DG-FEM for PDE's
 Lecture 7

Jan S Hesthaven
Brown University
」an.Hesthaven@Brown.edu

Lecture 7

\checkmark Let's briefly recall what we know
\checkmark Brief overview of multi-D analysis
\checkmark Part l:Time-dependent problems
\checkmark Heat equations
\checkmark Extensions to higher order problems

\checkmark Part II: Elliptic problems

\checkmark Different formulations
\checkmark Stabilization
\checkmark Solvers and application examples

A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

Lets summarize

We have a thorough understanding of Ist order problems
\checkmark For the linear problem, the error analysis and convergence theory is essentially complete.
\checkmark The theoretical support for DG for conservation laws is very solid.
\checkmark Limiting is perhaps the most pressing open problem
\checkmark The extension to 2 D is fairly straightforward
$\sqrt{ } \ldots$.. and we have a nice and flexible way to implement it all

Brief overview of multi-D analysis

In ID we discussed that

$$
\left\|u-u_{h}\right\|_{\Omega, h} \leq C h^{N+1}\|u\|_{\Omega, N+2, h}
$$

.. but this was a somewhat special case.
Question is -- is it possible in multi-D ?
Answer - No

$$
\left\|u-u_{h}\right\|_{\Omega, h} \leq C h^{N+1 / 2}\|u\|_{\Omega, N+1, h}
$$

... but the optimal rate is often observed as initial error dominates over the accumulated error

The heat equation

Lets see what happens when we run it

$N \backslash K$	10	20	40	80	160
1	$4.27 \mathrm{E}-1$	$4.34 \mathrm{E}-1$	$4.37 \mathrm{E}-1$	$4.38 \mathrm{E}-1$	$4.39 \mathrm{E}-1$
2	$5.00 \mathrm{E}-1$	$4.58 \mathrm{E}-1$	$4.46 \mathrm{E}-1$	$4.43 \mathrm{E}-1$	$4.42 \mathrm{E}-1$
4	$1.68 \mathrm{E}-1$	$1.37 \mathrm{E}-1$	$1.28 \mathrm{E}-1$	$1.26 \mathrm{E}-1$	-
8	$7.46 \mathrm{E}-3$	$8.60 \mathrm{E}-3$	-	-	-

The heat equation

Let us consider the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,2 \pi], \quad u(x, t)=e^{-t} \sin (x)
$$

We can be tempted to write this as

$$
\frac{\partial u}{\partial t}-\frac{\partial}{\partial x} u_{x}=0
$$

and then just use our standard approach

$$
\boldsymbol{v}_{h}^{k}=\mathcal{D}_{r} \boldsymbol{u}_{h}^{k}, \quad \mathcal{M}^{k} \frac{d \boldsymbol{u}_{h}^{k}}{d t}-\mathcal{S} \boldsymbol{v}_{h}^{k}=-\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(v_{h}^{k}-v^{*}\right) \ell^{k}(x) d x
$$

Given the nature of the problem, a central flux seems reasonable $\quad v^{*}=\left\{\left\{v_{h}\right\}\right\}$

The heat equation

We need a new idea -- consider

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x} a(x) \frac{\partial u}{\partial x},
$$

We know that DG is good for Ist order systems.
Since $a(x)>0$ we can write this as

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x} \sqrt{a} q, \quad q=\sqrt{a} \frac{\partial u}{\partial x}
$$

Now follow our standard approach

$$
\left[\begin{array}{l}
u(x, t) \\
q(x, t)
\end{array}\right] \simeq\left[\begin{array}{l}
u_{h}(x, t) \\
q_{h}(x, t)
\end{array}\right]=\bigoplus_{k=1}^{K}\left[\begin{array}{c}
u_{h}^{k}(x, t) \\
q_{h}^{k}(x, t)
\end{array}\right]=\bigoplus_{k=1}^{K} \sum_{i=1}^{N_{p}}\left[\begin{array}{c}
u_{h}^{k}\left(x_{i}, t\right) \\
q_{h}^{k}\left(x_{i}, t\right)
\end{array}\right] \ell_{i}^{k}(x)
$$

