

DG-FEM for PDE's Lecture 8

Jan S Hesthaven
Brown University
Jan.Hesthaven@Brown.edu

Lecture 8

- ✓ Let's briefly recall what we know
- ✓ Part I: 3D problems and extensions
 - √ Formulations and examples
 - √ Adaptivity and curvilinear elements
- ✓ Part II: The need for speed
 - √ Parallel computing
 - ✓ GPU computing
 - √ Software beyond Matlab

A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

Lets summarize

We are done with all the basics -- and we have started to see it work for us -- we know how to do

- ✓ ID/2D problems
- √ Linear/nonlinear problems
- √ First and higher operators
- √ Complex geometries
- ✓... and we have insight into theory

All we need is 3D -- and with that comes the need for speed!

Extension to 3D?

It is really simple at this stage!

Weak form:

$$\int_{\mathsf{D}^k} \left[\frac{\partial u_h^k}{\partial t} \ell_n^k(\boldsymbol{x}) - \boldsymbol{f}_h^k \cdot \nabla \ell_n^k(\boldsymbol{x}) \right] d\boldsymbol{x} = - \oint_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot \boldsymbol{f}^* \ell_n^k(\boldsymbol{x}) d\boldsymbol{x},$$

Strong form:

$$\int_{\mathsf{D}^k} \left[\frac{\partial u_h^k}{\partial t} + \nabla \cdot \boldsymbol{f}_h^k \right] \ell_n^k(\boldsymbol{x}) \, d\boldsymbol{x} = \oint_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot \left[\boldsymbol{f}_h^k - \boldsymbol{f}^* \right] \ell_n^k(\boldsymbol{x}) \, d\boldsymbol{x},$$

$$m{f}^* = \{\{m{f}_h(m{u}_h)\}\} + rac{C}{2} \llbracket m{u}_h
rbracket. \qquad C = \max_u \left| \lambda \left(\hat{m{n}} \cdot rac{\partial m{f}}{\partial m{u}}
ight)
ight|,$$

Nothing is essential new

Extension to 3D

For other element types, one simply need to define nodes and modes for that elements

Extension to 3D

Apart from the 'logistics' all we need to worry about is to choose our element and how to represent the solution

$$egin{aligned} u(m{r}) &\simeq u_h(m{r}) = \sum_{n=1}^{N_p} \hat{u}_n \psi_n(m{r}) = \sum_{i=1}^{N_p} u(m{r}_i) \ell_i(m{r}), \ m{u} &= \mathcal{V} \hat{m{u}}, \;\; \mathcal{V}^T m{\ell}(m{r}) = m{\psi}(m{r}), \;\; \mathcal{V}_{ij} = \psi_i(m{r}_i). \end{aligned}$$

We need points $N_p = \frac{(N+1)(N+2)(N+3)}{6}$

We need an orthonormal basis

$$\psi_{ijk}(r,s,t) = 2\sqrt{2}P_i^{(0,0)}(a)P_j^{(2i+1,0)}(b)P_k^{(2i+2j+2,0)}(b)(1-b)^i(1-c)^{i+j},$$

Extension to 3D

Everything is identical in spirit

Mass matrix $\mathcal{M}^k = J^k(\mathcal{V}\mathcal{V}^T)^{-1}$.

Diff matrix $\mathcal{D}_r \mathcal{V} = \mathcal{V}_r, \ \mathcal{D}_s \mathcal{V} = \mathcal{V}_s, \ \mathcal{D}_t \mathcal{V} = \mathcal{V}_t,$

$$\begin{split} \frac{\partial}{\partial x} &= \frac{\partial r}{\partial x} \mathcal{D}_r + \frac{\partial s}{\partial x} \mathcal{D}_s + \frac{\partial t}{\partial x} \mathcal{D}_t, \\ \frac{\partial}{\partial y} &= \frac{\partial r}{\partial y} \mathcal{D}_r + \frac{\partial s}{\partial y} \mathcal{D}_s + \frac{\partial t}{\partial y} \mathcal{D}_t, \\ \frac{\partial}{\partial z} &= \frac{\partial r}{\partial z} \mathcal{D}_r + \frac{\partial s}{\partial z} \mathcal{D}_s + \frac{\partial t}{\partial z} \mathcal{D}_t, \end{split}$$

