DG-FEM for PDE's Lecture 4

Thursday, August 9, 12

Lecture 4

- Let's briefly recall what we know
- Part I: Smooth problems
 - Conservations laws and DG properties
 - > Filtering, aliasing, and error estimates
- Part II: Nonsmooth problems
- Shocks and Gibbs phenomena
- Filtering and limiting
- TVD-RK and error estimates

A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

Thursday, August 9, 12

A brief summary

We now have a good understanding all key aspects of the DG-FEM scheme for linear first order problems

- We understand both accuracy and stability and what we can expect.
- > The dispersive properties are excellent.
- The discrete stability is a little less encouraging.
 A scaling like

$\Delta t \le C \frac{h}{aN^2}$

is the Achilles Heel -- but there are ways!

... but what about nonlinear problems ?

Conservation laws

Let us first consider the scalar conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad x \in [L, R] = \Omega,$$
$$u(x, 0) = u_0(x),$$

with boundary conditions specified at inflow

$$\hat{\boldsymbol{n}} \cdot \frac{\partial f}{\partial u} = \hat{\boldsymbol{n}} \cdot f_u < 0.$$

The equation has a fundamental property

$$\frac{d}{dt}\int_{a}^{b}u(x)dx = f(u(a)) - f(u(b));$$

Changes by inflow-outflow differences only

Thursday, August 9, 12

Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously even for smooth initial conditions

... and how do we compute a derivate of a step ?

Introduce weak solutions satisfying

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \left(u(x,t) \frac{\partial \phi}{\partial t} + f(u) \frac{\partial \phi}{\partial x} \right) \, dx \, dt = 0,$$
$$\int_{-\infty}^{\infty} \left(u(x,0) - u_0(x) \right) \phi(x,0) dx = 0.$$

where $\phi(x,t)$ is a smooth compact test function

Conservation laws

Importance ?

This is perhaps the most basic physical model in continuum mechanics:

- Maxwell's equations for EM
- Euler and Navier-Stokes equations of fluid/gas
- MHD for plasma physics
- Navier's equations for elasticity
- ▶ General relativity
- Traffic modeling

Conservation laws are fundamental

Thursday, August 9, 12

Conservation laws

Now, we can deal with discontinuous solutions

... but we have lost uniqueness!

To recover this, we define a convex entropy

$$\eta(u), \ \eta''(u) > 0$$

and an entropy flux

$$F(u) = \int_{u} \eta'(v) f'(v) \, dv,$$

If one can prove that

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x}F(u) \le 0,$$

uniqueness is restored (for f convex)

Back to the scheme

Recall the two DG formulations

$$\begin{split} &\int_{\mathsf{D}^k} \left(\frac{\partial u_h^k}{\partial t} \ell_i^k(x) - f_h^k(u_h^k) \frac{d\ell_i^k}{dx} \right) \, dx = - \int_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot f^* \ell_i^k(x) \, dx, \\ &\int_{\mathsf{D}^k} \left(\frac{\partial u_h^k}{\partial t} + \frac{\partial f_h^k(u_h^k)}{\partial x} \right) \ell_i^k(x) \, dx = \int_{\partial \mathsf{D}^k} \hat{\boldsymbol{n}} \cdot \left(f_h^k(u_h^k) - f^* \right) \ell_i^k(x) \, dx. \end{split}$$

We shall be using a monotone flux, e.g., the LF flux

$$f^*(u_h^-, u_h^+) = \{\{f_h(u_h)\}\} + \frac{C}{2} \llbracket u_h \rrbracket,$$

Recall also the assumption on the local solution

$$x \in \mathsf{D}^{k}: u_{h}^{k}(x,t) = \sum_{i=1}^{N_{p}} u^{k}(x_{i},t)\ell_{i}^{k}(x), f_{h}^{k}(u_{h}(x,t)) = \sum_{i=1}^{N_{p}} f^{k}(x_{i},t)\ell_{i}^{k}(x),$$
Note:
$$f^{k}(x_{i},t) = \mathcal{P}_{N}(f^{k})(x_{i},t)$$

Thursday, August 9, 12

Properties of the scheme

Summing over all elements we have

$$\sum_{k=1}^{K} \frac{d}{dt} \int_{x_{l}^{k}}^{x_{r}^{k}} u_{h} \, dx = \sum_{k_{e}} \hat{n}_{e} \cdot [\![f^{*}(x_{e}^{k})]\!],$$

but the numerical flux is single valued, i.e.,

Global conservation

Let us now assume a general smooth test function

$$\label{eq:product} \begin{split} x \in \mathsf{D}^k: \ \phi_h(x,t) = \sum_{i=1}^{N_p} \phi(x_i^k,t) \ell_i^k(x), \\ . \end{split}$$

so we obtain

$$\left(\phi_h, \frac{\partial}{\partial t}u_h\right)_{\mathsf{D}^k} - \left(\frac{\partial\phi_h}{\partial x}, f_h\right)_{\mathsf{D}^k} = -\left[\phi_h f^*\right]_{x_l^k}^{x_r^k}.$$