The heat equation

Treating this as a Ist order system we have

$$
\begin{aligned}
\mathcal{M}^{k} \frac{d \boldsymbol{u}_{h}^{k}}{d t} & =\tilde{\mathcal{S}}^{\sqrt{a}} \boldsymbol{q}_{h}^{k}-\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\left(\sqrt{a} q_{h}^{k}\right)-\left(\sqrt{a} q_{h}^{k}\right)^{*}\right) \boldsymbol{\ell}^{k}(x) d x \\
\mathcal{M}^{k} \boldsymbol{q}_{h}^{k} & =\mathcal{S}^{\sqrt{a}} \boldsymbol{u}_{h}^{k}-\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\sqrt{a} u_{h}^{k}-\left(\sqrt{a} u_{h}^{k}\right)^{*}\right) \ell^{k}(x) d x
\end{aligned}
$$

or the corresponding weak form

$$
\begin{aligned}
\mathcal{M}^{k} \frac{d \boldsymbol{u}_{h}^{k}}{d t} & =-\left(\mathcal{S}^{\sqrt{a}}\right)^{T} \boldsymbol{q}_{h}^{k}+\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\sqrt{a} q_{h}^{k}\right)^{*} \ell^{k}(x) d x \\
\mathcal{M}^{k} \boldsymbol{q}_{h}^{k} & =-\left(\tilde{\mathcal{S}}^{\sqrt{a}}\right)^{T} \boldsymbol{u}_{h}^{k}+\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\sqrt{a} u_{h}^{k}\right)^{*} \boldsymbol{\ell}(x) d x
\end{aligned}
$$

Here

$$
\tilde{\mathcal{S}}_{i j}^{\sqrt{a}}=\int_{\mathrm{D}^{k}} \ell_{i}^{k}(x) \frac{d \sqrt{a(x)} \ell_{j}^{k}(x)}{d x} d x, \quad \mathcal{S}_{i j}^{\sqrt{a}}=\int_{\mathrm{D}^{k}} \sqrt{a(x)} \ell_{i}^{k}(x) \frac{d \ell_{j}^{k}(x)}{d x} d x
$$

The heat equation

Given the nature of the heat-equation, a natural flux could be central fluxes

$$
\left(\sqrt{a} q_{h}\right)^{*}=\left\{\left\{\sqrt{a} q_{h}\right\}\right\},\left(\sqrt{a} u_{h}\right)^{*}=\left\{\left\{\sqrt{a} u_{h}\right\}\right\} .
$$

But is it stable ?
Computing the local energy in a single element yields

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\mathrm{D}}^{2}+\left\|q_{h}\right\|_{\mathrm{D}}^{2}+\Theta_{r}-\Theta_{l}=0, \\
\Theta=\sqrt{a} u_{h} q_{h}-\left(\sqrt{a} q_{h}\right)^{*} u_{h}-\left(\sqrt{a} u_{h}\right)^{*} q_{h} .
\end{gathered}
$$

$$
\left(\sqrt{a} q_{h}\right)^{*}=\sqrt{a}\left\{\left\{q_{h}\right\}\right\}, \quad\left(\sqrt{a} u_{h}\right)^{*}=\sqrt{a}\left\{\left\{u_{h}\right\}\right\} .
$$

 $\Theta_{r}=-\frac{\sqrt{a}}{2}\left(u_{h}^{-} q_{h}^{+}+u_{h}^{+} q_{h}^{-}\right)$.

The heat equation

How do we choose the fluxes?

$$
\begin{aligned}
& \left(\sqrt{a} q_{h}\right)^{*}=f\left(\left(\sqrt{a} q_{h}\right)^{-},\left(\sqrt{a} q_{h}\right)^{+},\left(\sqrt{a} u_{h}\right)^{-},\left(\sqrt{a} u_{h}\right)^{+}\right), \\
& \left(\sqrt{a} u_{h}\right)^{*}=g\left(\left(\sqrt{a} q_{h}\right)^{-},\left(\sqrt{a} q_{h}\right)^{+},\left(\sqrt{a} u_{h}\right)^{-},\left(\sqrt{a} u_{h}\right)^{+}\right) \\
& \mathcal{M}^{k} \frac{d \boldsymbol{u}_{h}^{k}}{d t}=\tilde{\mathcal{S}}^{\sqrt{a}} \boldsymbol{q}_{h}^{k}-\int_{\partial \mathbf{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\left(\sqrt{a} q_{h}^{k}\right)-\left(\sqrt{a} q_{h}^{k}\right)^{*}\right) \ell^{k}(x) d x, \\
& \mathcal{M}^{k} \boldsymbol{q}_{h}^{k}=\mathcal{S}^{\sqrt{a}} \boldsymbol{u}_{h}^{k}-\int_{\partial \mathrm{D}^{k}} \hat{\boldsymbol{n}} \cdot\left(\sqrt{a} u_{h}^{k}-\left(\sqrt{a} u_{h}^{k}\right)^{*}\right) \ell^{k}(x) d x,
\end{aligned}
$$

Problem: Everything couples -- loss of locality
However, if we restrict it as

$$
\begin{aligned}
& \left(\sqrt{a} q_{h}\right)^{*}=f\left(\left(\sqrt{a} q_{h}\right)^{-},\left(\sqrt{a} q_{h}\right)^{+},\left(\sqrt{a} u_{h}\right)^{-},\left(\sqrt{a} u_{h}\right)^{+}\right) \\
& \left(\sqrt{a} u_{h}\right)^{*}=g\left(\left(\sqrt{a} u_{h}\right)^{-},\left(\sqrt{a} u_{h}\right)^{+}\right)
\end{aligned}
$$

we can eliminate q-variable locally

The heat equation

So this is stable!

