A brief overview of what's to come

DG-FEM for PDE's Lecture 8

Jan S Hesthaven Brown University
Jan.Hesthaven@Brown.edu

Lecture 8

\checkmark Let's briefly recall what we know
\checkmark Part I: 3D problems and extensions \checkmark Formulations and examples
\checkmark Adaptivity and curvilinear elements
\checkmark Part II:The need for speed
\checkmark Parallel computing
\checkmark GPU computing
\checkmark Software beyond Matlab

Lets summarize

We are done with all the basics -- and we have started to see it work for us -- we know how to do

$$
\sqrt{ } \text { ID/2D problems }
$$

\checkmark Linear/nonlinear problems
$\sqrt{ }$ First and higher operators
$\sqrt{ }$ Complex geometries
$\sqrt{ }$... and we have insight into theory

All we need is 3D -- and with that comes the need for speed!

Extension to 3D ?

It is really simple at this stage !
Weak form:

$$
\int_{D^{k}}\left[\frac{\partial u_{h}^{k}}{\partial t} \ell_{n}^{k}(\boldsymbol{x})-\boldsymbol{f}_{h}^{k} \cdot \nabla \ell_{n}^{k}(\boldsymbol{x})\right] d \boldsymbol{x}=-\oint_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot \boldsymbol{f}^{*} \ell_{n}^{k}(\boldsymbol{x}) d \boldsymbol{x},
$$

Strong form:

$$
\begin{gathered}
\int_{D^{k}}\left[\frac{\partial u_{h}^{k}}{\partial t}+\nabla \cdot \boldsymbol{f}_{h}^{k}\right] \ell_{n}^{k}(\boldsymbol{x}) d \boldsymbol{x}=\oint_{\partial \mathrm{D}^{k}} \hat{n} \cdot\left[\boldsymbol{f}_{h}^{k}-\boldsymbol{f}^{*}\right] \ell_{n}^{k}(\boldsymbol{x}) d \boldsymbol{x}, \\
\boldsymbol{f}^{*}=\left\{\left\{\boldsymbol{f}_{h}\left(\boldsymbol{u}_{h}\right)\right\}\right\}+\frac{C}{2} \llbracket \boldsymbol{u}_{h} \rrbracket . \quad C=\max _{u}\left|\lambda\left(\hat{\boldsymbol{n}} \cdot \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\right)\right|,
\end{gathered}
$$

Nothing is essential new

Extension to 3D

For other element types, one simply need to define nodes and modes for that elements

Extension to 3D

Apart from the 'logistics' all we need to worry about is to choose our element and how to represent the solution

$$
\begin{aligned}
& u(\boldsymbol{r}) \simeq u_{h}(\boldsymbol{r})=\sum_{n=1}^{N_{p}} \hat{u}_{n} \psi_{n}(\boldsymbol{r})=\sum_{i=1}^{N_{p}} u\left(\boldsymbol{r}_{i}\right) \ell_{i}(\boldsymbol{r}) \\
& \boldsymbol{u}=\mathcal{V} \hat{\boldsymbol{u}}, \quad \mathcal{V}^{T} \ell(\boldsymbol{r})=\boldsymbol{\psi}(\boldsymbol{r}), \quad \mathcal{V}_{i j}=\psi_{j}\left(\boldsymbol{r}_{i}\right)
\end{aligned}
$$

We need points

$$
N_{p}=\frac{(N+1)(N+2)(N+3)}{6}
$$

We need an orthonormal basis

$$
\psi_{i j k}(r, s, t)=2 \sqrt{2} P_{i}^{(0,0)}(a) P_{j}^{(2 i+1,0)}(b) P_{k}^{(2 i+2 j+2,0)}(b)(1-b)^{i}(1-c)^{i+j}
$$

Extension to 3D

Everything is identical in spirit
Mass matrix

$$
\mathcal{M}^{k}=J^{k}\left(\mathcal{V} \mathcal{V}^{T}\right)^{-1} .
$$

Diff matrix $\quad \mathcal{D}_{r} \mathcal{V}=\mathcal{V}_{r}, \mathcal{D}_{s} \mathcal{V}=\mathcal{V}_{s}, \mathcal{D}_{t} \mathcal{V}=\mathcal{V}_{t}$,

