} \quad q = \begin{bmatrix} E \\ H \end{bmatrix}$$

Represent the solution as

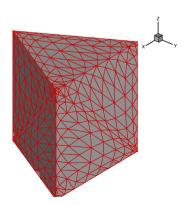
$$\Omega = \sum_{k} D^{k}$$
  $q_{N} = \sum_{i=1}^{N} q(\mathbf{x}_{i}, t) L_{i}(\mathbf{x})$ 

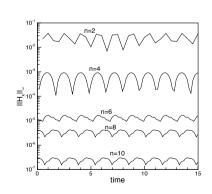




# An example - Maxwell's equations

#### Simple wave propagation





# Example - Maxwell's equations



On each element we then define

$$\hat{M}_{ij} = \int_D L_i L_j \, \mathrm{d} \boldsymbol{x}, \quad \hat{S}_{ij} = \int_D \nabla L_j L_i \, \mathrm{d} \boldsymbol{x}, \quad \hat{F}_{ij} = \oint_{\hat{P}_D} L_i L_j \, \mathrm{d} \boldsymbol{x},$$

With the numerical flux given as

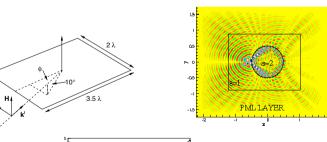
$$\hat{\mathbf{n}} \cdot [\mathbf{F} - \mathbf{F}^*] = \begin{cases} \mathbf{n} \times (\gamma \mathbf{n} \times [\mathbf{E}] - [\mathbf{B}]), \\ \mathbf{n} \times (\gamma \mathbf{n} \times [\mathbf{B}] + [\mathbf{E}]), \end{cases} \qquad [Q] = Q^- - Q^+$$

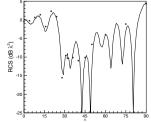
To obtain the local matrix based scheme

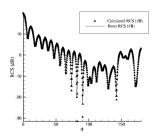
$$\hat{M}\frac{\mathrm{d}\hat{\boldsymbol{q}}}{\mathrm{d}t} + \hat{S}\cdot\hat{\boldsymbol{F}} - \hat{M}\hat{\boldsymbol{J}} = \hat{F}\hat{\boldsymbol{n}}\cdot[\hat{\boldsymbol{F}} - \hat{\boldsymbol{F}}^*],$$

One then typically uses an explicit Runge-Kutta to advance in time - just like ID/2D.

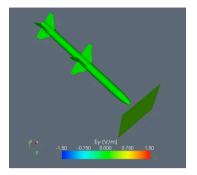
# An example - Maxwell's equations

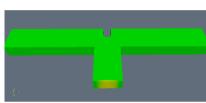


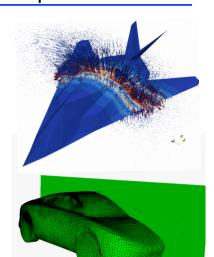




# An example - Maxwell's equations







Animations by Nico Godel (Hamburg)

# Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic effects, one needs to solve for f(x,p,t) - 6D+1

# Vlasov/Boltzmann equation

$$\partial_t f + v \cdot \partial_x f + q(E + v \times B) \cdot \partial_p f = \langle \text{Sources} \rangle - \langle \text{Sinks} \rangle.$$

Maxwell's equations

$$\partial_t E - \frac{1}{\varepsilon} \nabla \times H = -\frac{j}{\varepsilon},$$

$$\partial_t H + \frac{1}{\mu} \nabla \times E = 0,$$

$$\nabla \cdot H = 0, \qquad \nabla \cdot E = \frac{\rho}{\epsilon}.$$

$$\nabla \cdot H = 0, \qquad \nabla \cdot E = \frac{\rho}{c}$$

Coupled through  $\rho := \int f \ dv$ ,  $j := \int vf \ dv$ .