Stiffness matrix $S_r = \mathcal{M}^{-1}\mathcal{D}_r, \ S_s = \mathcal{M}^{-1}\mathcal{D}_s, \ S_t = \mathcal{M}^{-1}\mathcal{D}_t.$

Example - Maxwell's equations

Consider Maxwell's equations

$$\varepsilon \partial_t E - \nabla \times H = -j, \qquad \mu$$

$$\mu \partial_t H + \nabla \times E = 0,$$

Write it on conservation form as

$$\frac{\partial q}{\partial t} + \nabla \cdot F = -J \quad F = \begin{bmatrix} -\hat{e} \times H \\ \hat{e} \times E \end{bmatrix} \quad q = \begin{bmatrix} E \\ H \end{bmatrix}$$

Represent the solution as

$$\Omega = \sum_{k} D^{k}$$
 $q_{N} = \sum_{i=1}^{N} q(\mathbf{x}_{i}, t) L_{i}(\mathbf{x})$

An example - Maxwell's equations

Simple wave propagation

Example - Maxwell's equations

On each element we then define

$$\hat{M}_{ij} = \int_D L_i L_j \, \mathrm{d} \boldsymbol{x}, \quad \hat{S}_{ij} = \int_D \nabla L_j L_i \, \mathrm{d} \boldsymbol{x}, \quad \hat{F}_{ij} = \oint_{\hat{P}_D} L_i L_j \, \mathrm{d} \boldsymbol{x},$$

With the numerical flux given as

$$\hat{\mathbf{n}} \cdot [\mathbf{F} - \mathbf{F}^*] = \begin{cases} \mathbf{n} \times (\gamma \mathbf{n} \times [\mathbf{E}] - [\mathbf{B}]), \\ \mathbf{n} \times (\gamma \mathbf{n} \times [\mathbf{B}] + [\mathbf{E}]), \end{cases} \qquad [Q] = Q^- - Q^+$$

To obtain the local matrix based scheme

$$\hat{M}\frac{\mathrm{d}\hat{\boldsymbol{q}}}{\mathrm{d}t} + \hat{S}\cdot\hat{\boldsymbol{F}} - \hat{M}\hat{\boldsymbol{J}} = \hat{F}\hat{\boldsymbol{n}}\cdot[\hat{\boldsymbol{F}} - \hat{\boldsymbol{F}}^*],$$

One then typically uses an explicit Runge-Kutta to advance in time - just like ID/2D.

An example - Maxwell's equations

An example - Maxwell's equations

Animations by Nico Godel (Hamburg)

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic effects, one needs to solve for f(x,p,t) - 6D+1

Vlasov/Boltzmann equation

$$\partial_t f + v \cdot \partial_x f + q(E + v \times B) \cdot \partial_p f = \langle \text{Sources} \rangle - \langle \text{Sinks} \rangle.$$

Maxwell's equations

$$\partial_t E - \frac{1}{\varepsilon} \nabla \times H = -\frac{j}{\varepsilon},$$

$$\partial_t H + \frac{1}{\mu} \nabla \times E = 0,$$

$$\nabla \cdot H = 0, \qquad \nabla \cdot E = \frac{\rho}{\epsilon}.$$

$$\nabla \cdot H = 0, \qquad \nabla \cdot E = \frac{\rho}{c}$$

Coupled through $\rho := \int f \ dv$, $j := \int vf \ dv$.