Derivative

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{\partial r}{\partial x} \mathcal{D}_{r}+\frac{\partial s}{\partial x} \mathcal{D}_{s}+\frac{\partial t}{\partial x} \mathcal{D}_{t} \\
& \frac{\partial}{\partial y}=\frac{\partial r}{\partial y} \mathcal{D}_{r}+\frac{\partial s}{\partial y} \mathcal{D}_{s}+\frac{\partial t}{\partial y} \mathcal{D}_{t} \\
& \frac{\partial}{\partial z}=\frac{\partial r}{\partial z} \mathcal{D}_{r}+\frac{\partial s}{\partial z} \mathcal{D}_{s}+\frac{\partial t}{\partial z} \mathcal{D}_{t}
\end{aligned}
$$

Stiffness matrix $\mathcal{S}_{r}=\mathcal{M}^{-1} \mathcal{D}_{r}, \mathcal{S}_{s}=\mathcal{M}^{-1} \mathcal{D}_{s}, \mathcal{S}_{t}=\mathcal{M}^{-1} \mathcal{D}_{t}$.

Example - Maxwell's equations

Consider Maxwell's equations

$$
\varepsilon \partial_{t} E-\nabla \times H=-j, \quad \mu \partial_{t} H+\nabla \times E=0
$$

Write it on conservation form as

$$
\frac{\partial q}{\partial t}+\nabla \cdot F=-J \quad F=\left[\begin{array}{c}
-\hat{e} \times H \\
\hat{e} \times E
\end{array}\right] \quad q=\left[\begin{array}{c}
E \\
H
\end{array}\right]
$$

Represent the solution as

$$
\Omega=\sum_{k} D^{k} \quad q_{N}=\sum_{i=1}^{N} q\left(\mathbf{x}_{i}, t\right) L_{i}(\mathbf{x})
$$

and assume

$$
\int_{D}\left(\frac{\partial \boldsymbol{q}_{N}}{\partial t}+\nabla \cdot \boldsymbol{F}_{N}-\boldsymbol{J}_{N}\right) L_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\oint_{\partial D} L_{i}(\boldsymbol{x}) \hat{\boldsymbol{n}} \cdot\left[\boldsymbol{F}_{N}-\boldsymbol{F}^{*}\right] \mathrm{d} \boldsymbol{x}
$$

An example - Maxwell's equations

Simple wave propagation

Example - Maxwell's equations
On each element we then define

$$
\hat{M}_{i j}=\int_{D} L_{i} L_{j} \mathrm{~d} x, \quad \hat{S}_{i j}=\int_{D} \nabla L_{j} L_{i} \mathrm{~d} x, \quad \hat{F}_{i j}=\oint_{\oslash D} L_{i} L_{j} \mathrm{~d} x,
$$

With the numerical flux given as

$$
\hat{\boldsymbol{n}} \cdot\left[\boldsymbol{F}-\boldsymbol{F}^{*}\right]=\left\{\begin{array}{l}
\boldsymbol{n} \times(\gamma \boldsymbol{n} \times[\boldsymbol{E}]-[\boldsymbol{B}]), \\
\boldsymbol{n} \times(\gamma \boldsymbol{n} \times[\boldsymbol{B}]+[\boldsymbol{E}]),
\end{array} \quad[Q]=Q^{-}-Q^{+}\right.
$$

To obtain the local matrix based scheme

$$
\hat{M} \frac{\mathrm{~d} \hat{\boldsymbol{q}}}{\mathrm{~d} t}+\hat{S} \cdot \hat{\boldsymbol{F}}-\hat{M} \hat{\boldsymbol{J}}=\hat{F} \hat{\boldsymbol{n}} \cdot\left[\hat{\boldsymbol{F}}-\hat{\boldsymbol{F}}^{*}\right]
$$

One then typically uses an explicit Runge-Kutta to advance in time - just like ID/2D.

An example - Maxwell's equations

An example - Maxwell's equations

Animations by Nico Godel (Hamburg)

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic effects, one needs to solve for $f(x, p, t)-6 D+1$

Vlasov/Boltzmann equation

$$
\partial_{t} f+v \cdot \partial_{x} f+q(E+v \times B) \cdot \partial_{p} f=\langle\text { Sources }\rangle-\langle\text { Sinks }\rangle .
$$

Maxwell's equations

$$
\begin{aligned}
& \partial_{t} E-\frac{1}{\varepsilon} \nabla \times H=-\frac{j}{\varepsilon}, \\
& \partial_{t} H+\frac{1}{\mu} \nabla \times E=0,
\end{aligned}
$$

$$
\nabla \cdot H=0, \quad \nabla \cdot E=\frac{\rho}{\varepsilon}
$$

Coupled through $\quad \rho:=\int f d v, \quad j:=\int v f d v$.