# Kinetic Plasma Physics

#### Important applications

- √ High-power/High-frequency microwave generation
- ✓ Particle accelerators
- √ Laser-matter interaction
- √ Fusion applications, e.g., plasma edge
- √ etc





# Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann equation by sampling with P particles

$$f(x, p, t) = \sum_{n=1}^{P} q_n S(x - x_n(t)) \delta(p - p_n(t)),$$
$$\rho(x, t) = \sum_{n=1}^{P} q_n S(x - x_n(t)), \quad j(x, t) = \sum_{n=1}^{P} v_n q_n S(x - x_n(t))$$

Ideally we have

$$S(x) = \delta(x)$$
 a point particle

However, this is not practical, nor reasonable - so S(x) is a **shape-function** 

# Particle-in-Cell Methods

#### Maxwell's equations

$$\nabla \cdot (\varepsilon E) = \rho, \quad \mu \partial_t H + \nabla \times E = 0,$$

$$\nabla \cdot (\varepsilon E) = \rho, \quad \nabla \cdot (\mu H) = 0,$$

#### Particle/Phase dynamics

$$\frac{dx_n}{dt} = v_n(t) \quad \frac{dmv_n}{dt} = q_n(E + v_n \times H) \quad m = \frac{1}{\sqrt{1 - (v_n/c)^2}}$$

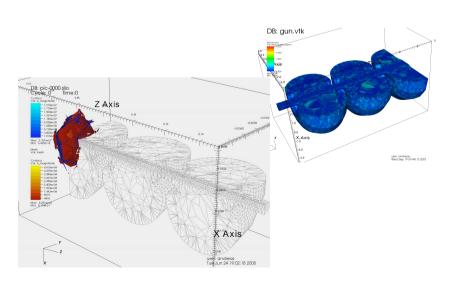
#### Particles-to-fields

$$\rho(x,t) = \sum_{n=1}^{P} q_n S(x - x_n(t)), \quad j(x,t) = \sum_{n=1}^{P} v_n q_n S(x - x_n(t))$$

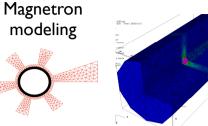
#### Fields-to-particles

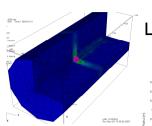
$$E(x_n), H(x_n)$$

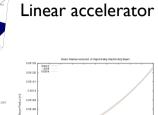
# Particle gun



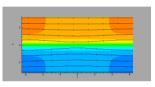
# Kinetic Plasma Physics











Magnetic reconnection

# Compressible fluid flow

#### Time-dependent Euler equations

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0,$$

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u \left( E + p \right) \end{pmatrix}, \mathbf{G} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v \left( E + p \right) \end{pmatrix}$$



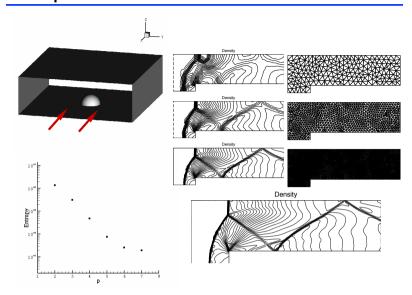
#### Formulation is straightforward

$$\int_{\mathsf{D}^{k}} \left( \frac{\partial \mathbf{q}_{h}}{\partial t} \phi_{h} - \mathbf{F}_{h} \frac{\partial \phi_{h}}{\partial x} - \mathbf{G}_{h} \frac{\partial \phi_{h}}{\partial y} \right) d\mathbf{x} + \oint_{\partial \mathsf{D}^{k}} \left( \hat{n}_{x} \mathbf{F}_{h} + \hat{n}_{y} \mathbf{G}_{h} \right)^{*} \phi_{h} d\mathbf{x} = 0.$$

 $(\hat{n}_x \mathbf{F}_h + \hat{n}_y \mathbf{G}_h)^* = \hat{n}_x \{ \{ \mathbf{F}_h \} \} + \hat{n}_y \{ \{ \mathbf{G}_h \} \} + \frac{\lambda}{2} \cdot \llbracket \mathbf{q}_h \rrbracket.$ 

Challenge: Shocks -- this requires limiting/filtering

# Compressible fluid flow



#### 3D Extension

## Nothing special!

- ✓ Linear/nonlinear problems
- ✓ First order/higher order operators
- √ Complex geometries

#### Further extensions

- √ Adaptivity/non-conforming elements
- √ Curvilinear elements

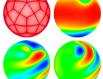
# The list goes on ..