Properties of the scheme

Using our common matrix notation we have

$$\mathcal{M}^k \frac{d}{dt} \boldsymbol{u}_h^k - \mathcal{S}^T \boldsymbol{f}_h^k = -\left[\boldsymbol{\ell}^k(x) f^*\right]_{x_l^k}^{x_r^k},$$
$$\mathcal{M}^k \frac{d}{dt} \boldsymbol{u}_h^k + \mathcal{S} \boldsymbol{f}_h^k = \left[\boldsymbol{\ell}^k(x) (f_h^k - f^*)\right]_{x_l^k}^{x_r^k},$$
$$\boldsymbol{u}_h^k = [u_h^k(x_1^k), \dots, u_h^k(x_{N_p}^k)]^T, \quad \boldsymbol{f}_h^k = [f_h^k(x_1^k), \dots, f_h^k(x_{N_p}^k)]^T,$$

Multiply with a smooth test function from the left

Local/elementwise conservation

Thursday, August 9, 12

Properties of the scheme

Integration by parts in time yields

$$\int_0^\infty \left[\left(\frac{\partial}{\partial t} \phi_h, u_h \right)_{\mathsf{D}^k} + \left(\frac{\partial \phi_h}{\partial x}, f_h \right)_{\mathsf{D}^k} - \left[\phi_h f^* \right]_{x_l^k}^{x_r^k} \right] dt + (\phi_h(0), u_h(0))_{\mathsf{D}^k} = 0.$$

Summing over all elements yields

$$\begin{split} \int_0^\infty & \left[\left(\frac{\partial}{\partial t} \phi_h, u_h \right)_{\Omega, h} + \left(\frac{\partial \phi_h}{\partial x}, f_h \right)_{\Omega, h} \right] dt \\ & + \left(\phi_h(0), u_h(0) \right)_{\Omega, h} = \int_0^\infty \sum_k \hat{\boldsymbol{n}}_e \cdot \left[\! \left[\phi_h(x_e^k) f^*(x_e^k) \right] \! \right] dt. \end{split}$$

Since the test function is smooth, RHS vanishes

Solution is a weak solution

Shocks propagate a correct speed

Properties of the scheme

Consider again

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0,$$

Define the convex entropy

$$\eta(u) = \frac{u^2}{2}, \ F'(u) = \eta' f'.$$

and note that

$$F(u) = \int_{u} f'u \, du = f(u)u - \int_{u} f \, du = f(u)u - g(u),$$
$$g(u) = \int_{u} f(u) \, du.$$

Thursday, August 9, 12

Properties of the scheme

This yields

$$\frac{1}{2}\frac{d}{dt}\|u_h^k\|_{\mathbf{D}^k}^2 + \left[F(u_h^k)\right]_{x_l^k}^{x_r^k} = \left[u_h^k(x)(f_h^k - f^*)\right]_{x_l^k}^{x_r^k}.$$

At each interface we have a term like

$$F(u_h^-) - F(u_h^+) - u_h^-(f_h^- - f^*) + u_h^+(f_h^+ - f^*) \ge 0,$$
$$-g(u_h^-) + g(u_h^+) - f^*(u_h^+ - u_h^-) \ge 0.$$

Use the mean value theorem to obtain

$$g(u_h^+) - g(u_h^-) = g'(\xi)(u_h^+ - u_h^-) = f(\xi)(u_h^+ - u_h^-)$$

$$g(u) = \int_{u} f(u) \, du$$

Properties of the scheme

Consider the scheme

$$\mathcal{M}^k \frac{d}{dt} \boldsymbol{u}_h^k + \mathcal{S} \boldsymbol{f}_h^k = \left[\boldsymbol{\ell}^k(x) (f_h^k - f^*) \right]_{x_l^k}^{x_r^k}.$$

multiply with u from the left to obtain

$$\frac{1}{2}\frac{d}{dt}\|u_h^k\|_{\mathsf{D}^k}^2 + \int_{\mathsf{D}^k} u_h^k \frac{\partial}{\partial x} f_h^k \, dx = \left[u_h^k(x)(f_h^k - f^*)\right]_{x_l^k}^{x_h^k}.$$

Realize now that

$$\begin{split} \int_{\mathsf{D}^k} u_h^k \frac{\partial}{\partial x} f_h^k \, dx &= \int_{\mathsf{D}^k} \eta'(u_h^k) f'(u_h^k) \frac{\partial}{\partial x} u_h^k \, dx \\ &= \int_{\mathsf{D}^k} F'(u_h^k) \frac{\partial}{\partial x} u_h^k \, dx = \int_{\mathsf{D}^k} \frac{\partial}{\partial x} F(u_h^k) \, dx, \end{split}$$

Thursday, August 9, 12

Properties of the scheme

Combining everything yields the condition

$$(f(\xi) - f^*)(u_h^+ - u_h^-) \ge 0,$$

This is an E-flux -- and all monotone fluxes satisfy this!

