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A brief overview of what’s to come

‣ Lecture 1: Introduction and DG-FEM in 1D

‣ Lecture 2: Implementation and numerical aspects

‣ Lecture 3: Insight through theory

‣ Lecture 4: Nonlinear problems

‣ Lecture 5: Extension to two spatial dimensions

‣ Lecture 6: Introduction to mesh generation

‣ Lecture 7: Higher order/Global problems

‣ Lecture 8: 3D and advanced topics
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Lecture 3

‣ Let’s briefly recall what we know

‣ Why high order methods ?

‣ Part I:

‣ Constructing fluxes for linear systems

‣ Approximation theory on the interval

‣ Part II:

‣ Convergence and error estimates

‣ Dispersive properties

‣ Discrete stability and how to overcome
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Let us recall

We already know a lot about the basic DG-FEM

‣ Stability is provided by carefully choosing the
       numerical flux.
‣ Accuracy appears to be given by the local solution
       representation.
‣ We can utilize major advances on monotone 
       schemes to design fluxes.
‣ The scheme generalizes with very few changes to
      very general problems -- multidimensional systems
      of conservation laws.
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Let us recall

We already know a lot about the basic DG-FEM

• Stability is provided by carefully choosing the
       numerical flux.
• Accuracy appear to be given by the local solution
       representation.
• We can utilize major advances on monotone 
       schemes to design fluxes.
• The scheme generalizes with very few changes to
      very general problems -- multidimensional systems
      of conservation laws.

At least in principle -- but what can we actually prove ?
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Why high-order accuracy ?

Let us just make sure we understand why high-order 
accuracy/methods is a good idea

General concerns/criticism:

‣ High-order accuracy is not needed for real appl.
‣ The methods are not robust/flexible
‣ They only work for smooth problems
‣ They are hard to do in complex geometries
‣ They are too expensive

After having worked on these methods
 for 15 years, I have heard them all 
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Why high-order accuracy ?

How do I solve a wave-problem to a given accuracy,
     , for a specific period of time,   , most efficiently ?

P1: FQF/GQE P2: FQF/GQE QC: FQF/GQE T1: FQF

CUUK702-Hesthaven June 7, 2006 9:29

12 From local to global approximation

Rewriting the phase error in terms of p and ν yields

e1(p, ν) = 2πν

∣∣∣∣1 − sin(2πp−1)
2πp−1

∣∣∣∣ , (1.12)

e2(p, ν) = 2πν

∣∣∣∣1 − 8 sin(2πp−1) − sin(4πp−1)
12πp−1

∣∣∣∣ .

The leading order approximation to Equation (1.12) is

e1(p, ν) " πν

3

(
2π

p

)2

, (1.13)

e2(p, ν) " πν

15

(
2π

p

)4

,

from which we immediately observe that the phase error is directly proportional
to the number of periods ν i.e., the error grows linearly in time.

We arrive at a more straightforward measure of the error of the scheme by
introducing pm(εp, ν) as a measure of the number of points per wavelength
required to guarantee a phase error, ep ≤ εp, after ν periods for a 2m-order
scheme. Indeed, from Equation (1.13) we directly obtain the lower bounds

p1(ε, ν) ≥ 2π

√
νπ

3εp
, (1.14)

p2(ε, ν) ≥ 2π 4

√
πν

15εp
,

on pm , ensuring a specific error εp.
It is immediately apparent that for long time integrations (large ν), p2 % p1,

justifying the use of high-order schemes. In the following examples, we will
examine the required number of points per wavelength as a function of the
desired accuracy.

Example 1.2

εp = 0.1 Consider the case in which the desired phase error is ≤ 10%. For
this relatively large error,

p1 ≥ 20
√

ν, p2 ≥ 7 4
√

ν.

We recall that the fourth-order scheme is twice as expensive as the second-
order scheme, so not much is gained for short time integration. However, as ν

increases the fourth-order scheme clearly becomes more attractive.

εp = 0.01 When the desired phase error is within 1%, we have

p1 ≥ 64
√

ν, p2 ≥ 13 4
√

ν.
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. . . high-order cont’

Solving wave problems in d-dimensions to time t with
accuracy εp this translates into

Memory ∝
(

ν

εp

) d
2m

, Work ∝ (2m)dν

(
ν

εp

) d+1
2m

.

