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Lecture 4 A brief summary

» Let’s briefly recall what we know We now have a good understanding all key aspects
of the DG-FEM scheme for linear first order problems

» Part |: Smooth problems

» Conservations laws and DG properties » We understand both accuracy and stability and what

we can expect.

» The dispersive properties are excellent.
» The discrete stability is a little less encouraging.
4 A scaling like

» Filtering, aliasing, and error estimates

At < C-L

aN?
is the Achilles Heel -- but there are ways!

4 ... but what about nonlinear problems ?
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Conservation laws

Let us first consider the scalar conservation law
0 0
u_ ofw)

5 5 =0, z€[L,R] =12,
u(x,0) = up(x),

with boundary conditions specified at inflow

. Of
o= n- f, <O0.
The equation has a fundamental property
d b

o | w@)dz = f(u(a)) = f(u(b));
Changes by inflow-outflow differences only
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Conservation laws

One major problem with them:

Discontinuous solutions can form spontaneously

even for smooth initial conditions

...and how do we compute a derivate of a step ?

Introduce weak solutions satisfying

I (e + sfe ) asai=o,
/,OO( u(z,0) — uo()) ¢(x,0)dr = 0.

where ¢(z,t)is a smooth compact test function
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Conservation laws

Importance ?

This is perhaps the most basic physical model
in continuum mechanics:

» Maxwell’s equations for EM

» Euler and Navier-Stokes equations of fluid/gas
» MHD for plasma physics

» Navier’s equations for elasticity

» General relativity

» Traffic modeling

Conservation laws are fundamental
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Conservation laws

Now, we can deal with discontinuous solutions
... but we have lost uniqueness!

To recover this, we define a convex entropy
n(w), n"(u) >0

and an entropy flux

F(u) = /u n' (v) £ (v) do,

If one can prove that

on 0
— — <
8t+8 F(u) <0,

uniqueness is restored (for f convex)
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Back to the scheme

Recall the two DG formulations

/ (85;"6’“( ) = fR(u )d£k> dx=—/aDkﬁ-f*£§(x)dx,

oul  offF(uk .
o (G 2y hoyan = [ () - ) i)

We shall be using a monotone flux, e.g., the LF flux
7 i) = ()} + S ol

Recall also the assumption on the local solution

N,
x € D" uf(2,1) Zu (x5, )05 (), fF (un(x, 1)) kaxz 0¥ (2
i=1

Note: f*(zi,t) = Pn(f*)(zi,t)
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Properties of the scheme

Summing over all elements we have

K d ;c’;
S wde =Y a1 @b
CEk
k=1 1 ke
but the numerical flux is single valued, i.e.,

Global conservation

Let us now assume a general smooth test function

Np
x € DF: on(x,t) = Zgb(xf,t)ff(x),

=1
so we obtain

0 0on ¥
(Qbh,atuh) . < ¢’,fh> i (7 A
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Properties of the scheme

Using our common matrix notation we have

)

Mg sTpt @]

d "
Mk 855 = [E @k - )]

up = [uh(2h), . uf (@RI £ = (R, k)
Multiply with a smooth test function from the left

d )
i M Zuf — @1 ST Fh = —of [£(@)F]

k
7

p=1 == % kr uhdx:f*(xf) —f*(mf)

Local/elementwise conservation
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Properties of the scheme

Integration by parts in time yields
/0°° K%%uh) + (?’L,fh) — [on T } dt + (61(0),un (0)) e = 0.
Summing over all elements yields

(2 O6n ) dt
./0 (0t¢h7u’l>0h <6T’fh Q.,h:l

+ (#1(0),un(0)) o , = /°° > fe - [on(ab) £ (=B dt
0

Since the test function is smooth, RHS vanishes

=== Solution is a weak solution

== Shocks propagate a correct speed
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Properties of the scheme

Consider again
ou Of _

8t+8x_0’

Define the convex entropy

and note that

Fu) = / Frudu = f(uyu - / fdu = f(uyu— g(u),

aw:[ﬁWMw
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Properties of the scheme

This yields

1 d IEk x
§%HuZIIZDk + [Flu)] i = [un@) (5 = )5

At each interface we have a term like
Fuy) = Fluf) —w, (f, = ) +uy (fif = ) >0,

== (uy) + () — () —up) > 0.