How about boundary conditions
Dirichlet $\quad u_{h}^{+}=-u_{h}^{-}, q_{h}^{+}=q_{h}^{-} \Rightarrow\left\{\begin{array}{l}\left\{\left\{u_{h}\right\}\right\}=0, \llbracket u_{h} \rrbracket=2 \hat{\boldsymbol{n}}^{-} u_{h}^{-} \\ \left\{\left\{q_{h}\right\}\right\}=q_{h}^{-}, \llbracket q_{h} \rrbracket=0 .\end{array}\right.$

Neumann

$$
u_{h}^{+}=u_{h}^{-}, q_{h}^{+}=-q_{h}^{-} \Rightarrow\left\{\begin{array}{l}
\left\{\left\{u_{h}\right\}\right\}=u_{h}^{-}, \llbracket u_{h} \rrbracket=0 \\
\left\{\left\{q_{h}\right\}\right\}=0, \quad \llbracket q_{h} \rrbracket=2 \hat{\boldsymbol{n}}^{-} q_{h}^{-} .
\end{array}\right.
$$

Inhomogeneous BC

$$
u_{h}^{+}=-u_{h}^{-}+2 f(t), \quad q_{h}^{+}=q_{h}^{-},
$$

... and likewise for Neumann

The heat equation

Back to the example
Looks good -
.. but an even/odd pattern

Theorem 7.3. Let $\varepsilon_{u}=u_{h}-u$ and $\varepsilon_{q}=q_{h}-q$ signify the pointwise errors for the heat equation with periodic boundaries and a constant coefficient $a(x)$, computed with Eq. (7.1) and central fluxes. Then

$$
\left\|\varepsilon_{u}(T)\right\|_{\Omega, h}^{2}+\int_{0}^{T}\left\|\varepsilon_{q}(s)\right\|_{\Omega, h}^{2} d s \leq C h^{2 N}
$$

where C depends on the regularity of u, T, and N. For N even, C is $\mathcal{O}\left(h^{2}\right)$.

The heat equation

Back to the example
Looks good -
.. full order restored

Theorem 7.4. Let $\varepsilon_{u}=u-u_{h}$ and $\varepsilon_{q}=q-q_{h}$ signify the pointwise errors for the heat equation with periodic boundaries and a constant coefficient a (x), computed with Eq. (7.1) and $L D G$ fluxes. Then

$$
\left\|\varepsilon_{u}(T)\right\|_{\Omega, h}^{2}+\int_{0}^{T}\left\|\varepsilon_{q}(s)\right\|_{\Omega, h}^{2} d s \leq C h^{2 N+2}
$$

where C depends on the regularity of u, T, and N.

The heat equation

Can we do anything to improve on this?
Recall the stability condition

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\mathrm{D}}^{2}+\left\|q_{h}\right\|_{\mathrm{D}}^{2}+\Theta_{r}-\Theta_{l}=0, \\
\Theta & =\sqrt{a} u_{h} q_{h}-\left(\sqrt{a} q_{h}\right)^{*} u_{h}-\left(\sqrt{a} u_{h}\right)^{*} q_{h} .
\end{aligned} \quad \Theta_{r}^{-}-\Theta_{l}^{+} \geq 0
$$

Stable choices

$$
\begin{array}{r}
\left(\sqrt{a} u_{h}\right)^{*}=\{\{\sqrt{a}\}\} u_{h}^{+}, \quad\left(\sqrt{a} q_{h}\right)^{*}=\sqrt{a^{-}} q_{h}^{-}, \\
\left(\sqrt{a} u_{h}\right)^{*}=\sqrt{a^{-}} u_{h}^{-}, \quad\left(\sqrt{a} q_{h}\right)^{*}=\{\{\sqrt{a}\}\} q_{h}^{+}, \\
\left\{\left\{\sqrt{a} u_{h}\right\}\right\}+\hat{\boldsymbol{\beta}} \cdot\left[\sqrt{a} u_{h}\right], \quad\left(\sqrt{a} q_{h}\right)^{*}=\left\{\left\{\sqrt{a} q_{h}\right\}\right\}-\hat{\boldsymbol{\beta}} \cdot \mathbb{I} \sqrt{a} q_{h} \rrbracket,
\end{array}
$$

$$
\text { Upwind/downwind - LDG flux } \quad \hat{\beta}=\hat{n}
$$

Higher order and mixed problems

We can now mix and match what we know
Consider

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=\frac{\partial}{\partial x} a(x) \frac{\partial u}{\partial x},
$$

and rewrite as

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(f(u)-\sqrt{a} q)=0, \longrightarrow(f(u)-\sqrt{a} q)^{*} \\
& q=\sqrt{a} \frac{\partial u}{\partial x},
\end{aligned} \longrightarrow\left(\sqrt{a} u_{h}\right)^{*}
$$