Kinetic Plasma Physics

Important applications

- √ High-power/High-frequency microwave generation
- ✓ Particle accelerators
- √ Laser-matter interaction
- √ Fusion applications, e.g., plasma edge
- √ etc

Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann equation by sampling with P particles

$$f(x, p, t) = \sum_{n=1}^{P} q_n S(x - x_n(t)) \delta(p - p_n(t)),$$
$$\rho(x, t) = \sum_{n=1}^{P} q_n S(x - x_n(t)), \quad j(x, t) = \sum_{n=1}^{P} v_n q_n S(x - x_n(t))$$

Ideally we have

$$S(x) = \delta(x)$$
 a point particle

However, this is not practical, nor reasonable - so S(x) is a **shape-function**

Particle-in-Cell Methods

Maxwell's equations

$$\nabla \cdot (\varepsilon E) = \rho, \quad \mu \partial_t H + \nabla \times E = 0,$$

$$\nabla \cdot (\varepsilon E) = \rho, \quad \nabla \cdot (\mu H) = 0,$$

Particle/Phase dynamics

$$\frac{dx_n}{dt} = v_n(t) \quad \frac{dmv_n}{dt} = q_n(E + v_n \times H) \quad m = \frac{1}{\sqrt{1 - (v_n/c)^2}}$$

Particles-to-fields

$$\rho(x,t) = \sum_{n=1}^{P} q_n S(x - x_n(t)), \quad j(x,t) = \sum_{n=1}^{P} v_n q_n S(x - x_n(t))$$

Fields-to-particles

$$E(x_n), H(x_n)$$

Particle gun

Kinetic Plasma Physics

Magnetic reconnection

Compressible fluid flow

Time-dependent Euler equations

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0,$$

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u \left(E + p \right) \end{pmatrix}, \mathbf{G} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v \left(E + p \right) \end{pmatrix}$$

Formulation is straightforward

$$\int_{\mathsf{D}^{k}} \left(\frac{\partial \mathbf{q}_{h}}{\partial t} \phi_{h} - \mathbf{F}_{h} \frac{\partial \phi_{h}}{\partial x} - \mathbf{G}_{h} \frac{\partial \phi_{h}}{\partial y} \right) d\mathbf{x} + \oint_{\partial \mathsf{D}^{k}} \left(\hat{n}_{x} \mathbf{F}_{h} + \hat{n}_{y} \mathbf{G}_{h} \right)^{*} \phi_{h} d\mathbf{x} = 0.$$

 $(\hat{n}_x \mathbf{F}_h + \hat{n}_y \mathbf{G}_h)^* = \hat{n}_x \{ \{ \mathbf{F}_h \} \} + \hat{n}_y \{ \{ \mathbf{G}_h \} \} + \frac{\lambda}{2} \cdot \llbracket \mathbf{q}_h \rrbracket.$

Challenge: Shocks -- this requires limiting/filtering

Compressible fluid flow

3D Extension

Nothing special!

- ✓ Linear/nonlinear problems
- ✓ First order/higher order operators
- √ Complex geometries

Further extensions

- √ Adaptivity/non-conforming elements
- √ Curvilinear elements

The list goes on ..

The same DG-FEM computation platform has been used for all examples and many other problem types

- √ Flow mixing and control
- √ Poisson/Helmholtz equations √ Shallow water flows on the sphere
- √ Adjoint based adaptive solution/design

Everything you have done in ID/2D you can do in 3D in exactly the same way.

Adaptivity/non-conformity

Question: Do element faces always have to match?

Answer: No

h-nonconform

Question: Can one use different order in each element?

Answer:Yes

p-nonconform

Example - Adaptive solution

We consider a standard test case

$$abla^2 u(\mathbf{x}) = f(\mathbf{x}) \qquad u = 0, \mathbf{x} \in \partial \Omega$$

Domain is L-shaped

RHS so that the exact solution is 0.25

$$u(r,\theta) = r^{2/3}\sin(2\pi/3\theta)$$

Solution is singular!

Solved using full hp-adaptive solution

Example - Adaptive solution - Maxwell's

$$\nabla \times \nabla \times \mathbf{E} + \omega^2 \mathbf{E} = \mathbf{f}, \mathbf{n} \times \mathbf{E} = 0, \mathbf{x} \in \Omega$$

Example - Adaptive solution

Curvilinear elements

What: Elements that conform exactly to a curved boundary

Why: Accuracy!