=3

Use the mean value theorem to obtain

g(uy) — gluy) = g' (&) (uy, —upy) = F(E)(uy] —uy),

o) = [ fw)du.
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Properties of the scheme

Consider the scheme

M-Sk 57k = [ - )

multiply with u from the left to obtain
1d 0 T
gkl + [ kgt do = [k @k - )3
Realize now that

a ! !
o hgettdr = [ b)) joud do

0
/Dk (uh)axuhdx DF or (uh)dx7
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Properties of the scheme

Combining everything yields the condition

(F(&) = ) uf —uy) >0,

This is an E-flux -- and all monotone fluxes satisfy this!

We have just proven that

1
—— = {0
> < llunlon <

Nonlinear stability -- just by the monotone flux
» No limiting
» No artificial dissipation

This is a very strong result!
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Properties of the scheme

It gets better -- define the flux

Using similar arguments as above, one obtains
d

o | nteh) do + Bl - Fab) <o,

A cell entrophy condition

If the flux is convex and the solution bounded

» Convergence to the unique entropy solution
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Consider an example

Consider
du O o iy, f(u) = a@u ), ale)= (-2 +1.
T
e Scheme | Mk%uh+$fh ;f" [F16% (2) da,
[ (@) = Pn(a(a)uf(z)) fr (@) Zf;

e Scheme |1

[
s :/k 0 aa)f da, Mkjuﬁgk,au;g:%f #o - [a(2)ul € (2) da
xy xy
d 1T
o Scheme Il atfubvssi—4 f "o 116 s
NP

v e fia,t) = 3 a@h)uf (e, 1) (2);
i=1
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Properties of the scheme

We have managed to prove

» Local conservation

» Global conservation

» Solution is a weak solution
» Nonlinear stability

» A cell entropy condition

No other known method can match this!

Note: Most of these results are only valid for scalar convex
problems — but this is due to an incomplete theory for
conservation laws and not DG
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Consider an example

Schemes [+lI Schemes llI
3 3
25 25
2 2
1.5 1.5

.
- 0 O u

(x,1)
R,
- o O O,

15 -15
23 oy 0 5 1 = 05 0 05 1
What is the problem ?
fr(x) = Pn(a(z)uf(z)) Ny
N, is not fi(w.t) =Y _a(@l)uj(z:, )6 ();
0 =Y b))
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Consider an example

So we should just forget about scheme Il ?

It is, however, very attractive:
» Scheme |l requires special operators for each element
» Scheme | requires accurate integration all the time

And for more general non-linear problems, the situation
is even less favorable.

Scheme lll is simple and fast -- but (weakly) unstable!

May be worth trying to stabilize it
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A second look

One obtains the estimate

1d _

§$|luh|\n < Chllunlle + Co(h, a)N'Plul .
LI il
N g~ gpInam)| iasing driven instability

if u is not sufficiently smooth

What can we do? -- add dissipation

Qun 9 — 1] 9 AN
5 +8mZN(auh)7E( 1) ax(l x )8:6 Uup,.

1d _
5@“”}1“?) < Chllunlf + CoN*"?P|ulf, , — Cselunl?, 5

This is enough to stabilize!
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A second look

Consider @+Q(())70
ot " fg MWW=
Discretizedas 5, o
W + %IN(auh) =0.
N,
interpolation gk (a,t) = Iy (a(a)ul(w, 1) = 3 alab)ul ek, )6 ),

i=1

Express this as
duyp, 10

1 ou
ot +§ aIN(auh) + §IN (aa—;> skew symmetric part

1 0 1 8uh
“In—aup — =In | a—=2
+ 5N &nauh 51N (a o ) low order term

10 1 0
-~ 97 I Lau, =0 iasi
550 v(aun) = 5In B U dliasing term
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Filtering

So we can stabilize by adding dissipation as

Oup, 0 5 0 a1’
“%h iy — -1 54+1 | ¥ 1— 2 .
ot T pptilaws) ==(=1) {ax( v )ax} h
... but how do we implement this ?
Let us consider the split scheme
up, | 0 B dun [0 5 0]°
G g =0, Gt = [Fa-a ]

and discretize the dissipative part in time

ul = up(t + At) = up(t) + eAt(—1)5H1 {%(1 - xz)g} ’ up(t).
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Filtering

Now recall that

mt)*zun nl

and the Legendre polynomials satisfy

d d =~ -
—(1-2>—P 1P, =
( x)d:c » +n(n+1)P, =0,

so we obtain

ul(x,t) = up(x,t) + e At(—1)51 Zu n(n—1))°P,_y(z)

The dissipation can be implemented as a filter
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Filtering

Does it work ?