Now choose fluxes as we know how

$$
\begin{gathered}
f(u)^{*}=\{\{f(u)\}\}+\frac{C}{2} \llbracket u \rrbracket, \quad C \geq \max \left|f^{\prime}(u)\right| . \\
\left(\sqrt{a} u_{h}\right)^{*}=\{\{\sqrt{a}\}\} u_{h}^{+}, \quad\left(\sqrt{a} q_{h}\right)^{*}=\sqrt{a^{-}} q_{h}^{-} .
\end{gathered}
$$

Higher order and mixed problems

Consider viscous Burgers equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1] \\
& u(x, t)=-\tanh \left(\frac{x+0.5-t}{2 \varepsilon}\right)+1
\end{aligned}
$$

Higher order and mixed problems

Write it as a Ist order system

$$
\frac{\partial u}{\partial t}=\frac{\partial q}{\partial x}, \quad q=\frac{\partial p}{\partial x}, \quad p=\frac{\partial u}{\partial x}
$$

To choose the fluxes, we consider the energy

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\mathrm{D}^{k}}^{2}=\Theta_{r}-\Theta_{l}, \quad \Theta=\frac{p_{h}^{2}}{2}-u_{h} q_{h}+u_{h}\left(q_{h}\right)^{*}+q_{h}\left(u_{h}\right)^{*}-p_{h}\left(p_{h}\right)^{*}
$$

Central fluxes yields

$$
\Theta=\frac{1}{2}\left(u_{h}^{+} q_{h}^{-}+u_{h}^{-} q_{h}^{+}-p_{h}^{-} p_{h}^{+}\right), \quad \frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\mathrm{D}^{k}}^{2}=0
$$

Alternative

$$
\left(u_{h}\right)^{*}=u_{h}^{-},\left(q_{h}\right)^{*}=q_{h}^{+},\left(p_{h}\right)^{*}=p_{h}^{-},
$$

LDG-flux

$$
\left(u_{h}\right)^{*}=u_{h}^{+}, \quad\left(q_{h}\right)^{*}=q_{h}^{-}, \quad\left(p_{h}\right)^{*}=p_{h}^{-} .
$$

Higher order and mixed problems

Consider the 3rd order dispersive equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{3} u}{\partial x^{3}}
$$

Which boundary conditions do we need?

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|u\|_{\Omega}^{2}=\left[u \frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}\right]_{x_{l}}^{x_{r}}, \quad \text { must be bounded } \\
x=x_{l}: \text { On } u \text { or } \frac{\partial^{2} u}{\partial x^{2}} \text { and } \frac{\partial u}{\partial x} \\
x=x_{r}: \text { On } u \text { or } \frac{\partial^{2} u}{\partial x^{2}}
\end{gathered}
$$

Higher order and mixed problems

Consider

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{3} u}{\partial x^{3}}, \quad x \in[-1,1] \\
u(x, t) & =\cos \left(\pi^{3} t+\pi x\right)
\end{aligned}
$$

Convergence behavior exactly as for the 2 nd order problem

Central flux

LDG flux

Higher order and mixed problems

Few comments
\checkmark The reformulation to a system of Ist order problems is entirely general for any order operator
\checkmark When combined with other operators, one chooses fluxes for each operator according to the analysis.
\checkmark The biggest problem is cost -- a 2 nd order operator require two derivates rather than one.
\checkmark There are alternative 'direct' ways but they tend to be problem specific

Lecture 7

\checkmark Let's briefly recall what we know
\checkmark Brief overview of multi-D analysis
\checkmark Part I:Time-dependent problems
\checkmark Heat equations
\checkmark Extensions to higher order problems
\checkmark Part II: Elliptic problems
\checkmark Different formulations
\checkmark Stabilization
\checkmark Solvers and application examples

What about the time step ?

For Ist order problems we know

$$
\Delta t \leq C \frac{h}{a N^{2}}
$$

Explicit time-stepping
This gets worse -

$$
\Delta t \leq C\left(\frac{h}{N^{2}}\right)^{p}
$$

$p=$ order of operator
Options:
\checkmark Local time stepping
\checkmark Implicit time stepping

Elliptic problems

Now we could consider solving a problem like

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-f(x),
$$

However, if we are interested in the steady state we may be better off considering

$$
\frac{\partial^{2} u}{\partial x^{2}}=f(x),
$$

We can use any of the methods we just derived to obtain the linear system

$$
\mathcal{A} \boldsymbol{u}_{h}=\boldsymbol{f}_{h}
$$

Elliptic problems

Assume we use a central flux.
When we try to solve we discover that A is singular!