We have just proven that

$$\frac{1}{2}\frac{d}{dt}\|u_h\|_{\Omega,h} \le 0.$$

Nonlinear stability -- just by the monotone flux

- No limiting
- No artificial dissipation

This is a very strong result!

Properties of the scheme

It gets better -- define the flux

 $\hat{F}(x) = f^*(x)u(x) - g(x),$

Using similar arguments as above, one obtains

$$\frac{d}{dt} \int_{\mathsf{D}^k} \eta(u_h^k) \, dx + \hat{F}(x_r^k) - \hat{F}(x_r^{k-1}) \le 0,$$

A cell entrophy condition

If the flux is convex and the solution bounded

Convergence to the unique entropy solution

Thursday, August 9, 12

Consider an example

Consider

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0, \ x \in [-1,1], \qquad f(u) = a(x)u(x,t), \ a(x) = (1-x^2)^5 + 1.$$

- Scheme II

$$\mathcal{S}_{ij}^{k,a} = \int_{x_l^k}^{x_r^k} \ell_i^k \frac{d}{dx} a(x) \ell_j^k \, dx, \qquad \mathcal{M}^k \frac{d}{dt} \boldsymbol{u}_h^k + \mathcal{S}^{k,a} \boldsymbol{u}_h^k = \frac{1}{2} \oint_{x_l^k}^{x_r^k} \hat{\boldsymbol{n}} \cdot [\![a(x) \boldsymbol{u}_h^k]\!] \boldsymbol{\ell}^k(x) \, dx.$$

• Scheme III
$$\mathcal{M}^k \frac{d}{dt} u_h^k + S \boldsymbol{f}_h^k = \frac{1}{2} \oint_{x_t^k}^{x_r^k} \hat{\boldsymbol{n}} \cdot [\![\boldsymbol{f}_h^k]\!] \boldsymbol{\ell}^k(x) \, dx,$$
$$x \in \mathsf{D}^k: \ f_h^k(x,t) = \sum_{i=1}^{N_p} a(x_i^k) u_h^k(x_i,t) \ell_i^k(x);$$

Properties of the scheme

We have managed to prove

- Local conservation
- Global conservation
- Solution is a weak solution
- Nonlinear stability
- A cell entropy condition

No other known method can match this!

Note: Most of these results are only valid for scalar convex problems – but this is due to an incomplete theory for conservation laws and not DG

Thursday, August 9, 12

Consider an example

Consider an example

So we should just forget about scheme III ?

- It is, however, very attractive:
- > Scheme II requires special operators for each element
- Scheme I requires accurate integration all the time

And for more general non-linear problems, the situation is even less favorable.

Scheme III is simple and fast -- but (weakly) unstable!

May be worth trying to stabilize it

Thursday, August 9, 12

A second look

One obtains the estimate

$$\frac{1}{2}\frac{d}{dt}\|u_{h}\|_{\Omega} \leq C_{1}\|u_{h}\|_{\Omega} + C_{2}(h,a)N^{1-p}|u|_{\Omega,p}.$$

$$\left\|\mathcal{I}_{N}\frac{\partial}{\partial x}au_{h} - \frac{\partial}{\partial x}\mathcal{I}_{N}(au_{h})\right\|_{\Omega}^{2}$$
Aliasing driven instability
if u is not sufficiently smooth

What can we do? -- add dissipation

$$\frac{\partial u_h}{\partial t} + \frac{\partial}{\partial x} \mathcal{I}_N(au_h) = \varepsilon (-1)^{\tilde{s}+1} \left[\frac{\partial}{\partial x} (1-x^2) \frac{\partial}{\partial x} \right]^{\tilde{s}} u_h.$$
$$\frac{1}{2} \frac{d}{dt} \|u_h\|_{\Omega}^2 \le C_1 \|u_h\|_{\Omega}^2 + C_2 N^{2-2p} |u|_{\Omega,p}^2 - C_3 \varepsilon |u_h|_{\Omega,\tilde{s}}^2.$$

Consider

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (a(x)u) = 0.$$
Discretized as

$$\frac{\partial u_h}{\partial t} + \frac{\partial}{\partial x} \mathcal{I}_N(au_h) = 0.$$
interpolation

$$f_h^k(x,t) = \mathcal{I}_N(a(x)u_h^k(x,t)) = \sum_{i=1}^{N_p} a(x_i^k)u_h^k(x_i^k,t)\ell_i^k(x),$$
Express this as

$$\frac{\partial u_h}{\partial t} + \frac{1}{2}\frac{\partial}{\partial x}\mathcal{I}_N(au_h) + \frac{1}{2}\mathcal{I}_N\left(a\frac{\partial u_h}{\partial x}\right) \qquad \text{skew symmetric part}$$

$$+\frac{1}{2}\mathcal{I}_N\frac{\partial}{\partial x}au_h - \frac{1}{2}\mathcal{I}_N\left(a\frac{\partial u_h}{\partial x}\right) \qquad \text{low order term}$$

$$+\frac{1}{2}\frac{\partial}{\partial x}\mathcal{I}_N(au_h) - \frac{1}{2}\mathcal{I}_N\frac{\partial}{\partial x}au_h = 0 \qquad \text{ aliasing term}$$

Thursday, August 9, 12

Filtering

So we can stabilize by adding dissipation as

$$\frac{\partial u_h}{\partial t} + \frac{\partial}{\partial x} \mathcal{I}_N(au_h) = \varepsilon (-1)^{\tilde{s}+1} \left[\frac{\partial}{\partial x} (1-x^2) \frac{\partial}{\partial x} \right]^{\tilde{s}} u_h.$$

... but how do we implement this ?