Kinetic Plasma Physics

Important applications
\checkmark High-power/High-frequency microwave generation
\checkmark Particle accelerators
\checkmark Laser-matter interaction
\checkmark Fusion applications, e.g., plasma edge $\sqrt{ }$ etc

Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann equation by sampling with P particles

$$
\begin{gathered}
f(x, p, t)=\sum_{n=1}^{P} q_{n} S\left(x-x_{n}(t)\right) \delta\left(p-p_{n}(t)\right), \\
\rho(x, t)=\sum_{n=1}^{P} q_{n} S\left(x-x_{n}(t)\right), \quad j(x, t)=\sum_{n=1}^{P} v_{n} q_{n} S\left(x-x_{n}(t)\right)
\end{gathered}
$$

Ideally we have

$$
S(x)=\delta(x) \longleftarrow \text { a point particle }
$$

However, this is not practical, nor reasonable - so $\mathrm{S}(\mathrm{x})$ is a shape-function

Particle-in-Cell Methods

Maxwell's equations

$$
\begin{gathered}
\varepsilon \partial_{t} E-\nabla \times H=-j, \quad \mu \partial_{t} H+\nabla \times E=0, \\
\nabla \cdot(\varepsilon E)=\rho, \quad \nabla \cdot(\mu H)=0,
\end{gathered}
$$

Particle/Phase dynamics

$$
\frac{d x_{n}}{d t}=v_{n}(t) \quad \frac{d m v_{n}}{d t}=q_{n}\left(E+v_{n} \times H\right) \quad m=\frac{1}{\sqrt{1-\left(v_{n} / c\right)^{2}}}
$$

Particles-to-fields

$$
\rho(x, t)=\sum_{n=1}^{P} q_{n} S\left(x-x_{n}(t)\right), \quad j(x, t)=\sum_{n=1}^{P} v_{n} q_{n} S\left(x-x_{n}(t)\right)
$$

Fields-to-particles

Particle gun

Kinetic Plasma Physics

Compressible fluid flow

Time-dependent Euler equations

$$
\begin{array}{cl}
\frac{\partial \mathbf{q}}{\partial t}+\frac{\partial \mathbf{F}}{\partial x}+\frac{\partial \mathbf{G}}{\partial y}=0, & \sqrt{ } \text { Gas } \\
\mathbf{V} \text { High speed } \\
\mathbf{q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right), \mathbf{F}=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(E+p)
\end{array}\right), \mathbf{G}=\left(\begin{array}{c}
\rho v \\
\rho u v \\
v^{2}+p \\
v(E+p)
\end{array}\right) & \checkmark \text { etc }
\end{array}
$$

Formulation is straightforward

$$
\begin{aligned}
\int_{\mathrm{D}^{k}}\left(\frac{\partial \mathbf{q}_{h}}{\partial t} \phi_{h}-\mathbf{F}_{h} \frac{\partial \phi_{h}}{\partial x}-\mathbf{G}_{h} \frac{\partial \phi_{h}}{\partial y}\right) d \boldsymbol{x} & +\oint_{\partial \mathrm{D}^{k}}\left(\hat{n}_{x} \mathbf{F}_{h}+\hat{n}_{y} \mathbf{G}_{h}\right)^{*} \phi_{h} d \boldsymbol{x}=0 . \\
\left(\hat{n}_{x} \mathbf{F}_{h}+\hat{n}_{y} \mathbf{G}_{h}\right)^{*} & =\hat{n}_{x}\left\{\left\{\mathbf{F}_{h}\right\}\right\}+\hat{n}_{y}\left\{\left\{\mathbf{G}_{h}\right\}\right\}+\frac{\lambda}{2} \cdot \llbracket \mathbf{q}_{h} \rrbracket .
\end{aligned}
$$

Challenge: Shocks -- this requires limiting/filtering

Compressible fluid flow

3D Extension

Nothing special!
Everything you have done in ID/2D you can do in 3D in exactly the same way.
$\sqrt{ }$ Linear/nonlinear problems
$\sqrt{ }$ First order/higher order operators
$\sqrt{ }$ Complex geometries
Further extensions
$\sqrt{ }$ Adaptivity/non-conforming elements \checkmark Curvilinear elements

The list goes on ..