Elliptic problems

Does it work?

$u(0)=u(2 \pi)=0$.

What about the other flux - the LDG flux?

Elliptic problems

What is happening?
The discontinuous basis is too rich -- it allows one extra null vector:

$$
\text { A local null vector with }\{\{u\}\}=0
$$

What can we do ?
Change the flux by penalizing this mode

$$
q^{*}=\{\{q\}\}-\tau \llbracket u \rrbracket, \quad u^{*}=\{\{u\}\} .
$$

The flexibility of DG shows its strength!

Elliptic problems

Consider the stabilized LDG flux

$$
q_{h}^{*}=\left\{\left\{q_{h}\right\}\right\}+\hat{\boldsymbol{\beta}} \cdot \llbracket q_{h} \rrbracket-\tau \llbracket u_{h} \rrbracket, u_{h}^{*}=\left\{\left\{u_{h}\right\}\right\}-\hat{\boldsymbol{\beta}} \cdot \llbracket u_{h} \rrbracket,
$$

Works fine as expected - but we also note that A is much more sparse!

Elliptic problems

Why is one more sparse than the other?

Consider the $\mathrm{N}=0$ case

$$
\begin{aligned}
& q_{h}^{*}\left(q_{h}^{k}, q_{h}^{k+1}, u_{h}^{k}, u_{h}^{k+1}\right)-q_{h}^{*}\left(q_{h}^{k}, q_{h}^{k-1}, u_{h}^{k}, u_{h}^{k-1}\right)=h f_{h}^{k} \\
& u_{h}^{*}\left(u_{h}^{k}, u_{h}^{k+1}\right)-u_{h}^{*}\left(u_{h}^{k}, u_{h}^{k-1}\right)=h g_{h}^{k}
\end{aligned}
$$

Using the central flux yields

$$
q_{h}^{*}\left(q_{h}^{-}, q_{h}^{+}, u_{h}^{-}, u_{h}^{+}\right)=\left\{\left\{q_{h}\right\}\right\}-\tau \llbracket u_{h} \rrbracket, u_{h}^{*}\left(u_{h}^{-}, u_{h}^{+}\right)=\left\{\left\{u_{h}\right\}\right\},
$$

$$
\frac{u_{h}^{k+2}-2 u_{h}^{k}+u_{h}^{k-2}}{(2 h)^{2}}+\tau \frac{u_{h}^{k+1}-u_{h}^{k-1}}{h}=f_{h}^{k} . \longleftarrow \text { Wide }
$$

Using the LDG flux yields

$$
\begin{gathered}
q_{h}^{*}\left(q_{h}^{-}, q_{h}^{+}, u_{h}^{-}, u_{h}^{+}\right)=q_{h}^{-}-\tau \llbracket u_{h} \rrbracket, u_{h}^{*}\left(u_{h}^{-}, u_{h}^{+}\right)=u_{h}^{+}, \\
\frac{u_{h}^{k+1}-2 u_{h}^{k}+u_{h}^{k-1}}{h^{2}}+\tau \frac{u_{h}^{k+1}-u_{h}^{k-1}}{h}=f_{h}^{k} .
\end{gathered}
$$

Elliptic problems

Remaining question: How do you choose τ ?
The analysis shows that:
\checkmark For the central flux, $\tau>0$ suffices
$\sqrt{ }$ For the LDG flux, $\tau>0$ suffices
\checkmark For the IP flux, one must require

$$
\tau \geq C \frac{(N+1)^{2}}{h}, \quad C \geq 1,
$$

These suffices to guarantee stability, but they may not give the best accuracy

Generally, a good choice is $\tau \geq C \frac{(N+1)^{2}}{h}, C \geq 1$,

Elliptic problems

The sparsity is a good thing -- but it comes at a price
$\kappa\left(\mathcal{A}_{L D G}\right) \simeq 2 \kappa\left(\mathcal{A}_{C}\right) ;$
We seek a flux balancing sparsity and conditioning?

$$
q_{h}^{*}=\left\{\left\{\left(u_{h}\right)_{x}\right\}\right\}-\tau \llbracket u_{h} \rrbracket, \quad u_{h}^{*}=\left\{\left\{u_{h}\right\}\right\} .
$$

Internal penalty flux

Elliptic problems

What can we say more generally?