The same DG-FEM computation platform has been used for all examples and many other problem types

- √ Flow mixing and control
- √ Poisson/Helmholtz equations √ Shallow water flows on the sphere
- √ Adjoint based adaptive solution/design





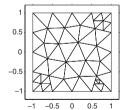


Everything you have done in ID/2D you can do in 3D in exactly the same way.

# Adaptivity/non-conformity

Question: Do element faces always have to match?

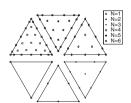
**Answer: No** 



h-nonconform

Question: Can one use different order in each element?

**Answer:Yes** 



p-nonconform

# Example - Adaptive solution

We consider a standard test case

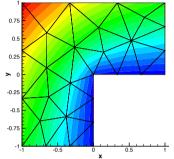
$$abla^2 u(\mathbf{x}) = f(\mathbf{x}) \qquad u = 0, \mathbf{x} \in \partial \Omega$$

Domain is L-shaped

RHS so that the exact solution is 0.25

$$u(r,\theta) = r^{2/3}\sin(2\pi/3\theta)$$

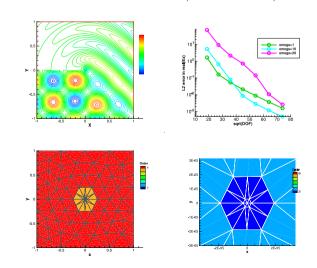
Solution is singular!



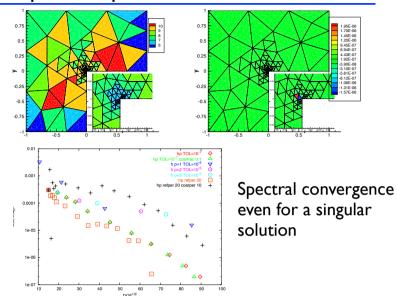
Solved using full hp-adaptive solution

# Example - Adaptive solution - Maxwell's

$$\nabla \times \nabla \times \mathbf{E} + \omega^2 \mathbf{E} = \mathbf{f}, \mathbf{n} \times \mathbf{E} = 0, \mathbf{x} \in \Omega$$



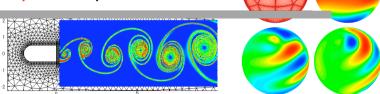
# Example - Adaptive solution



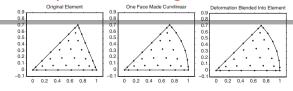
#### Curvilinear elements

What: Elements that conform exactly to a curved boundary

Why: Accuracy!

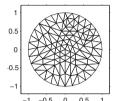


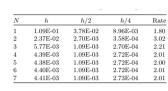
#### This is a unique feature to high-order elements

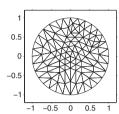


# Example - Maxwell's equations

$$H^{x}(x, y, t = 0) = 0, \ H^{y}(x, y, t = 0) = 0,$$
  
 $E^{z}(x, y, t = 0) = J_{6}(\alpha_{6}r)\cos(6\theta)\cos(\alpha_{6}t),$ 

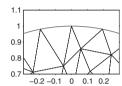






| 1.1 - |                 |     |         |             | _ |
|-------|-----------------|-----|---------|-------------|---|
| 1     |                 | A   |         | _           |   |
| ).9   |                 | /   | /       | $\setminus$ |   |
| ).8   | $A \setminus A$ | И   |         | $\star$     | 1 |
| ).7E  | ¥               | K_L | $\perp$ | $\perp$     |   |
|       | -0.2 - 0.1      | 0   | 0.1     | 0.2         |   |