This is a unique feature to high-order elements

Example - Maxwell's equations

$$H^{x}(x, y, t = 0) = 0, \ H^{y}(x, y, t = 0) = 0,$$

 $E^{z}(x, y, t = 0) = J_{6}(\alpha_{6}r)\cos(6\theta)\cos(\alpha_{6}t),$

1.1 -					_
1		A		_	
).9		/	/	\setminus	
).8	$A \setminus A$	И		\star	1
).7E	¥	K_L	\perp	\perp	
	-0.2 - 0.1	0	0.1	0.2	

N	h	h/2	h/4	Rate
1	1.09E-01	3.78E-02	8.96E-03	1.80
2	2.21E-02	2.23E-03	2.05E-04	3.38
3	3.12E-03	1.92E-04	1.28E-05	3.97
4	6.01E-04	1.95E-05	5.88E-07	5.00
5	9.89E-05	1.69E-06	2.72E-08	5.92
6	1.74E-05	1.31E-07	9.81E-10	7.06
7	2.08E-06	8.97E-09	7.93E-11*	7.34

This is essential to fully benefit for complex problems

Example - Spherical Shallow Water equ

Dynamics of a thin layer of fluids on a sphere

$$\frac{\partial}{\partial t} \begin{bmatrix} \varphi \\ \varphi u \\ \varphi v \\ \varphi w \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \varphi u \\ \varphi u^2 + \frac{1}{2}\varphi^2 \\ \varphi uv \\ \varphi uw \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \varphi v \\ \varphi vu \\ \varphi v^2 + \frac{1}{2}\varphi^2 \\ \varphi vw \end{bmatrix} + \frac{\partial}{\partial z} \begin{bmatrix} \varphi w \\ \varphi wu \\ \varphi wv \\ \varphi w^2 + \frac{1}{2}\varphi^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{f}{a}(y\varphi w - z\varphi v) + \mu x \\ -\frac{f}{a}(z\varphi u - x\varphi w) + \mu y \\ -\frac{f}{a}(x\varphi v - y\varphi u) + \mu z \end{bmatrix}$$

$$\frac{\partial \overline{\varphi}}{\partial t} + \nabla \cdot \overline{F} = S(\overline{\varphi})$$

Stardard benchmark (Williamsson) in geophysical flow modeling

Example - Boussinesq equations

Example - Spherical Shallow Water equ

Example - Spherical Shallow Water equ

Classic curvilinear elements

Ignoring the problem is not a good idea

An easy path to curvilinear elements

There are several good reasons for adding the support for curvilinear elements

This is work by Prof T. Warburton

√ Higher accuracy

- √ Resolution set by solution, not geometry
- √ Often essential to make high-order competitive

.. but classic/general approach is expensive in work and memory due to local operators

We present a special approach for linear problems

Another way

The idea is to define

$$\mathbf{H} = \frac{\tilde{\mathbf{H}}}{\sqrt{J}}, \mathbf{E} = \frac{\tilde{\mathbf{E}}}{\sqrt{J}}$$

and the corresponding test function

$$L_j(\mathbf{x}) = \frac{L_j(\mathbf{x})}{\sqrt{J}}$$

These are non-polynomial functions

$$\int_D HL_j \, d\mathbf{x} = \int_D J^{-1} \tilde{H} \tilde{L}_j \, d\mathbf{x} = \int_I \tilde{H} \tilde{L}_j \, d\mathbf{r}$$

Mass matrix is unchanged

Another way

The scheme becomes

$$0 = \left(\tilde{\phi}, \frac{\partial \mu \tilde{H}}{\partial t}\right)_{\hat{T}} + \left(\tilde{\phi}, \nabla \times \tilde{E}\right)_{\hat{T}} + \left(\frac{\tilde{\phi}}{\sqrt{J}}, n \times \left(E^{\dagger} - E\right)\right)_{\partial T}$$

$$0 = \left(\tilde{\psi}, \frac{\partial \varepsilon \tilde{E}}{\partial t}\right)_{\hat{T}} - \left(\nabla \times \tilde{\psi}, \tilde{H}\right)_{\hat{T}} - \left(\frac{\tilde{\psi}}{\sqrt{J}}, n \times H^{\dagger}\right)_{\partial T}$$
Maxwell's equations on reference element Distributional derivative contribution