Consider

$$
-\nabla^{2} u(x)=f(\boldsymbol{x}), \quad x \in \Omega,
$$

Discretized as $\quad-\nabla \cdot \boldsymbol{q}=f, \boldsymbol{q}=\nabla u$.

$$
\begin{aligned}
& \left(\boldsymbol{q}_{h}, \nabla \phi_{h}\right)_{\Omega, h}-\sum_{k=1}^{K}\left(\hat{\boldsymbol{n}} \cdot \boldsymbol{q}_{h}^{*}, \phi_{h}\right)_{\partial \mathrm{D}^{k}}=\left(f, \phi_{h}\right)_{\Omega, h}, \\
& \left(\boldsymbol{q}_{h}, \boldsymbol{\pi}_{h}\right)_{\Omega, h}=\sum_{k=1}^{K}\left(u_{h}^{*}, \hat{\boldsymbol{n}} \cdot \boldsymbol{\pi}_{h}\right)_{\partial \mathrm{D}^{k}}-\left(u_{h}, \nabla \cdot \boldsymbol{\pi}_{h}\right)_{\Omega, h}
\end{aligned}
$$

Using one of the fluxes

	u_{h}^{*}	\boldsymbol{q}_{h}^{*}
Central flux	$\left\{\left\{u_{h}\right\}\right\}$	$\left\{\left\{\boldsymbol{q}_{h}\right\}\right\}-\tau \llbracket u_{h} \rrbracket$
Local DG flux (LDG)	$\left\{\left\{u_{h}\right\}\right\}+\boldsymbol{\beta} \cdot \llbracket u_{h} \rrbracket$	$\left\{\left\{\boldsymbol{q}_{h}\right\}\right\}-\boldsymbol{\beta} \llbracket \boldsymbol{q}_{h} \rrbracket-\tau \llbracket u_{h} \rrbracket$
Internal penalty flux (IP)	$\left\{\left\{u_{h}\right\}\right\}$	$\left.\left\{\nabla \nabla u_{h}\right\}\right\}-\tau \llbracket u_{h} \rrbracket$

Elliptic problems

For the 3 discrete systems, one can prove (see text)
\checkmark They are all symmetric for any N
\checkmark The are all invertible provided stabilization is used \checkmark The discretization is consistent
\checkmark The adjoint problem is consistent
\checkmark They have optimal convergence in L2

Many of these results can be extended to more general problems (saddle-point, non-coercive etc)

There are other less used fluxes also

Solving the systems

Direct methods are 'LU' based

$$
\begin{aligned}
& \gg[L, U]=U(A) ; \\
& \gg u=U \backslash(L(f) ;
\end{aligned}
$$

Example:

$$
\begin{gathered}
\nabla^{2} u=f(x, y)=\left(\left(16-n^{2}\right) r^{2}+\left(n^{2}-36\right) r^{4}\right) \sin (n \theta), x^{2}+y^{2} \leq 1, \\
n=12, r=\sqrt{x^{2}+y^{2}}, \theta=\arctan (y, x)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{K}=512 \\
\mathrm{~N}=4
\end{gathered}
$$

$$
7680 \text { DoF }
$$

Solving the systems

After things are discretized, we end up with

$$
\mathcal{A} u_{h}=f_{h}
$$

We can solve this in two different ways
\checkmark Direct methods
\checkmark Iterative methods

The 'right' choice depends on things such as size, speed, sparsity etc

Solving the systems

8,7m extra non-zero entries in (L,U)

Reordering is needed !

Cuthill-McKee ordering
3,7m extra non-zero entries in (L,U)

Solving the systems

Re-ordering:

$$
\begin{aligned}
& \gg P=\operatorname{symrcm}(A) ; \\
& \gg A=A(P, P) ; \\
& \gg \text { rhs = rhs }(P) ; \\
& \gg[L, U]=\operatorname{lu}(A) ; \\
& \gg u=U \backslash(L \backslash f) ; \\
& \gg u(P)=u ;
\end{aligned}
$$

.. but A is SPD: $\quad \mathcal{A}=\mathcal{C}^{T} \mathcal{C} \quad$ Cholesky decomp

$$
\begin{aligned}
& \gg C=\operatorname{chol}(A) ; \\
& \gg u=C \backslash\left(C^{\prime} \backslash f\right)
\end{aligned}
$$

I,9m extra non-zero
entries in C

Solving the systems

How to choose the preconditioning ?
.. more an art than a science!
Example - Incomplete Cholesky Preconditioning

$$
\begin{aligned}
& \gg \text { ittol }=1 \mathrm{e}-8 ; \text { maxit }=1000 \\
& \gg \text { Cinc }=\operatorname{cholinc}\left(O P, 0^{\prime}\right) \\
& \gg \mathrm{u}=\operatorname{pcg}(\mathrm{A}, \mathrm{f}, \text { ittol, maxit, Cinc', Cinc })
\end{aligned}
$$

Sparsity preserving

I38 iterations - but still 50 times slower
\gg ittol $=1 \mathrm{e}-8 ;$ maxit $=1000$; droptol $=1 \mathrm{e}-4$;
\gg Cinc $=$ cholinc(A, droptol);
$\gg \mathrm{u}=\operatorname{pcg}(\mathrm{A}, \mathrm{b}$, ittol, maxit, Cinc', Cinc);

Drop
tolerance

17 iterations - only 2 times slower

Solving the systems

If the problem is too large, iterative methods are the only choice

$$
\begin{aligned}
& \gg \text { ittol }=1 \mathrm{e}-8 ; \text { maxit }=1000 \\
& \gg \mathrm{u}=\operatorname{pcg}(\mathrm{A}, \mathrm{f}, \text { ittol, maxit })
\end{aligned}
$$

Example requires 818 iterations - 100 times slower than LU !