-1 -0.5 0 0.5

v

A 2s-order filter is like adding a 2s dissipative term.

How much filtering: As little as possible
.. but as much as needed
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Filtering
We will define a filter as
= 17 ’]7 = 0 .
o) { <1, 0<y<1 n:”Nl
=0, n>1,
Polynomial filter of order 2s: a(n) =1~ an*

Exponential filter of order 2s: (1) = exp(—an™),

It is easily implemented as

f:VAV_l, Aii_(f(i]_vl), i=1,...,Np.

Thursday, August 9, 12

Problems on non-conservative form

Often one encounters problems as
ou ou
— t 0
g Tel® g =0
» Discretize it directly with a numerical flux

based on f=au

» If a is smooth, solve
Oou Oau Oa

o o ox

» Introduce v = 2% and solve
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Basic results for smooth problems

Theorem 5.5. Assume that the fluz f € C* and the exact solution u is suf-
ficiently smooth with bounded derivatives. Let up be a piecewise polynomial
semidiscrete solution of the discontinuous Galerkin approximation to the one-
dimensional scalar conservation law; then

lu(®) = wn(t)llen < CERNH,

provided a regular grid of h = maxh* is used. The constant C depends on
w, N, and time t, but not on h. If a general monotone flux is used, v = %,
resulting in suboptimal order, while v =1 in the case an upwind flux is used.

The result extends to systems provided flux splitting is
possible to obtain an upwind flux -- this is true for
many important problems.
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Lecture 4

>
>
» Part Il: Nonsmooth problems
» Shocks and Gibbs phenomena
» Filtering and limiting

» TVD-RK and error estimates
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Lets summarize Part |

We have achieved a lot

» The theoretical support for DG for conservation
laws is very solid.

» The requirements for ‘exact’ integration is expensive.

) It seems advantageous to consider a nodal approach
in combination with dissipation.

» Dissipation can be implemented using a filter

» There is a complete error-theory for smooth
problems.

... but we have ‘forgotten’ the unpleasant issue
What about discontinuous solutions?
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Gibbs Phenomenon

Let us first consider a simple approximation

u(zr) = —sign(x), = € [-1,1],

» Overshoot does not go away with N
» First order point wise accuracy
» Oscillations are global

Gibbs Phenomenon
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Gibbs Phenomenon

But do the oscillations destroy the nice behavior?
ou ou ou
E‘*’CL(I‘)%—O, —E—FEU—O,

a(x) is smooth - but u(x,0) is not

Define the adjoint problem

v .
E—E U—O,

solved with smooth v(x,0)
Clearly, we have

d

Su e =0 = (), v(t)a = ((0), v(0)e.
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Gibbs Phenomenon

The solution is spectrally accurate !
... but it is ‘hidden’

This also shows that the high-order accuracy is
maintained -- ‘the oscillations are not noise’ !

How do we recover the accurate solution?

Recall N, )
up(z) = Z lin Po_1(2), Ty = /71 w(z) Pr—1(x) dz.

n=1

One easily shows that

u(z) € H1 = 4, xxn™1
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Gibbs Phenomenon

Using central fluxes, we also have
(un(t), vn(t))2.n = (ur(0),v,(0)) 2,n-

Consider

(un (0), 04 (0)) . = (u(0), v(0)) 2 + (un (0L =BT TN 2.1
+ (u(0),v,(0) — v(0))2,n-
We also have
(un(0),08(0) 2,0 < (u(0),v(0)) 0 + C(u)AN T N=[v(0)|2,q-
N+1

[v(t) = vr ()]l 2,n < C(t) th

()| 2,6;

Combining it all, we obtain

(un(t), v()2,n = (u(t), v(t))o +e,
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Filtering

So there is a close connection between smoothness
and decay for the expansion coefficients.