So 2m > 2 advantageous in cases where

εp " 1, i.e., when high accuracy is required.

ν # 1, i.e., when long time integration is needed.

d > 1, i.e., for multi-dimensional problems.

pm < 10, i.e., efficient discretizations of large problems.

Darmstadt International Workshop, October 2004 – p.7
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Figure 1.2 An illustration of the impact of using a global method for problems
requiring long time integration. On the left we show the solution of Equation (1.1)
as computed using a second-order centered-difference scheme. On the right we
show the same problem solved using a global method. The full line represents the
computed solution, while the dashed line represents the exact solution.
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Figure 1.2 An illustration of the impact of using a global method for problems
requiring long time integration. On the left we show the solution of Equation (1.1)
as computed using a second-order centered-difference scheme. On the right we
show the same problem solved using a global method. The full line represents the
computed solution, while the dashed line represents the exact solution.
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14 From local to global approximation
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Figure 1.3 The growth of the work function, Wm , for various finite difference
schemes is given as a function of time, ν, in terms of periods. On the left we show
the growth for a required phase error of εp = 0.1, while the right shows the result
of a similar computation with εp = 0.01, i.e., a maximum phase error of less than
1%.

where C F Lm = c #t
#x refers to the C F L bound for stability. We assume that the

fourth-order Runge–Kutta method will be used for time discretization. For this
method it can be shown that C F L1 = 2.8, C F L2 = 2.1, and C F L3 = 1.75.
Thus, the estimated work for second, fourth, and sixth-order schemes is

W1 ! 30ν
ν

εp
, W2 ! 35ν

√
ν

εp
, W3 ! 48ν 3

√
ν

εp
. (1.15)

In Figure 1.3 we illustrate the approximate work associated with the different
schemes as a function of required accuracy and time. It is clear that even for
short time integrations, high-order methods are the most appropriate choice
when accuracy is the primary consideration. Moreover, it is evident that for
problems exhibiting unsteady behavior and thus needing long time integrations,
high-order methods are needed to minimize the work required for solving the
problem.

1.1.3 Infinite-order finite difference schemes

In the previous section, we showed the merits of high-order methods for time-
dependent problems. The natural question is, what happens as we take the order
higher and higher? How can we construct an infinite-order scheme, and how
does it perform?

In the following we will show that the limit of finite difference schemes is
the global method presented in Example 1.1. In analogy to Equation (1.5), the

High-order is important if

‣ High accuracy is required - and it increasingly is !
‣ Long time integration is needed
‣ High-dimensional problems (3D) are considered
‣ Memory restrictions become a bottleneck

Wednesday, August 8, 12



Added benefit of high-order support

High-order 
takes ‘some’ of 
the pain out of 
grid generation

Added benefit of high-order support

            

Gridding and p-convergence
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High-order 
takes ‘some’ of 
the pain out of 
grid generation
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A bit more on fluxes

Let us briefly look a little more carefully at linear
systems 

Prominent examples are
‣ Acoustics
‣ Electromagnetics
‣ Elasticity

In such cases we can derive exact upwind fluxes

But first a bit more on fluxes

Let us briefly look a little more carefully at linear
systems 

34 2 The key ideas

The final extension of the formulation to multidimensional systems is entirely
straightforward; that is, we assume that the solution, u(x, t), is approximated
by a multidimensional piecewise polynomial, uh. Proceeding as above, we
recover the weak formulation

∫

Dk

(
∂uk

h

∂t
φk

h − fk
h(uk

h) ·∇φk
h

)
dx = −

∫

∂Dk
n̂ · f∗φk

h dx, (2.17)

and the strong form
∫

Dk

(
∂uk

h

∂t
+ ∇ · fk

h(uk
h)

)
φk

h dx =
∫

∂Dk
n̂ ·

(
fk

h(uk
h) − f∗

)
φk

h dx. (2.18)

for all locally defined test functions, φk
h ∈ Vk

h. Naturally, uk
h and the test func-

tions, φk
h, are now multidimensional functions of x ∈ Rd. The semi-discrete

formulation then follows immediately by expressing the local test functions as
in Eq. (2.13).