Solution: Preconditioning

$$
\mathcal{C}^{-1} \mathcal{A} \boldsymbol{u}_{h}=\mathcal{C}^{-1} \boldsymbol{f}_{h}
$$

Solving the systems

Choosing fast and efficient linear solvers is not easy -- but there are many options

\checkmark Direct solvers

$\sqrt{ }$ MUMPS (multi-frontal parallel solver)
\checkmark SuperLU (fast parallel direct solver)

\checkmark Iterative solvers

\checkmark Trilinos (large solver/precon library)
$\sqrt{ }$ PETSc (large solver/precon library)
Very often you have to try several options and combinations to find the most efficient and robust one(s)

A couple of examples

So far we have seen lots of theory and "homework" problems.

To see that it also works for more complex problems - but still 2D - let us look at a few examples
$\sqrt{ }$ Incompressible Navier-Stokes
$\sqrt{ }$ Boussinesq problems

Incompressible fluid flow

Time-dependent Navier-Stokes equations

$$
\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\nabla p+\nu \nabla^{2} \boldsymbol{u}, \quad \boldsymbol{x} \in \Omega, \\
\nabla \cdot \boldsymbol{u} & =0,
\end{aligned}
$$

- Water - Low speed - Bioflows - etc

Written on conservation form

$$
\begin{array}{rlr}
\frac{\partial \boldsymbol{u}}{\partial t}+\nabla \cdot \mathcal{F} & =-\nabla p+\nu \nabla^{2} \boldsymbol{u}, \quad \mathcal{F}=\left[\boldsymbol{F}_{1}, \boldsymbol{F}_{2}\right]=\left[\begin{array}{cc}
u^{2} u v \\
u v & v^{2}
\end{array}\right] . \\
\nabla \cdot \boldsymbol{u} & =0
\end{array}
$$

Solved by stiffly stable time-splitting and pressure projection

Incompressible fluid flow

von Karman flow

Fluid-structure interaction

Boussinesq modeling

The basis assumption of this approach is to approximate the vertical variation using an expansion in \mathbf{z}.

Fluid-structure interaction

Where we have high-order derivates since

$$
\begin{aligned}
\mathcal{A}_{01} & =\lambda \partial_{x}+\gamma_{3} \lambda^{3}\left(\partial_{x x x}+\partial_{x y y}\right)+\gamma_{5} \lambda^{5}\left(\partial_{x x x x x}+2 \partial_{x x x y y}+\partial_{x y y y y}\right), \\
\mathcal{A}_{02} & \left.\left.=\lambda \partial_{y}+\gamma_{3} \lambda^{3}\left(\partial_{x x y}\right)+\partial_{y y y}\right)+\gamma_{5} \lambda^{5}\left(\partial_{x x x x y}+2 \partial_{x x y y y}\right)+\partial_{y y y y y}\right), \\
\mathcal{A}_{1} & =1-\alpha_{2}\left(\partial_{x x}+\partial_{y y}\right)+\alpha_{4}\left(\partial_{x x x x}+2 \partial_{x x y y}+\partial_{y y y y}\right), \\
\mathcal{B}_{0} & =1+\gamma_{2} \lambda^{2}\left(\partial_{x x}+\partial_{y y}\right)+\gamma_{4} \lambda^{4}\left(\partial_{x x x x}+2 \partial_{x x y y}+\partial_{y y y y}\right), \\
\mathcal{B}_{11} & =\beta_{1} \partial_{x}-\beta_{3}\left(\partial_{x x x}+\partial_{x y y}\right)+\beta_{5}\left(\partial_{x x x x x}+\left(2 \partial_{x x x y y}+\partial_{x y y y y}\right),\right. \\
\mathcal{B}_{12} & \left.\left.=\beta_{1} \partial_{y}-\beta_{3}\left(\partial_{x x y}\right)+\partial_{y y y}\right)+\beta_{5}\left(\partial_{x x x x y}+2 \partial_{x x y y y}\right)+\partial_{y y y y y}\right), \\
\mathcal{S}_{1} & =\partial_{x} d \cdot \mathcal{C}_{1}, \quad \mathcal{C}_{1}=1-c_{2} \lambda^{2}\left(\partial_{x x}+\partial_{y y}\right)+c_{4} \lambda^{4}\left(\partial_{x x x x}+2 \partial_{x x y y}+\partial_{y y y y}\right) . \\
\mathcal{S}_{2} & =\partial_{y} d \cdot \mathcal{C}_{1},
\end{aligned}
$$

A bit on the complicated side!