| N | h        | h/2      | h/4       | Rate |
|---|----------|----------|-----------|------|
| 1 | 1.09E-01 | 3.78E-02 | 8.96E-03  | 1.80 |
| 2 | 2.21E-02 | 2.23E-03 | 2.05E-04  | 3.38 |
| 3 | 3.12E-03 | 1.92E-04 | 1.28E-05  | 3.97 |
| 4 | 6.01E-04 | 1.95E-05 | 5.88E-07  | 5.00 |
| 5 | 9.89E-05 | 1.69E-06 | 2.72E-08  | 5.92 |
| 6 | 1.74E-05 | 1.31E-07 | 9.81E-10  | 7.06 |
| 7 | 2.08E-06 | 8.97E-09 | 7.93E-11* | 7.34 |



#### This is essential to fully benefit for complex problems

# Example - Spherical Shallow Water equ

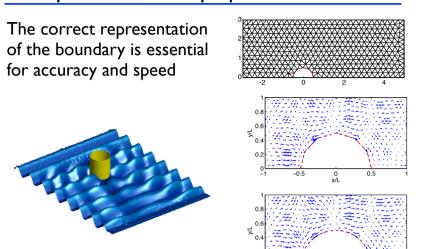
#### Dynamics of a thin layer of fluids on a sphere

$$\frac{\partial}{\partial t} \begin{bmatrix} \varphi \\ \varphi u \\ \varphi v \\ \varphi w \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \varphi u \\ \varphi u^2 + \frac{1}{2}\varphi^2 \\ \varphi uv \\ \varphi uw \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \varphi v \\ \varphi vu \\ \varphi v^2 + \frac{1}{2}\varphi^2 \\ \varphi vw \end{bmatrix} + \frac{\partial}{\partial z} \begin{bmatrix} \varphi w \\ \varphi wu \\ \varphi wv \\ \varphi w^2 + \frac{1}{2}\varphi^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{f}{a}(y\varphi w - z\varphi v) + \mu x \\ -\frac{f}{a}(z\varphi u - x\varphi w) + \mu y \\ -\frac{f}{a}(x\varphi v - y\varphi u) + \mu z \end{bmatrix}$$

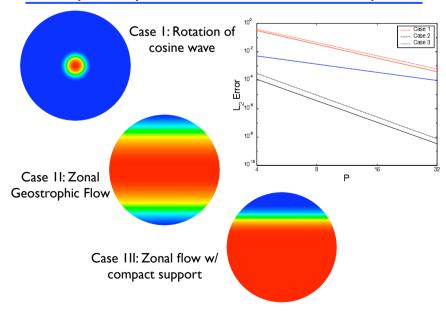
$$\frac{\partial \overline{\varphi}}{\partial t} + \nabla \cdot \overline{F} = S(\overline{\varphi})$$

Stardard benchmark (Williamsson) in geophysical flow modeling

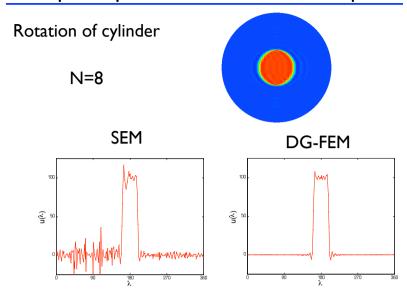
# Example - Boussinesq equations



# Example - Spherical Shallow Water equ

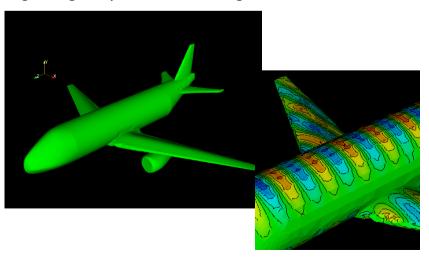


# Example - Spherical Shallow Water equ



#### Classic curvilinear elements

Ignoring the problem is not a good idea



# An easy path to curvilinear elements

There are several good reasons for adding the support for curvilinear elements

This is work by Prof T. Warburton

√ Higher accuracy

- √ Resolution set by solution, not geometry
- √ Often essential to make high-order competitive

.. but classic/general approach is expensive in work and memory due to local operators