The same DG-FEM computation platform has been used for all examples and many other problem types
\checkmark Flow mixing and control
\checkmark Poisson/Helmholtz equations
\checkmark Shallow water flows on the sphere
\checkmark Adjoint based adaptive solution/design

Adaptivity/non-conformity

Question: Do element faces always have to match ?

Answer: No

Question: Can one use different order in each element ?
Answer:Yes

Example - Adaptive solution

We consider a standard test case

$$
\nabla^{2} u(\mathbf{x})=f(\mathbf{x}) \quad u=0, \mathbf{x} \in \partial \Omega
$$

Domain is L-shaped
RHS so that the exact solution is

$$
u(r, \theta)=r^{2 / 3} \sin (2 \pi / 3 \theta)
$$

Solution is singular !

Solved using full hp-adaptive solution

Example - Adaptive solution - Maxwell's

$$
\nabla \times \nabla \times \mathbf{E}+\omega^{2} \mathbf{E}=\mathbf{f}, \mathbf{n} \times \mathbf{E}=0, \mathbf{x} \in \Omega
$$

Example - Adaptive solution

Curvilinear elements

What: Elements that conform exactly to a curved boundary

Why:Accuracy!

This is a unique feature to high-order elements

Example - Maxwell's equations

$$
H^{x}(x, y, t=0)=0, \quad H^{y}(x, y, t=0)=0
$$

$E^{z}(x, y, t=0)=J_{6}\left(\alpha_{6} r\right) \cos (6 \theta) \cos \left(\alpha_{6} t\right)$,

This is essential to fully benefit for complex problems

Example - Spherical Shallow Water equ

Dynamics of a thin layer of fluids on a sphere

$$
\begin{gathered}
\frac{\partial}{\partial t}\left[\begin{array}{c}
\varphi \\
\varphi u \\
\varphi v \\
\varphi w
\end{array}\right]+\frac{\partial}{\partial x}\left[\begin{array}{c}
\varphi u \\
\varphi u^{2}+\frac{1}{2} \varphi^{2} \\
\varphi u v \\
\varphi u w
\end{array}\right]+\frac{\partial}{\partial y}\left[\begin{array}{c}
\varphi v \\
\varphi v u \\
\varphi v^{2}+\frac{1}{2} \varphi^{2} \\
\varphi v w
\end{array}\right]+\frac{\partial}{\partial z}\left[\begin{array}{c}
\varphi w \\
\varphi w u \\
\varphi w v \\
\varphi w^{2}+\frac{1}{2} \varphi^{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{f}{a}(y \varphi w-z \varphi v)+\mu x \\
-\frac{f}{a}(z \varphi u-x \varphi w)+\mu y \\
-\frac{f}{a}(x \varphi v-y \varphi u)+\mu z
\end{array}\right] \\
\frac{\partial \bar{\varphi}}{\partial t}+\nabla \cdot \bar{F}=S(\bar{\varphi})
\end{gathered}
$$

Stardard benchmark (Williamsson) in geophysical flow modeling

Example - Boussinesq equations

The correct representation of the boundary is essential for accuracy and speed

Example - Spherical Shallow Water equ

Example - Spherical Shallow Water equ

Rotation of cylinder

```
\(N=8\)
```

SEM

DG-FEM

An easy path to curvilinear elements

There are several good reasons for adding the support for curvilinear elements

This is work by ProfT. Warburton
$\sqrt{ }$ Higher accuracy
\checkmark Resolution set by solution, not geometry
\checkmark Often essential to make high-order competitive
.. but classic/general approach is expensive in work and memory due to local operators

We present a special approach for linear problems

Another way

The idea is to define

$$
\mathbf{H}=\frac{\tilde{\mathbf{H}}}{\sqrt{J}}, \mathbf{E}=\frac{\tilde{\mathbf{E}}}{\sqrt{J}}
$$

and the corresponding test function

$$
L_{j}(\mathrm{x})=\frac{L_{j}(\mathbf{x})}{\sqrt{J}}
$$

These are non-polynomial functions

$$
\int_{D} H L_{j} d \mathbf{x}=\int_{D} J^{-1} \tilde{H} \tilde{L}_{j} d \mathbf{x}=\int_{I} \tilde{H} \tilde{L}_{j} d \mathbf{r}
$$