Fluid-structure interaction

Under certain assumptions, the proper model (a highorder Boussinesq model) becomes

$$
\begin{gathered}
\partial_{t} \tilde{\boldsymbol{U}}+\boldsymbol{\nabla}\left(g \eta+\frac{1}{2}\left(\tilde{\boldsymbol{U}} \cdot \tilde{\boldsymbol{U}}-\tilde{w}^{2}(1+\boldsymbol{\nabla} \eta \cdot \boldsymbol{\nabla} \eta)\right)\right)=0 . \\
\partial_{t} \eta-\tilde{w}+\boldsymbol{\nabla} \eta \cdot(\tilde{\boldsymbol{U}}-\tilde{w} \boldsymbol{\nabla} \eta)=0 \\
{\left[\begin{array}{c}
\tilde{U} \\
\tilde{V} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\mathcal{A}_{1}-\partial_{x} \eta \cdot \mathcal{B}_{11} & -\partial_{x} \eta \cdot \mathcal{B}_{12} & \mathcal{B}_{11}+\partial_{x} \eta \cdot \mathcal{A}_{1} \\
-\partial_{y} \eta \cdot \mathcal{B}_{11} & \mathcal{A}_{1}-\partial_{y} \eta \cdot \mathcal{B}_{12} & \mathcal{B}_{12}+\partial_{y} \eta \cdot \mathcal{A}_{1} \\
\mathcal{A}_{01}+\mathcal{S}_{1} & \mathcal{A}_{02}+\mathcal{S}_{2} & \mathcal{B}_{0}+\mathcal{S}_{03}
\end{array}\right]\left[\begin{array}{c}
\hat{u}^{*} \\
\hat{v}^{*} \\
\hat{w}^{*}
\end{array}\right]} \\
\tilde{w}=-\mathcal{B}_{11} \hat{u}^{*}-\mathcal{B}_{12} \hat{v}^{*}+\mathcal{A}_{1} \hat{w}^{*} .
\end{gathered}
$$

A couple of 2D(ID) tests

Submerged bar ($\mathrm{K}=110, \mathrm{P}=8$) - comparison with experimental data

A couple of 3D(2D) tests

McCamy \& Fuchs (1954)

(2)

DG-FEM solution:
$\mathrm{ka}=\mathrm{pi}, \mathrm{kd}=1.0$, $P=4, K=1261$,
=0.03s

Compressible fluid flow
Time-dependent Euler equations

$$
\begin{array}{cc}
\frac{\partial \mathbf{q}}{\partial t}+\frac{\partial \mathbf{F}}{\partial x}+\frac{\partial \mathbf{G}}{\partial y}=0, & \text { - Gas } \\
\mathbf{q}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
E
\end{array}\right), \mathbf{F}=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
u(E+p)
\end{array}\right), \mathbf{G}=\left(\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
v(E+p)
\end{array}\right), & \bullet \text { etc }
\end{array}
$$

Formulation is straightforward

$$
\begin{array}{r}
\int_{\mathrm{D}^{k}}\left(\frac{\partial \mathbf{q}_{h}}{\partial t} \phi_{h}-\mathbf{F}_{h} \frac{\partial \phi_{h}}{\partial x}-\mathbf{G}_{h} \frac{\partial \phi_{h}}{\partial y}\right) d \boldsymbol{x}+\oint_{\partial \mathrm{D}^{k}}\left(\hat{n}_{x} \mathbf{F}_{h}+\hat{n}_{y} \mathbf{G}_{h}\right)^{*} \phi_{h} d \boldsymbol{x}=0 . \\
\left(\hat{n}_{x} \mathbf{F}_{h}+\hat{n}_{y} \mathbf{G}_{h}\right)^{*}=\hat{n}_{x}\left\{\left\{\mathbf{F}_{h}\right\}\right\}+\hat{n}_{y}\left\{\left\{\mathbf{G}_{h}\right\}\right\}+\frac{\lambda}{2} \cdot \llbracket \mathbf{q}_{h} \rrbracket .
\end{array}
$$

Challenge: Shocks -- this requires
limiting/filtering

Remarks

We are done with all the basic now!-- and we have started to see it work for us

What we need to worry about is:
\checkmark The need for 3D
\checkmark The need for speed
\checkmark Software beyond Matlab

Tomorrow!

Compressible fluid flow