Perhaps we can ‘convince’ the expansion do
decay faster ?

Consider

uf (z) = Zp: o (n]; 1) tn Py (). o(n) = exp(—an®)

n=1

Example

© _ —cos(mzx), -1 <z <0 (@) _ © o)
b {cos(mc)7 O<z<1, 1 b (s)ds,
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Filtering Filtering

EE}W EEEW :‘g}m ©) This achieves exactly what we hoped for
5 u u U

o o o » Improves the accuracy away from the problem spot
» Does not destroy accuracy at the problem spot

s Y :EEW 13;W ey ... but does not help there.

°
°
&
@
xo
@
S
°

10 10 ot
107°) 107! 107°)
1

o o o X This suggests a strategy:
v v v u®
o 0 0 » Use a filter to stabilize the scheme but do not

R remove the oscillations.
=k esres ik (3) » Post process the data after the end of the
e }E?z%ww i u computation.
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Filtering Filtering

Consider Burgers equation .. An alternative - Pade filtering -

77777 m': 102

1 10+ -4

ou  Ou? " L T e o
—+——=0, ze[-1,1], N i Ry (x) 0

ot Oz . up(z) = ,
QL(ﬂC) 10
o 05 o 05 T 05 o 05 1 10-10
2, <-05 . ' i
uo(z) = u(x,0) = { =T e 10
1 1

1, x> —-0.5. s - 7 "
G i i 10 -1 -08 -06 04 -02 0 02 04 06 08 1
u(z,t) = up(z — 3t), ]
: To fully recover, the

shock location is
required (see text).

Overfiltering leads to =
severe smearing. :

» Eliminates oscillations and improves accuracy

Limited filtering looks - ) ..but no improvement at the point

much better e e

0. . -0:
21 08-06-04-02 0 02 04 06 08 1 1 08-06-04-02 0 02 0.4 06 08 1
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Limiting

So for some/many problems, we could simply leave the
oscillations -- and then post-process.

However, for some applications (.. and advisors) this is
not acceptable

» Unphysical values (negative densities)
» Artificial events (think combustion)
» Visually displeasing (.. for the advisor).

So we are looking for a way to completely remove
the oscillations: o
Limiting
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Limiting

We would like to repeat this for the discrete scheme.

Consider first the N=0 FV scheme

duf . _
POl ) — ) =0,

Multiply with

and sum over aII elements to get
|uh‘TV + ZU}L uh?uZJrl) f (U‘Zvuz 1)) = 07

|'“h|TV = Z ‘11k+1 — 11
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Limiting

We are interested in guaranteeing uniform boundedness

lullzr < C, u||z :/ |u| de.
1?)

Consider
2
%ug + %f(ug) - E%u and define 7(v) = |yl
We have

_ / _ [ Y= _4 _4d
/ﬂ(n (uI))zutdx—/n ‘um‘uztdas— dt/ﬁ\uz\dx— dtHquLL.
and one easily proves

d
Sl <.
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Limiting

Using that the flux is monotone, one easily proves
v (F (™) = £ (ufiuy™h)) >0
and therefore
%‘U“TV <0,

So for N=0 everything is fine -- but what about N>0

\, da

k) — ) =0,

using a Forward Euler method in time, we get

h

E (ak’,n+1 —k n) + f ( uF n k+1,n) _ f*(u;c,n7uk71,n) _ 07

r
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Limiting

Resulting in

|y — @™ |y + @ =0,

However, the monotone flux is not enough to
guarantee uniform boundedness through & > 0

That is the job of the limiter -- which must satisfy
» Ensures uniform boundedness/control oscillations
» Does not violate conservation

» Does not change the formal/high-order accuracy

This turns out to be hard !
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Limiting

Let us assume N=1 in which case the solution is
up () =ty + (z — 26) (uf))o,
We have the classic MUSCL limiter