We present a special approach for linear problems

# Another way

The idea is to define

$$\mathbf{H} = \frac{\tilde{\mathbf{H}}}{\sqrt{J}}, \mathbf{E} = \frac{\tilde{\mathbf{E}}}{\sqrt{J}}$$

and the corresponding test function

$$L_j(\mathbf{x}) = \frac{L_j(\mathbf{x})}{\sqrt{J}}$$

These are non-polynomial functions

$$\int_D HL_j \, d\mathbf{x} = \int_D J^{-1} \tilde{H} \tilde{L}_j \, d\mathbf{x} = \int_I \tilde{H} \tilde{L}_j \, d\mathbf{r}$$

Mass matrix is unchanged

# Another way

The scheme becomes

$$0 = \left(\tilde{\phi}, \frac{\partial \mu \tilde{H}}{\partial t}\right)_{\hat{T}} + \left(\tilde{\phi}, \nabla \times \tilde{E}\right)_{\hat{T}} + \left(\frac{\tilde{\phi}}{\sqrt{J}}, n \times \left(E^{\dagger} - E\right)\right)_{\partial T}$$

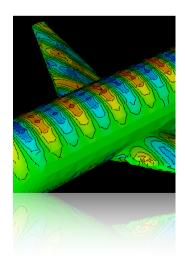
$$0 = \left(\tilde{\psi}, \frac{\partial \varepsilon \tilde{E}}{\partial t}\right)_{\hat{T}} - \left(\nabla \times \tilde{\psi}, \tilde{H}\right)_{\hat{T}} - \left(\frac{\tilde{\psi}}{\sqrt{J}}, n \times H^{\dagger}\right)_{\partial T}$$
Maxwell's equations on reference element Distributional derivative contribution

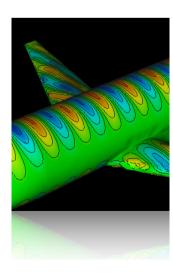
Stability can still be established by standard means

This is a low-storage curvilinear formulation

.. only for linear problems

# Another way





# Another way

| Method  | N |          |          |          |          | Est. Order |
|---------|---|----------|----------|----------|----------|------------|
| DGTD    | 5 | 2.45E-04 | 8.06E-06 | 2.56E-05 | 5.24E-09 | 5.61       |
| DGTD    | 6 | 4.31E-05 | 1.43E-06 | 2.52E-08 | 2.81E-10 | 6.49       |
| Low     | 5 | 2.44E-04 | 8.03E-06 | 2.55E-05 | 5.22E-09 | 5.61       |
| storage | 6 | 4.29E-05 | 1.43E-06 | 2.52E-08 | 2.79E-10 | 6.50       |

No loss in accuracy

# Summary of Part I

We have generalized everything to 3D

- ✓ Linear/nonlinear problems
- √ First order/higher order operators
- √ Complex geometries
- √ Apaptivity
- √ Curvilinear elements

There is only one significant obstacle to solving large problems

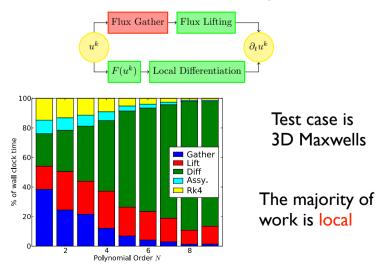


#### Lecture 8

- √ Let's briefly recall what we know
- ✓ Part I: 3D problems and extensions
  - √ Formulations and examples
  - √ Adaptivity and curvilinear elements
- ✓ Part II: The need for speed
  - √ Parallel computing
  - √ GPU computing
  - √ Software beyond Matlab

# The need for speed

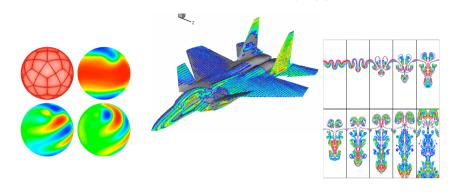
Let us first understand where we spend the time



# The need for speed!

So far, we have focused on 'simple' serial computing using Matlab based model.