Let us consider the split scheme

$$\frac{\partial u_h}{\partial t} + \frac{\partial}{\partial x} \mathcal{I}_N f(u_h) = 0, \qquad \frac{\partial u_h}{\partial t} = \varepsilon (-1)^{\tilde{s}+1} \left[\frac{\partial}{\partial x} (1-x^2) \frac{\partial}{\partial x} \right]^{\tilde{s}} u_h.$$

and discretize the dissipative part in time

$$u_h^* = u_h(t + \Delta t) = u_h(t) + \varepsilon \Delta t (-1)^{\tilde{s}+1} \left[\frac{\partial}{\partial x} (1 - x^2) \frac{\partial}{\partial x} \right]^{\tilde{s}} u_h(t).$$

Filtering

Now recall that

$$u_h(x,t) = \sum_{n=1}^{N_p} \hat{u}_n(t)\tilde{P}_{n-1}(x)$$

and the Legendre polynomials satisfy

$$\frac{d}{dx}(1-x^2)\frac{d}{dx}\tilde{P}_n + n(n+1)\tilde{P}_n = 0,$$

so we obtain

$$u_h^*(x,t) \simeq u_h(x,t) + \varepsilon \Delta t (-1)^{\tilde{s}+1} \sum_{n=1}^{N_p} \hat{u}_n(t) (n(n-1))^{\tilde{s}} \tilde{P}_{n-1}(x)$$
$$\simeq \sum_{n=1}^{N_p} \sigma\left(\frac{n-1}{N}\right) \hat{u}_n(t) \tilde{P}_{n-1}(x), \quad \varepsilon \propto \frac{1}{\Delta t N^{2\bar{s}}}.$$

The dissipation can be implemented as a filter

Thursday, August 9, 12

Filtering

Does it work ?

A 2s-order filter is like adding a 2s dissipative term.

How much filtering:

As little as possible ... but as much as needed

Filtering

We will define a filter as

$$\sigma(\eta) \begin{cases} = 1, & \eta = 0\\ \leq 1, & 0 \leq \eta \leq 1\\ = 0, & \eta > 1, \end{cases} \quad \eta = \frac{n-1}{N}.$$

Polynomial filter of order 2s: $\sigma(\eta) = 1 - \alpha \eta^{2\tilde{s}}$,

Exponential filter of order 2s: $\sigma(\eta) = \exp(-\alpha \eta^{2\tilde{s}}),$

It is easily implemented as

$$\mathcal{F} = \mathcal{V} \Lambda \mathcal{V}^{-1}, \qquad \Lambda_{ii} = \sigma \left(\frac{i-1}{N}\right), \ i = 1, \dots, N_p$$

Thursday, August 9, 12

Problems on non-conservative form

Often one encounters problems as

$$\frac{\partial u}{\partial t} + a(x,t)\frac{\partial u}{\partial x} = 0,$$

- Discretize it directly with a numerical flux based on f=au
- If a is smooth, solve

$$\frac{\partial u}{\partial t} + \frac{\partial a u}{\partial x} - \frac{\partial a}{\partial x} u = 0,$$

• Introduce
$$v = \frac{\partial u}{\partial x}$$
 and solve

$$\frac{\partial v}{\partial t} + \frac{\partial av}{\partial x} = 0,$$

Basic results for smooth problems

Theorem 5.5. Assume that the flux $f \in C^3$ and the exact solution u is sufficiently smooth with bounded derivatives. Let u_h be a piecewise polynomial semidiscrete solution of the discontinuous Galerkin approximation to the onedimensional scalar conservation law; then

 $||u(t) - u_h(t)||_{\Omega,h} \le C(t)h^{N+\nu},$

provided a regular grid of $h = \max h^k$ is used. The constant C depends on u, N, and time t, but not on h. If a general monotone flux is used, $\nu = \frac{1}{2}$, resulting in suboptimal order, while $\nu = 1$ in the case an upwind flux is used.

The result extends to systems provided flux splitting is possible to obtain an upwind flux -- this is true for many important problems.