Stability can still be established by standard means

This is a low-storage curvilinear formulation

.. only for linear problems

Another way

Another way

Method	N					Est. Order
DGTD	5	2.45E-04	8.06E-06	2.56E-05	5.24E-09	5.61
DGTD	6	4.31E-05	1.43E-06	2.52E-08	2.81E-10	6.49
Low	5	2.44E-04	8.03E-06	2.55E-05	5.22E-09	5.61
storage	6	4.29E-05	1.43E-06	2.52E-08	2.79E-10	6.50

No loss in accuracy

Summary of Part I

We have generalized everything to 3D

- ✓ Linear/nonlinear problems
- √ First order/higher order operators
- √ Complex geometries
- √ Apaptivity
- √ Curvilinear elements

There is only one significant obstacle to solving large problems

Lecture 8

- √ Let's briefly recall what we know
- ✓ Part I: 3D problems and extensions
 - √ Formulations and examples
 - √ Adaptivity and curvilinear elements
- ✓ Part II: The need for speed
 - √ Parallel computing
 - √ GPU computing
 - √ Software beyond Matlab

The need for speed

Let us first understand where we spend the time

The need for speed!

So far, we have focused on 'simple' serial computing using Matlab based model.

However, this will not suffice for many applications

The need for speed

The locality suggest that parallel computing will be beneficial

- ✓ Using OpenMP, the local work can be distributed over elements through loops.
- ✓ Using MPI the locality ensures a surface communication model.
- ✓ Mixed OpenMP/MPI models also possible
- ✓ A similar line of arguments can be used for iterative solvers.

Parallel performance

# Processors	64	128	256	512
Scaled RK time	1.00	0.48	0.24	0.14
Ideal time	1.00	0.50	0.25	0.13

High performance is achieved through -

- √ Local nature of scheme
- ✓ Pure matrix-matrix operations
- √ Local bandwidth minimization
- √ Very efficient on-chip performance (~75%)

Challenges -

√ Efficient parallel preconditioning

CPUs vs GPUs

Notice the following

The memory bandwidth and the peak performance on Graphics cards (GPU's) is developing MUCH faster than on CPU's

At the same time, the mass-marked for gaming drives the prices down -- we have to find a way to exploit this!

Parallel computing

DG-FEM maps very well to classic multi-processor computing clusters and result in excellent speed-up.

... but such machines are expensive to buy and run.

Ex: To get on the Top500 list, requires about \$3m to purchase a cluster with 50Tflop/s performance.

What we need is supercomputing on the desktop

For FREE!

... or at least at a fraction of the price

But why is this?

Target for CPU:

- √ Single thread very fast
- √ Large caches to hide latency
- ✓ Predict, speculate etc

Lots of very complex logic to predict behavior

But why is this?

For streaming/graphics cards it is different

- √ Throughput is what matters
- √ Hide latency through parallelism
- ✓ Push hierarchy onto programmer

Much simpler logic with a focus on performance

GPUs 101

Block (1, 0)				
Thread (0, 3)	Thread (1, 3)	Thread (2, 3)	Thread (3, 3)	
Thread (0, 2)	Thread (1, 2)	Thread (2, 2)	Thread (3, 2)	
Thread (0, 1)	Thread $(1,1)$	Thread (2, 1)	Thread (3, 1)	
Thread (0, 0)	Thread (1, 0)	Thread (2, 0)	Thread (3, 0)	

- √ Genuine multi-tiered parallelism
 - √ Grids
 - √ blocks
 - √ threads
- ✓Only threads within a block can talk
 - ✓ Blocks must be executed in order
- √ Grids/blocks/threads replace loops
- √ Until recently, only single precision
- √ Code-able with CUDA (C-extension)

But why is this?