However, this will not suffice for many applications



# The need for speed

The locality suggest that parallel computing will be beneficial

- ✓ Using OpenMP, the local work can be distributed over elements through loops.
- ✓ Using MPI the locality ensures a surface communication model.
- ✓ Mixed OpenMP/MPI models also possible
- ✓ A similar line of arguments can be used for iterative solvers.

# Parallel performance

| # Processors   | 64   | 128  | 256  | 512  |
|----------------|------|------|------|------|
| Scaled RK time | 1.00 | 0.48 | 0.24 | 0.14 |
| Ideal time     | 1.00 | 0.50 | 0.25 | 0.13 |

High performance is achieved through -

- √ Local nature of scheme
- ✓ Pure matrix-matrix operations
- √ Local bandwidth minimization
- √ Very efficient on-chip performance (~75%)

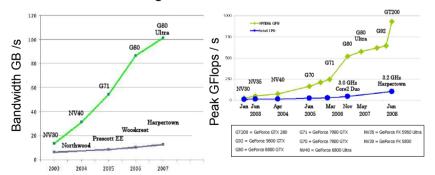
#### Challenges -

√ Efficient parallel preconditioning

#### CPUs vs GPUs



#### Notice the following



The memory bandwidth and the peak performance on Graphics cards (GPU's) is developing MUCH faster than on CPU's

At the same time, the mass-marked for gaming drives the prices down -- we have to find a way to exploit this!

# Parallel computing

DG-FEM maps very well to classic multi-processor computing clusters and result in excellent speed-up.

... but such machines are expensive to buy and run.

Ex: To get on the Top500 list, requires about \$3m to purchase a cluster with 50Tflop/s performance.

What we need is supercomputing on the desktop

# For FREE!

... or at least at a fraction of the price

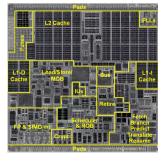
# But why is this?



Target for CPU:

- √ Single thread very fast
- √ Large caches to hide latency
- ✓ Predict, speculate etc





Lots of very complex logic to predict behavior

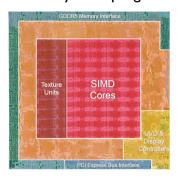
# But why is this?



For streaming/graphics cards it is different

- √ Throughput is what matters
- √ Hide latency through parallelism
- ✓ Push hierarchy onto programmer

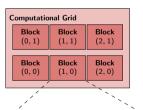




Much simpler logic with a focus on performance

#### GPUs 101



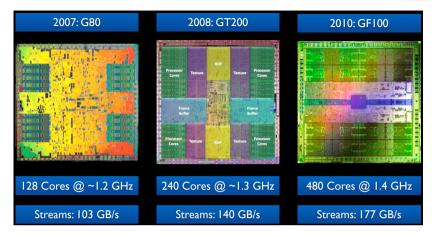


| Block (1, 0)     |                |               |               |  |
|------------------|----------------|---------------|---------------|--|
| Thread (0, 3)    | Thread (1, 3)  | Thread (2, 3) | Thread (3, 3) |  |
| Thread (0, 2)    | Thread (1, 2)  | Thread (2, 2) | Thread (3, 2) |  |
| Thread<br>(0, 1) | Thread $(1,1)$ | Thread (2, 1) | Thread (3, 1) |  |
| Thread (0, 0)    | Thread (1, 0)  | Thread (2, 0) | Thread (3, 0) |  |

- √ Genuine multi-tiered parallelism
  - √ Grids
  - √ blocks
  - √ threads
- ✓Only threads within a block can talk
  - ✓ Blocks must be executed in order
- √ Grids/blocks/threads replace loops
- √ Until recently, only single precision
- √ Code-able with CUDA (C-extension)

# But why is this?





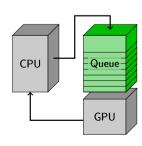
Core numbers grow faster than bandwidth

## CPUs vs GPUs



The CPU is mainly the traffic controller ... although it need not be

- √ The CPU and GPU runs asynchronously
- √ CPU submits to GPU queue
- √ CPU synchronizes GPUs
- ✓ Explicitly controlled concurrency is possible