Thursday, August 9, 12

Lecture 4

- Let's briefly recall what we know
- Part I: Smooth problems
 - Conservations laws and DG properties
 - Filtering, aliasing, and error estimates
- Part II: Nonsmooth problems
 - Shocks and Gibbs phenomena
 - Filtering and limiting
 - TVD-RK and error estimates

Lets summarize Part I

We have achieved a lot

- The theoretical support for DG for conservation laws is very solid.
- > The requirements for 'exact' integration is expensive.
- It seems advantageous to consider a nodal approach in combination with dissipation.
- > Dissipation can be implemented using a filter
- There is a complete error-theory for smooth problems.

... but we have 'forgotten' the unpleasant issue

What about discontinuous solutions?

Thursday, August 9, 12

Gibbs Phenomenon

Let us first consider a simple approximation

- Overshoot does not go away with N
- First order point wise accuracy
- Oscillations are global

Gibbs Phenomenon

Gibbs Phenomenon

But do the oscillations destroy the nice behavior?

$$\frac{\partial u}{\partial t} + a(x)\frac{\partial u}{\partial x} = 0, \quad = \frac{\partial u}{\partial t} + \mathcal{L}u = 0,$$

a(x) is smooth - but u(x,0) is not

Define the adjoint problem

$$\frac{\partial v}{\partial t} - \mathcal{L}^* v = 0,$$

solved with smooth v(x,0)

Clearly, we have

$$\frac{d}{dt}(u,v)_{\varOmega} = 0 \quad \Rightarrow \quad (u(t),v(t))_{\varOmega} = (u(0),v(0))_{\varOmega}$$

Thursday, August 9, 12

Gibbs Phenomenon

The solution is spectrally accurate ! ... but it is 'hidden'

This also shows that the high-order accuracy is maintained -- 'the oscillations are not noise' !

How do we recover the accurate solution?

Recall

$$u_h(x) = \sum_{n=1}^{N_p} \hat{u}_n \tilde{P}_{n-1}(x), \ \hat{u}_n = \int_{-1}^1 u(x) \tilde{P}_{n-1}(x) \, dx.$$

One easily shows that

$$u(x) \in H^q \Rightarrow \hat{u}_n \propto n^{-q}$$

Gibbs Phenomenon

Using central fluxes, we also have

 $(u_h(t), v_h(t))_{\Omega,h} = (u_h(0), v_h(0))_{\Omega,h}.$

Consider

$$(u_h(0), v_h(0))_{\Omega,h} = (u(0), v(0))_{\Omega} + (u_h(0) - u(0), v_h(0))_{\Omega,h}$$

+
$$(u(0), v_h(0) - v(0))_{\Omega,h}$$
.

We also have

$$(u_h(0), v_h(0))_{\Omega,h} \le (u(0), v(0))_{\Omega} + C(u)h^{N+1}N^{-q}|v(0)|_{\Omega,q}.$$

$$||v(t) - v_h(t)||_{\Omega,h} \le C(t) \frac{h^{N+1}}{N^q} |v(t)|_{\Omega,q};$$

Combining it all, we obtain

$$(u_h(t), v(t))_{\Omega,h} = (u(t), v(t))_{\Omega} + \varepsilon,$$

Thursday, August 9, 12

Filtering

So there is a close connection between smoothness and decay for the expansion coefficients.

Perhaps we can 'convince' the expansion do decay faster ?

Consider

$$u_h^F(x) = \sum_{n=1}^{N_p} \sigma\left(\frac{n-1}{N}\right) \hat{u}_n \tilde{P}_{n-1}(x). \qquad \sigma(\eta) = \exp(-\alpha \eta^s)$$

Example

$$u^{(0)} = \begin{cases} -\cos(\pi x), \ -1 \le x \le 0\\ \cos(\pi x), \ 0 < x \le 1, \end{cases} \quad u^{(i)} = \int_{-1}^{x} u^{(i-1)}(s) \, ds,$$

Filtering

Thursday, August 9, 12

Filtering

......

Filtering

This achieves exactly what we hoped for

- Improves the accuracy away from the problem spot
- Does not destroy accuracy at the problem spot ... but does not help there.

This suggests a strategy:

- Use a filter to stabilize the scheme but do not remove the oscillations.
- Post process the data after the end of the computation.

Thursday, August 9, 12

Filtering

Limiting

So for some/many problems, we could simply leave the oscillations -- and then post-process.

However, for some applications (.. and advisors) this is not acceptable

- Unphysical values (negative densities)
- Artificial events (think combustion)
- Visually displeasing (.. for the advisor).

So we are looking for a way to completely remove the oscillations:

Thursday, August 9, 12

Limiting

We would like to repeat this for the discrete scheme.