“k+1 _ =k sk _ =k—1
. 3 . u —uy uy —u
Hluﬁ(x) = ﬁﬁl’ -+ (z - zé)m <(uﬁ)u h h Zh h ) s

h ’ h

or a slightly less dissipative limiter

k1l ok ok k-1
_ ot —ay uf -y
Tl (x) = af + (x — 2f)m <(ulfl)z, L 72 h —h h/2} ) ‘

There are many other types but they are similar
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Limiting

Two tasks at hand

» Detect troubled cells
» Limit the slope to eliminate oscillations

Define the minmod function

m(ar, ..., am) = {-“mnl%m jail, [s| =1

1 <& .
0. otherwise, * = m Eslgn(ai).
p

If a are slopes, the minmod function
» Returns the minimum slope if all have the same sign
» Returns slope zero if the slopes are different
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Limiting

Consider

ou Ou
7 ta =0 eel-L1, Smooth initial condition

1.5

1 -

0.5

X0
5

-0.5

-1 >

-15
-1 -0.5 0 0.5

X

Reduction to Ist order at local smooth extrema
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Limiting

Introduce the TVB minmod

m(at,...,am)=m (al, as + Mh%sign(as), ..., an + MhQSign(am)) ,

M estimates maximum curvature

1.5

1

0.5

0

u(x,t)

-0.5

Thursday, August 9, 12

Limiting

But what about N> 1?

» Compare limited and non-limited interface values
» If equal, no limiting is needed.
» If different, reduce to N=1| and apply slope limiting

25 10°
107
2 - - 107
I
! 10
\ =
15 7 10°
=2
1 10 10
1
1 ! 1072
107"
05 107"
-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
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Limiting

Consider Burgers equation*

ou  ou?
= o ~1,1],
gT + o 0, z€[-1,1],

2, x<-0.5

uo(z) = u(z,0) = {

u(z,t) = up(z — 3t),

Too dissipative limiting

leads to severe smearing.

..but no oscillations!
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Limiting

1, z>-0.5.

10°

10
107
10
flu °
107°)
1072
107

16
1071%%

10°

102
107
10°°
310
107°)
10712
107

16
1077

05

xo

10°
102
107
_10®
107°)
107
107
107!

General remarks on limiting

» The development of a limiting technique that avoid
local reduction to |st order accuracy is likely the

most important outstanding problem in DG

» There are a number of techniques around but they
all have some limitations -- restricted to simple/

equidistant grids, not TVD/TVB etc

» The extensions to 2D/3D and general grids are

challenging
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TVD Runge-Kutta methods

Consider again the semi-discrete scheme

d
Zun = Ly (up,t),

For which we just discussed TVD/TVB schemes as
up ™t = up + ALy (up, t"), |up oy < Juplov.

.. but this is just Ist order in time -- we want
high-order accuracy

Do we have to redo it all ?
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TVD Runge-Kutta methods

..but do such schemes exits ?
oM =l + ALLy, (u}, 1),

2nd order 1
uptt = 0@ = 3 (uz + oM + AL, (v 1 4 At)) ,

D = up + AtLp (up, t"),
1
3rd order @ — 5 (3u;§ + oW 4 ALy (0D 47 + At)) :

: 1 1
uptt = o® = 3 <u2” + 20 £ 2ALL), (1)@., "+ §At>) .

No 4th order, 4 stage scheme is possible - but
there are other options (not implicit)

With ﬁIterlllmltlng @ — 7P (i aav® + Bu AL (v, 7 +A”At)> )

=0
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TVD Runge-Kutta methods

Assume we can find a ERK method on the form

1)(0) = u?
1=1,...,s: @ = Z;;B aijv(j) + ﬂijAtﬁh,(v(j)J” + v, At) .
u;lH_l = U(s)

Coefficients found to satisfy order conditions

Write this as
i1
v = Zaij <U(j) + @Atﬁh(v(j),t” + 'yjAt)) .
=0

Qi
Clearly if ;i >0 ===

The scheme is a convex combination of Euler steps
and the stability of the high-order methods follows
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TVD Runge-Kutta methods

Example
du 0wt _, ze[-1,1]
o ox Y
2, < -0.5
up(z) = u(z,0) = { 1; ﬁ ; o5, u(x,t) = up(z — 3t),

Use ‘standard’ 2nd order ERK
oM =l — 20AL, (u}),

, At
uptt =l + ) <4IE;L(71,Z) — C;,,(U(l))) .