Core numbers grow faster than bandwidth

CPUs vs GPUs

The CPU is mainly the traffic controller ... although it need not be

- √ The CPU and GPU runs asynchronously
- √ CPU submits to GPU queue
- √ CPU synchronizes GPUs
- ✓ Explicitly controlled concurrency is possible

GPUs overview

- √ GPUs exploit multi-layer concurrency
- √ The memory hierarchy is deep
- Memory padding is often needed to get optimal performance
- Several types of memory must be used for performance
- ✓ First factor of 5 is not too hard to get
- √ Next factor of 5 requires quite some work
- √ Additional factor of 2-3 requires serious work

Nodal DG on GPU's

Nodes in threads, elements for blocks

Other choices:

- ✓D-matrix in shared, data in global (small N)
- ✓ Data in shared, D-matrix is global (large N)

Nodal DG on GPU's

So what does all this mean?

- ✓ GPU's has deep memory hierarchies so local is good
 The majority of DG operations are local
- √ Compute bandwidth >> memory bandwidth

 → High-order DG is arithmetically intense
- √ GPU global memory favors dense data
 - →Local DG operators are all dense

With proper care we should be able to obtain excellent performance for DG-FEM on GPU's

Computing without the CPU

Nodal DG on GPU's

Similar results for DG-FEM Poisson solver with CG

Note: No preconditioning

Example - a Mac Mini

Combined GPU/MPI solution

MPI across network

Good scaling when problem is large

Example: Military aircraft

	CPU global	29 h 6 min 46 s	1.0
	GPU global	39 min 1 s	44.8
¥	GPU multirate	11 min 50 s	147.6

Nodal DG on GPU's

Not just for toy problems

711.9 GFlop/s on one card

Computation by N. Godel

Beyond Maxwell's equations

2D Navier-Stokes test case

Beyond Maxwell's equations

2D Euler test case

Want to play yourself?

Code MIDG available at http://nvidia.com/cuda

Nodal DG on GPU's

Several GPU cards can be coupled over MPI at minimal overhead (demonstrated). Lets do the numbers

One ITF/s/4GB mem card costs ~\$8k

So \$250k will buy you 40TFlop/s sustained

This is the entry into Top500 Supercomputer list!

... at 5%-10% of a CPU based machine

This is **a game changer** -- and the local nature of DG-FEM makes it very well suited to take advantage of this

Do we have to write it all?

No :-)

- √ Book related codes all at <u>www.nudg.org</u>
 - √ Matlab codes
 - √NUDG++ a C++ version of 2D/3D codes (serial)
- √ hedge a Python based meta-programming code. Support for serial/parallel/GPU
- ✓ MIDG a bare bones parallel/GPU code for Maxwell's equations

Combining all the pieces

Do we have to write it all?

Other codes

- ✓ **Slegde++** C++ operator code. Interfaced with parallel solvers (Trilinos and Mumps) and support for adaptivity and non-conformity. Contact Lucas Wilcox (NPS Monterey)
- ✓ **deal.II** a large code with support for fully non-conforming DG with adaptivity etc. Only for squares/cubes. www.dealii.org
- ✓ **Nektar++** a C++ code for both spectral elements/hp and DG. Mainly for CFD. Contact Prof Spencer Sherwin (Imperial College, London)

Progress?

Year 2001

250k tets, 4th order 50m dof, I 00k timesteps

24 hours on 512 procs

Year 2008

82k tets, 4th order 17m dof, 60k timesteps

Few hours on GPU

Thanks!

Many people have contributed to this with material, figures, examples etc

- √ Tim Warburton (Rice University)
- ✓ Lucas Wilcox (NPS Monterey)
- √ Andreas Kloeckner (NYU/Courant)
- √ Nico Goedel (Hamburg)
- √ Hendrick Riedmann (Stuttgart)
- √ Francis Giraldo (NPS Monterrey)
- ✓ Per-Olof Persson (UC Berkeley)

... and to you for hanging in there!