Consider first the N=0 FV scheme

$$h\frac{du_h^k}{dt} + f^*(u_h^k, u_h^{k+1}) - f^*(u_h^k, u_h^{k-1}) = 0$$

Multiply with

$$v_h^k = -\frac{1}{h} \left[\eta' \left(\frac{u_h^{k+1} - u_h^k}{h} \right) - \eta' \left(\frac{u_h^k - u_h^{k-1}}{h} \right) \right]$$

and sum over all elements to get

$$\frac{d}{dt}|u_h|_{TV} + \sum_{k=1}^{K} v_h^k \left(f^*(u_h^k, u_h^{k+1}) - f^*(u_h^k, u_h^{k-1}) \right) = 0,$$
$$|u_h|_{TV} = \sum_{k=1}^{K} |u_h^{k+1} - u_h^k|.$$

Limiting

We are interested in guaranteeing uniform boundedness

$$||u||_{L^1} \le C, ||u||_{L^1} = \int_{\Omega} |u| \, dx.$$

Consider

$$\frac{\partial}{\partial t}u^{\varepsilon} + \frac{\partial}{\partial x}f(u^{\varepsilon}) = \varepsilon \frac{\partial^2}{\partial x^2}u^{\varepsilon}.$$
 and define $\eta(u) = |u|$

We have

$$-\int_{\Omega} (\eta'(u_x))_x u_t \, dx = \int_{\Omega} \frac{u_x}{|u_x|} u_{xt} \, dx = \frac{d}{dt} \int_{\Omega} |u_x| dx = \frac{d}{dt} ||u_x||_{L^1}.$$

and one easily proves

$$\frac{d}{dt} \|u_x^\varepsilon\|_{L^1} \le 0.$$

Thursday, August 9, 12

Limiting

Using that the flux is monotone, one easily proves

$$v_h^k\left(f^*(u_h^k, u_h^{k+1}) - f^*(u_h^k, u_h^{k-1})\right) \ge 0$$

and therefore $rac{d}{dt}|u_h|_{TV} \leq 0,$

So for N=0 everything is fine -- but what about N>0

$$h\frac{d\bar{u}_{h}^{k}}{dt} + f^{*}(u_{r}^{k}, u_{l}^{k+1}) - f^{*}(u_{l}^{k}, u_{r}^{k-1}) = 0,$$

using a Forward Euler method in time, we get

$$\frac{h}{\Delta t} \left(\bar{u}^{k,n+1} - \bar{u}^{k,n} \right) + f^*(u_r^{k,n}, u_l^{k+1,n}) - f^*(u_l^{k,n}, u_r^{k-1,n}) = 0,$$

Limiting

Resulting in

 $|\bar{u}^{n+1}|_{TV} - |\bar{u}^n|_{TV} + \Phi = 0,$

However, the monotone flux is not enough to guarantee uniform boundedness through $\Phi \geq 0$

That is the job of the limiter -- which must satisfy

- Ensures uniform boundedness/control oscillations
- Does not violate conservation
- Does not change the formal/high-order accuracy

This turns out to be hard !

Thursday, August 9, 12

Limiting

Let us assume N=1 in which case the solution is

$$u_h^k(x) = \bar{u}_h^k + (x - x_0^k)(u_h^k)_x,$$

We have the classic MUSCL limiter

$$\Pi^1 u_h^k(x) = \bar{u}_h^k + (x - x_0^k) m\left((u_h^k)_x, \frac{\bar{u}_h^{k+1} - \bar{u}_h^k}{h}, \frac{\bar{u}_h^k - \bar{u}_h^{k-1}}{h} \right)$$

or a slightly less dissipative limiter

$$\Pi^{1} u_{h}^{k}(x) = \bar{u}_{h}^{k} + (x - x_{0}^{k}) m\left((u_{h}^{k})_{x}, \frac{\bar{u}_{h}^{k+1} - \bar{u}_{h}^{k}}{h/2}, \frac{\bar{u}_{h}^{k} - \bar{u}_{h}^{k-1}}{h/2}\right).$$

There are many other types but they are similar

Limiting

Two tasks at hand

- Detect troubled cells
- Limit the slope to eliminate oscillations

Define the minmod function

$$m(a_1,\ldots,a_m) = \begin{cases} s \min_{1 \le i \le m} |a_i|, & |s| = 1\\ 0, & \text{otherwise,} \end{cases} \quad s = \frac{1}{m} \sum_{i=1}^m \operatorname{sign}(a_i).$$

If a are slopes, the minmod function

- > Returns the minimum slope if all have the same sign
- Returns slope zero if the slopes are different

Thursday, August 9, 12

Reduction to 1st order at local smooth extrema

Limiting

Introduce the TVB minmod

 $\bar{m}(a_1,\ldots,a_m) = m\left(a_1,a_2 + Mh^2\operatorname{sign}(a_2),\ldots,a_m + Mh^2\operatorname{sign}(a_m)\right),$

M estimates maximum curvature

Thursday, August 9, 12

Limiting

But what about N>1?

- Compare limited and non-limited interface values
- If equal, no limiting is needed.
- If different, reduce to N=1 and apply slope limiting

Limiting

Thursday, August 9, 12

Limiting

General remarks on limiting

- The development of a limiting technique that avoid local reduction to 1st order accuracy is likely the most important outstanding problem in DG
- There are a number of techniques around but they all have some limitations -- restricted to simple/ equidistant grids, not TVD/TVB etc
- The extensions to 2D/3D and general grids are challenging

TVD Runge-Kutta methods

Consider again the semi-discrete scheme

$$\frac{d}{dt}u_h = \mathcal{L}_h(u_h, t),$$

For which we just discussed TVD/TVB schemes as

$$u_h^{n+1} = u_h^n + \Delta t \mathcal{L}_h(u_h^n, t^n), \ |u_h^{n+1}|_{TV} \le |u_h^n|_{TV}.$$

.. but this is just 1st order in time -- we want high-order accuracy

Do we have to redo it all?