#### **GPUs** overview

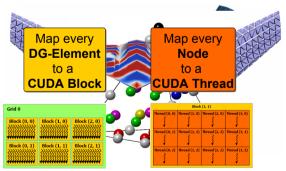


- √ GPUs exploit multi-layer concurrency
- √ The memory hierarchy is deep
- Memory padding is often needed to get optimal performance
- Several types of memory must be used for performance
- ✓ First factor of 5 is not too hard to get
- √ Next factor of 5 requires quite some work
- √ Additional factor of 2-3 requires serious work

### Nodal DG on GPU's



Nodes in threads, elements for blocks



#### Other choices:

- ✓D-matrix in shared, data in global (small N)
- ✓ Data in shared, D-matrix is global (large N)

#### Nodal DG on GPU's



So what does all this mean?

- ✓ GPU's has deep memory hierarchies so local is good
   The majority of DG operations are local
- √ Compute bandwidth >> memory bandwidth

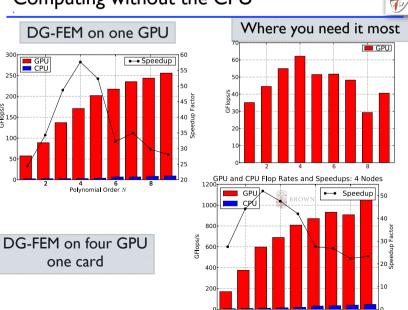
  → High-order DG is arithmetically intense
- √ GPU global memory favors dense data
  - →Local DG operators are all dense



With proper care we should be able to obtain excellent performance for DG-FEM on GPU's

# Computing without the CPU

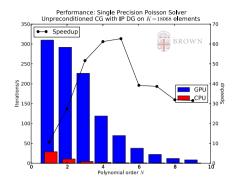


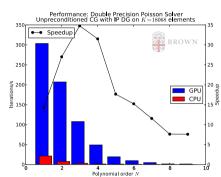


#### Nodal DG on GPU's



#### Similar results for DG-FEM Poisson solver with CG

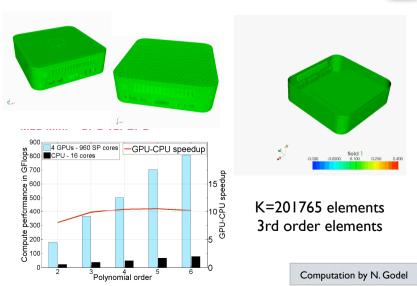




Note: No preconditioning

# Example - a Mac Mini

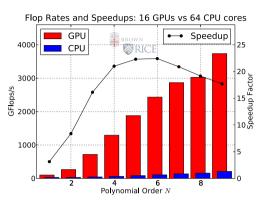


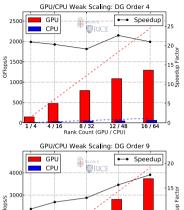


# Combined GPU/MPI solution



#### MPI across network

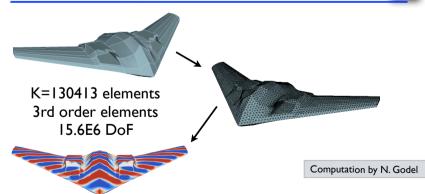




Good scaling when problem is large

# Example: Military aircraft



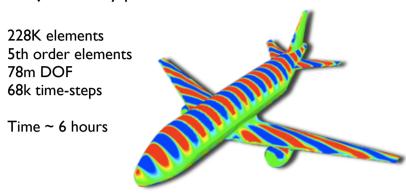


|   | CPU global    | 29 h 6 min 46 s | 1.0   |
|---|---------------|-----------------|-------|
|   | GPU global    | 39 min 1 s      | 44.8  |
| ¥ | GPU multirate | 11 min 50 s     | 147.6 |