Compare to 2nd order TVD-RK

MUSCL limiting in space, i.e., no oscillations
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TVD Runge-Kutta methods

25 25
2 2 .
U
1.5 1.5
1 1 !
0.5 0.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5
X X

The oscillation is caused by time-stepping!

The 2nd order ERK is a bit unsual and ‘reasonable’
ERK method typically do not show this.

However, only with TVD-RK can one guarantee it
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Solving the Euler equations

dp  Opu

LRt e Mass
ot or =0

0 O(pu?

ot Ox

OE  O(E+plu

e Energy

A few theoretical results

Theorem 5.12. Assume that the limiter, II, ensures the TV DM property;
that is,
vp =1 (up) = |vn|zv < |us|Tv,

and that the SSP-RK method is consistent.
Then the DG-FEM with the SSP-RK solution is TV.DM as

Vo |u|ry < [ulry.

Theorem 5.14. Assume that the slope limiter, 11, ensures that up, is TV DM
or TV BM and that the SSP-RK method is consistent.

Then there is a subsequence, {u},}, of the sequence {u} generated by the
scheme that converges in L°°(0,T; L) to a weak solution of the scalar con-
servation law.

Moreover, if a TVBM limiter is used, the weak solution is the entropy
solution and the whole sequence converges.

Finally, if the generalized slope limiter guarantees that

l@n — Iap| s < Chltg|ry,

then the above results hold not only for the sequence of cell averages, {uy},
but also for the sequence of functions, {up}.
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Solving the Euler equations

1

MUSCL

1
=0 (B gme). o=\ /7,

Ideal gas

Sod’s Problem

10, 2<05 (1,
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z < 0.5
0.1, =>0.5.

0.8
0.6
a s 04 : K=250
0.2 i N
o |
0 -0.2
0 02 04 06 08 1 02 04 06 08 1
1
1 . 0.8
0.8 0.6
2 06 S04
0.4 0.2
0.2 0 |
0 -02
0 02 04 06 08 1 0 02 04 06 08
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Solving the Euler equations

1

0.8

0.8 0.6
2 0.6 0.4
0.4 02

0.2

o
(=}
=}
o
1
IS
=}
=)
[=}
©

o
o
N
o
IS
o
o
o
®
o
o
(S}
=)
IS
=]
o
o
®
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Fluxes - a second look

Fluxes - a second look
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Let us locally assume that
Fr=Au,

where A and u* depends on u*

Let us assume that A can diagonalized as
Ar; = \ri,
Use these waves to represent the solution

u =u" + E a;r; =ut — E ouT;.

Ai<0 Ai>0
Taking the average gives

du” = Af{ul) + S Al[u], Al =S5,
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For the linear problem

ou ou

ou

7:0’

we could derive the exact upwind flux - Riemann Pro.

Let us now consider a general nonlinear problem

ou  Of(u)
ot T or 0

For this we have used Lax-Friedrich fluxes -- but when
used with limiting, this is too dissipative.

We need to consider alternatives

Fluxes - a second look

..consistency:  A(u",u’)
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.. but what isfl?

We must require that

_ 0f(w)
ou

..diagonizable: 4 = sAs-!.

Write

- [P [ AFu(©) du
Flut) - £ >/0 u dg/o ()

Assume:

u(§) =u” +(u" —u)g,

Roe linearization



Fluxes - a second look Summary

This results in the Roe condition Dealing with discontinuous problems is a challenge
g _ i [ df(u)
+) - — At —u), A= de.
S - Jw) = Aft —) /0 du » The Gibbs oscillations impact accuracy
One clear option » ..but it does not destroy it, it seems
. L4 » So they should not just be removed
;=1 Al » One can the try to postprocess by filtering or

Like LF in ID other techniques.
» For some problems, true limiting is required
.. but not computable in general » Doing this right is complicated -- and open
» TVD-RK allows one to prove nonlinear results

Approximations

A= fo,({ul)), p ...and it all works :-)

A={frul- Time to move beyond ID - Next week !
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