Thursday, August 9, 12

TVD Runge-Kutta methods

... but do such schemes exits ?

$$\begin{aligned} \mathbf{2nd \ order} & \begin{array}{l} v^{(1)} = u_h^n + \varDelta t \mathcal{L}_h(u_h^n, t^n), \\ & u_h^{n+1} = v^{(2)} = \frac{1}{2} \left(u_h^n + v^{(1)} + \varDelta t \mathcal{L}_h(v^{(1)}, t^n + \varDelta t) \right), \\ & \begin{array}{l} v^{(1)} = u_h^n + \varDelta t \mathcal{L}_h(u_h^n, t^n), \\ & \end{array} \\ \mathbf{3rd \ order} & \begin{array}{l} v^{(2)} = \frac{1}{4} \left(3u_h^n + v^{(1)} + \varDelta t \mathcal{L}_h(v^{(1)}, t^n + \varDelta t) \right), \\ & u_h^{n+1} = v^{(3)} = \frac{1}{3} \left(u_h^n + 2v^{(2)} + 2\varDelta t \mathcal{L}_h \left(v^{(2)}, t^n + \frac{1}{2} \varDelta t \right) \right). \end{aligned}$$

No 4th order, 4 stage scheme is possible - but there are other options (not implicit)

With filter/limiting
$$v^{(i)} = \Pi^p \left(\sum_{l=0}^{i-1} \alpha_{il} v^{(l)} + \beta_{il} \Delta t \mathcal{L}_h(v^{(l)}, t^n + \gamma_l \Delta t) \right).$$

TVD Runge-Kutta methods

Assume we can find a ERK method on the form

$$\begin{cases} v^{(0)} = u_h^n \\ i = 1, \dots, s : v^{(i)} = \sum_{j=0}^{i-1} \alpha_{ij} v^{(j)} + \beta_{ij} \Delta t \mathcal{L}_h(v^{(j)}, t^n + \gamma_j \Delta t) \\ u_h^{n+1} = v^{(s)} \end{cases}.$$

Coefficients found to satisfy order conditions

Write this as

$$v^{(i)} = \sum_{j=0}^{i-1} \alpha_{ij} \left(v^{(j)} + \frac{\beta_{ij}}{\alpha_{ij}} \Delta t \mathcal{L}_h(v^{(j)}, t^n + \gamma_j \Delta t) \right).$$

Clearly if $\alpha_{ij}, \beta_{ij} > 0$

The scheme is a convex combination of Euler steps and the stability of the high-order methods follows

Thursday, August 9, 12

TVD Runge-Kutta methods

Example

$$\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} = 0, \quad x \in [-1, 1],$$

$$u_0(x) = u(x, 0) = \begin{cases} 2, & x \le -0.5\\ 1, & x > -0.5. \end{cases} \qquad u(x, t) = u_0(x - 3t)$$

Use 'standard' 2nd order ERK

$$v^{(1)} = u_h^n - 20\Delta \mathcal{L}_h(u_h^n), u_h^{n+1} = u_h^n + \frac{\Delta t}{40} \left(41\mathcal{L}_h(u_h^n) - \mathcal{L}_h(v^{(1)}) \right).$$

Compare to 2nd order TVD-RK

MUSCL limiting in space, i.e., no oscillations

TVD Runge-Kutta methods

The oscillation is caused by time-stepping!

The 2nd order ERK is a bit unsual and 'reasonable' ERK method typically do not show this.

However, only with TVD-RK can one guarantee it

Thursday, August 9, 12

Solving the Euler equations

Sod's Problem

$$\rho(x,0) = \begin{cases} 1.0, & x < 0.5 \\ 0.125, & x \ge 0.5, \end{cases} \quad \rho u(x,0) = 0 \quad E(x,0) = \frac{1}{\gamma - 1} \begin{cases} 1, & x < 0.5 \\ 0.1, & x \ge 0.5. \end{cases}$$

A few theoretical results

Theorem 5.12. Assume that the limiter, Π , ensures the TVDM property; that is, $v_h = \Pi(u_h) \Rightarrow |v_h|_{TV} \le |u_h|_{TV},$

and that the SSP-RK method is consistent. Then the DG-FEM with the SSP-RK solution is TVDM as

 $\forall n: |u_h^n|_{TV} \le |u_h^0|_{TV}.$

Theorem 5.14. Assume that the slope limiter, Π , ensures that u_h is TVDM or TVBM and that the SSP-RK method is consistent.