Mass matrix is unchanged

Another way

The scheme becomes

$$
\begin{aligned}
& 0=\left(\tilde{\phi}, \frac{\partial \mu \tilde{H}}{\partial t}\right)_{\hat{T}}+(\tilde{\phi}, \nabla \times \tilde{E})_{\hat{T}}+\left(\frac{\tilde{\phi}}{\sqrt{J}}, n \times(E-E)\right)_{\partial T} \\
& 0=\underbrace{\left(\tilde{\psi}, \frac{\partial \varepsilon \tilde{E}}{\partial t}\right)_{\hat{T}}-(\nabla \times \tilde{\psi}, \tilde{H})_{\hat{T}}}_{\text {Maxwells equations on reference element }}-\underbrace{-\left(\frac{\tilde{\psi}}{\sqrt{J}}, n \times H^{*}\right)_{\partial T}}_{\text {Distributional derivative contribution }}
\end{aligned}
$$

Stability can still be established by standard means
This is a low-storage curvilinear formulation
.. only for linear problems

Another way

Another way

Method	N					Est. Order
DGTD	5	$2.45 \mathrm{E}-04$	$8.06 \mathrm{E}-06$	$2.56 \mathrm{E}-05$	$5.24 \mathrm{E}-09$	5.61
	6	$4.31 \mathrm{E}-05$	$1.43 \mathrm{E}-06$	$2.52 \mathrm{E}-08$	$2.81 \mathrm{E}-10$	6.49
Low storage	5	$2.44 \mathrm{E}-04$	$8.03 \mathrm{E}-06$	$2.55 \mathrm{E}-05$	$5.22 \mathrm{E}-09$	5.6 I
	6	$4.29 \mathrm{E}-05$	$1.43 \mathrm{E}-06$	$2.52 \mathrm{E}-08$	$2.79 \mathrm{E}-10$	6.50

No loss in accuracy

Summary of Part I

We have generalized everything to 3D
$\sqrt{ }$ Linear/nonlinear problems
$\sqrt{ }$ First order/higher order operators
\checkmark Complex geometries
$\sqrt{ }$ Apaptivity
$\sqrt{ }$ Curvilinear elements
There is only one significant obstacle to solving large problems
SPEED!

Lecture 8

\checkmark Let's briefly recall what we know
\checkmark Part I:3D problems and extensions
\checkmark Formulations and examples
\checkmark Adaptivity and curvilinear elements
\checkmark Part II:The need for speed
\checkmark Parallel computing
\checkmark GPU computing
\checkmark Software beyond Matlab

The need for speed

Let us first understand where we spend the time

The need for speed!

So far, we have focused on 'simple’ serial computing using Matlab based model.

However, this will not suffice for many applications

The need for speed

The locality suggest that parallel computing will be beneficial
\checkmark Using OpenMP, the local work can be distributed over elements through loops.
$\sqrt{ }$ Using MPI the locality ensures a surface communication model.
$\sqrt{ }$ Mixed OpenMP/MPI models also possible
$\sqrt{ }$ A similar line of arguments can be used for iterative solvers.

Parallel performance

\# Processors	64	128	256	512
Scaled RK time	1.00	0.48	0.24	0.14
Ideal time	1.00	0.50	0.25	0.13

High performance is achieved through -
$\sqrt{ }$ Local nature of scheme
\checkmark Pure matrix-matrix operations
\checkmark Local bandwidth minimization
\checkmark Very efficient on-chip performance ($\sim 75 \%$)
Challenges -
\checkmark Efficient parallel preconditioning

CPUs vs GPUs

The memory bandwidth and the peak performance on Graphics cards (GPU's) is developing MUCH faster than on CPU's
At the same time, the mass-marked for gaming drives the prices down -- we have to find a way to exploit this !

Parallel computing

DG-FEM maps very well to classic multi-processor computing clusters and result in excellent speed-up.
... but such machines are expensive to buy and run.
Ex:To get on the Top500 list, requires about $\$ 3 \mathrm{~m}$ to purchase a cluster with 50Tflop/s performance.

What we need is supercomputing on the desktop

For FREE!

... or at least at a fraction of the price

But why is this?
Target for CPU:
\checkmark Single thread very fast
\checkmark Large caches to hide latency
\checkmark Predict, speculate etc

Lots of very complex logic to predict behavior

But why is this ?
For streaming/graphics cards it is different
\checkmark Throughput is what matters
\checkmark Hide latency through parallelism
\checkmark Push hierarchy onto programmer

Much simpler logic with a focus on performance

But why is this?