# Nodal DG on GPU's



# Not just for toy problems



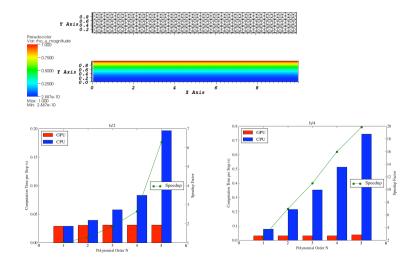
711.9 GFlop/s on one card

Computation by N. Godel

# Beyond Maxwell's equations



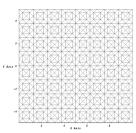
#### 2D Navier-Stokes test case

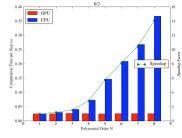


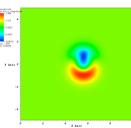
# Beyond Maxwell's equations

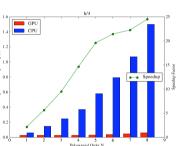


#### 2D Euler test case

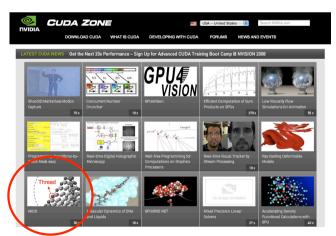








# Want to play yourself?



Code MIDG available at <a href="http://nvidia.com/cuda">http://nvidia.com/cuda</a>

#### Nodal DG on GPU's



Several GPU cards can be coupled over MPI at minimal overhead (demonstrated). Lets do the numbers

One ITF/s/4GB mem card costs ~\$8k

So \$250k will buy you 40TFlop/s sustained

This is the entry into Top500 Supercomputer list!

... at 5%-10% of a CPU based machine

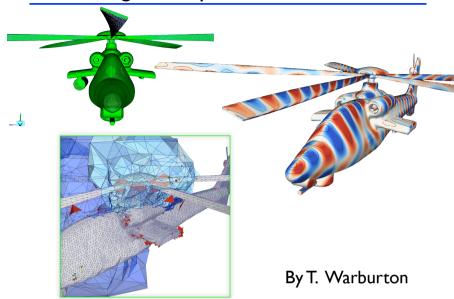
This is **a game changer** -- and the local nature of DG-FEM makes it very well suited to take advantage of this

#### Do we have to write it all?

#### No :-)

- √ Book related codes all at <u>www.nudg.org</u>
  - √ Matlab codes
  - √NUDG++ a C++ version of 2D/3D codes (serial)
- √ hedge a Python based meta-programming code. Support for serial/parallel/GPU
- ✓ MIDG a bare bones parallel/GPU code for Maxwell's equations

# Combining all the pieces

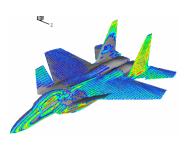


#### Do we have to write it all?

#### Other codes

- ✓ **Slegde++** C++ operator code. Interfaced with parallel solvers (Trilinos and Mumps) and support for adaptivity and non-conformity. Contact Lucas Wilcox (NPS Monterey)
- ✓ **deal.II** a large code with support for fully non-conforming DG with adaptivity etc. Only for squares/cubes. <a href="https://www.dealii.org">www.dealii.org</a>
- ✓ **Nektar++** a C++ code for both spectral elements/hp and DG. Mainly for CFD. Contact Prof Spencer Sherwin (Imperial College, London)

# Progress?



#### Year 2001

250k tets, 4th order 50m dof, I 00k timesteps

24 hours on 512 procs

#### **Year 2008**

82k tets, 4th order 17m dof, 60k timesteps

Few hours on GPU



# Thanks!

Many people have contributed to this with material, figures, examples etc

- √ Tim Warburton (Rice University)
- ✓ Lucas Wilcox (NPS Monterey)
- √ Andreas Kloeckner (NYU/Courant)
- √ Nico Goedel (Hamburg)
- √ Hendrick Riedmann (Stuttgart)
- √ Francis Giraldo (NPS Monterrey)
- ✓ Per-Olof Persson (UC Berkeley)

... and to you for hanging in there!