Then there is a subsequence, $\{\bar{u}'_h\}$, of the sequence $\{\bar{u}_h\}$ generated by the scheme that converges in $L^{\infty}(0,T;L^1)$ to a weak solution of the scalar conservation law.

Moreover, if a TVBM limiter is used, the weak solution is the entropy solution and the whole sequence converges.

 $Finally,\ if\ the\ generalized\ slope\ limiter\ guarantees\ that$

 $\|\bar{u}_h - \Pi \bar{u}_h\|_{L^1} \le Ch |\bar{u}_h|_{TV},$

then the above results hold not only for the sequence of cell averages, $\{\bar{u}_h\}$, but also for the sequence of functions, $\{u_h\}$.

Thursday, August 9, 12

Solving the Euler equations

Solving the Euler equations

Thursday, August 9, 12

Fluxes - a second look

Let us locally assume that

$$oldsymbol{f}^*=\hat{\mathcal{A}}oldsymbol{u}^*$$

where $\hat{\mathcal{A}}\,\, \text{and}\,\, \mathbf{u}^*$ depends on $\, \mathbf{u}^\pm$

Let us assume that $\hat{\mathcal{A}}$ can diagonalized as

$$\hat{\mathcal{A}}\boldsymbol{r}_i = \lambda_i \boldsymbol{r}_i,$$

Use these waves to represent the solution

$$\boldsymbol{u}^* = \boldsymbol{u}^- + \sum_{\lambda_i \leq 0} \alpha_i \boldsymbol{r}_i = \boldsymbol{u}^+ - \sum_{\lambda_i \geq 0} \alpha_i \boldsymbol{r}_i.$$

Taking the average gives

$$\hat{\mathcal{A}}\boldsymbol{u}^* = \hat{\mathcal{A}}\{\!\{\boldsymbol{u}\}\!\} + \frac{1}{2}|\hat{\mathcal{A}}|[\![\boldsymbol{u}]\!], \qquad |\hat{\mathcal{A}}| = \mathcal{S}|\boldsymbol{\Lambda}|\mathcal{S}^{-1}$$

Fluxes - a second look

For the linear problem

$$\frac{\partial \boldsymbol{u}}{\partial t} + \mathcal{A}_x \frac{\partial \boldsymbol{u}}{\partial x} + \mathcal{A}_y \frac{\partial \boldsymbol{u}}{\partial y} = 0,$$

we could derive the exact upwind flux - Riemann Pro.

Let us now consider a general nonlinear problem

 $\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x} = 0,$

For this we have used Lax-Friedrich fluxes -- but when used with limiting, this is too dissipative.

We need to consider alternatives

Thursday, August 9, 12

Fluxes - a second look

- .. but what is \hat{A} ?
- We must require that

.. consistency:
$$\hat{\mathcal{A}}(\boldsymbol{u}^-,\boldsymbol{u}^+)
ightarrow rac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial \boldsymbol{u}}$$

.. diagonizable: $\hat{\mathcal{A}} = \mathcal{S} \mathcal{A} \mathcal{S}^{-1}$.

Write

$$\boldsymbol{f}(\boldsymbol{u}^+) - \boldsymbol{f}(\boldsymbol{u}^-) = \int_0^1 \frac{d\boldsymbol{f}(\boldsymbol{u}(\xi))}{d\xi} \ d\xi = \int_0^1 \frac{d\boldsymbol{f}(\boldsymbol{u}(\xi))}{d\boldsymbol{u}} \frac{d\boldsymbol{u}}{d\xi} \ d\xi.$$

Assume:

$$m{u}(\xi) = m{u}^- + (m{u}^+ - m{u}^-) \xi$$

Roe linearization

Fluxes - a second look

This results in the Roe condition

$$\boldsymbol{f}(\boldsymbol{u}^+) - \boldsymbol{f}(\boldsymbol{u}^-) = \hat{\mathcal{A}} \left(\boldsymbol{u}^+ - \boldsymbol{u}^- \right), \qquad \hat{\mathcal{A}} = \int_0^1 \frac{d \boldsymbol{f}(\boldsymbol{u}(\xi))}{d \boldsymbol{u}} d\xi.$$

One clear option

$$f^* = \{\{f\}\} + \frac{1}{2}|\hat{\mathcal{A}}|[\![u]\!].$$

Like LF in ID

.. but not computable in general

Approximations

$$\hat{\mathcal{A}} = \boldsymbol{f}_{\boldsymbol{u}}(\{\!\{\boldsymbol{u}\}\!\}),$$
$$\hat{\mathcal{A}} = \{\!\{\boldsymbol{f}_{\boldsymbol{u}}\}\!\}.$$

Thursday, August 9, 12

Summary

Dealing with discontinuous problems is a challenge

- The Gibbs oscillations impact accuracy
- ... but it does not destroy it, it seems
- So they should not just be removed
- One can the try to postprocess by filtering or other techniques.
- > For some problems, true limiting is required
- Doing this right is complicated -- and open
- > TVD-RK allows one to prove nonlinear results
- ... and it all works :-)

Time to move beyond ID - Next week !