Core numbers grow faster than bandwidth

GPUs 101

\checkmark Only threads within a block can talk \checkmark Blocks must be executed in order
\checkmark Grids/blocks/threads replace loops
\checkmark Until recently, only single precision
\checkmark Code-able with CUDA (C-extension)

CPUs vs GPUs

The CPU is mainly the traffic controller ... although it need not be
\checkmark The CPU and GPU runs asynchronously
\checkmark CPU submits to GPU queue
\checkmark CPU synchronizes GPUs
$\sqrt{ }$ Explicitly controlled concurrency
is possible

GPUs overview

\checkmark GPUs exploit multi-layer concurrency
\checkmark The memory hierarchy is deep
\checkmark Memory padding is often needed to get optimal performance
\checkmark Several types of memory must be used for performance
\checkmark First factor of 5 is not too hard to get
\checkmark Next factor of 5 requires quite some work
\checkmark Additional factor of 2-3 requires serious work

Nodal DG on GPU's

Nodes in threads, elements for blocks

Other choices:
\checkmark D-matrix in shared, data in global (small N)
\checkmark Data in shared, D-matrix is global (large N)

Nodal DG on GPU's

So what does all this mean ?
$\sqrt{ }$ GPU's has deep memory hierarchies so local is good
\Rightarrow The majority of DG operations are local
$\sqrt{ }$ Compute bandwidth >> memory bandwidth
\Rightarrow High-order DG is arithmetically intense
$\sqrt{ }$ GPU global memory favors dense data
\Rightarrow Local DG operators are all dense

With proper care we should be able to obtain excellent performance for DG-FEM on GPU's

Computing without the CPU

Nodal DG on GPU's
Similar results for DG-FEM Poisson solver with CG

Note: No preconditioning

Example - a Mac Mini

Example: Military aircraft

	CPU global	$29 \mathrm{~h} 6 \min 46 \mathrm{~s}$	1.0
	GPU global	$39 \operatorname{min~} 1 \mathrm{~s}$	44.8
	GPU multirate	$11 \min 50 \mathrm{~s}$	147.6

Nodal DG on GPU's

Not just for toy problems

228K elements 5th order elements
78m DOF
68k time-steps

Time ~ 6 hours

7II. 9 GFlop/s on one card
Computation by N. Godel

Beyond Maxwell's equations (4.515)

2D Navier-Stokes test case

Beyond Maxwell's equations
2D Euler test case

Want to play yourself?

Code MIDG available at http://nvidia.com/cuda

Nodal DG on GPU's

Several GPU cards can be coupled over MPI at minimal overhead (demonstrated). Lets do the numbers

One ITF/s/4GB mem card costs $\sim \$ 8 \mathrm{k}$
So $\$ 250 \mathrm{k}$ will buy you $40 \mathrm{TFlop} / \mathrm{s}$ sustained
This is the entry into Top500 Supercomputer list !
... at 5\%-I0\% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM makes it very well suited to take advantage of this

Do we have to write it all ?

```
        No:-)
\ Book related codes - all at www.nudg.org
\ Matlab codes
\ NUDG++ - a C++ version of 2D/3D codes (serial)
\checkmark hedge - a Python based meta-programming code.
Support for serial/parallel/GPU
\ MIDG - a bare bones parallel/GPU code for
Maxwell's equations
```

Combining all the pieces

Do we have to write it all ?

Other codes
$\sqrt{ }$ Slegde++ - C++ operator code. Interfaced with parallel solvers (Trilinos and Mumps) and support for adaptivity and non-conformity. Contact Lucas Wilcox (NPS Monterey)
$\sqrt{ }$ deal.II - a large code with support for fully non-conforming DG with adaptivity etc. Only for squares/cubes. www.dealii.org
$\sqrt{ }$ Nektar++ - a C++ code for both spectral elements/hp and DG. Mainly for CFD. Contact Prof Spencer Sherwin (Imperial College, London)

Progress ?

Thanks!

Many people have contributed to this with material, figures, examples etc
\checkmark Tim Warburton (Rice University)
\checkmark Lucas Wilcox (NPS Monterey)
\checkmark Andreas Kloeckner (NYU/Courant)
\checkmark Nico Goedel (Hamburg)
\checkmark Hendrick Riedmann (Stuttgart)
\checkmark Francis Giraldo (NPS Monterrey)
\checkmark Per-Olof Persson (UC Berkeley)
... and to you for hanging in there!