The definition of the numerical fluxes follows the path discussed in the
above, e.g., the Lax-Friedrichs flux along the normal, n̂, is

f∗ = {{fh(uh)}} +
C

2
[[uh]].

Alternatives are possible, but this flux generally leads to both efficient, ac-
curate, and robust methods. The constant in the Lax-Friedrichs flux is given
as

C = max
u

∣∣∣∣λ
(

n̂ · ∂f

∂u

)∣∣∣∣ ,

where λ(·) indicates the eigenvalue of the matrix.

2.4 Interlude on linear hyperbolic problems

For linear systems, the construction of the upwind numerical flux is partic-
ularly simple and we will discuss this in a bit more detail. Important appli-
cation areas include Maxwell’s equations and the equations of acoustics and
elasticity.

To illustrate the basic approach, let us consider the two-dimensional
system

Q(x)
∂u

∂t
+ ∇ ·F = Q(x)

∂u

∂t
+

∂F 1

∂x
+

∂F 2

∂y
= 0, (2.19)

where the flux is assumed to be given as

F = [F 1,F 2] = [A1(x)u,A2(x)u] .

Furthermore, we will make the natural assumption that Q(x) is invertible and
symmetric for all x ∈ Ω. To formulate the numerical flux, we will need an
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2.4 Interlude on linear hyperbolic problems

For linear systems, the construction of the upwind numerical flux is partic-
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Q(x)
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∂t
+ ∇ ·F = Q(x)
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∂t
+

∂F 1

∂x
+

∂F 2

∂y
= 0, (2.19)

where the flux is assumed to be given as

F = [F 1,F 2] = [A1(x)u,A2(x)u] .

Furthermore, we will make the natural assumption that Q(x) is invertible and
symmetric for all x ∈ Ω. To formulate the numerical flux, we will need an
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approximation of n̂ · F utilizing information from both sides of the interface.
Exactly how this information is combined should follow the dynamics of the
equations.

Let us first assume that Q(x) and Ai(x) vary smoothly throughout Ω. In
this case, we can rewrite Eq. (2.19) as

Q(x)
∂u

∂t
+ A1(x)

∂u

∂x
+ A2(x)

∂u

∂y
+ B(x)u = 0,

where B collects all low-order terms; for example, it vanishes if Ai is constant.
Since we are interested in the formulation of a flux along the normal, n̂, we
will consider the operator

Π = (n̂xA1(x) + n̂yA2(x)) .

Note in particular that
n̂ · F = Πu.

The dynamics of the linear system can be understood by considering Q−1Π.
Let us assume that Q−1Π can be diagonalized as

Q−1Π = SΛS−1,

where the diagonal matrix, Λ, has purely real entries; that is, Eq. (2.19) is a
strongly hyperbolic system [142]. We express this as

Λ = Λ+ + Λ−,

corresponding to the elements of Λ that have positive and negative signs, re-
spectively. Thus, the nonzero elements of Λ− correspond to those elements
of the characteristic vector S−1u where the direction of propagation is op-
posite to the normal (i.e., they are incoming components). In contrast, those
elements corresponding to Λ+ reflect components propagating along n̂ (i.e.,
they are leaving through the boundary). The basic picture is illustrated in
Fig. 2.3, where we, for completeness, also illustrate a λ2 = 0 eigenvalue (i.e.,
a nonpropagating mode).

With this basic understanding, it is clear that a numerical upwind flux can
be obtained as

(n̂ · F)∗ = QS
(
Λ+S−1u− + Λ−S−1u+

)
,

by simply combining the information from the two sides of the shared edge in
the appropriate manner.

As intuitive as this approach is, it hinges on the assumption that Q−1 and
Π vary smoothly with x throughout Ω. Unfortunately, this is not the case
for many types of application (e.g., electromagnetic or acoustic problems with
piecewise smooth materials).
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are used to derive the upwind flux. In this case, λ1 < 0, λ2 = 0, and λ3 > 0.

To derive the proper numerical upwind flux for such cases, we need to
be more careful. One should keep in mind that the much simpler local Lax-
Friedrichs flux also works in this case, albeit most likely leading to more
dissipation than if the upwind flux is used.

For simplicity, we assume that we have only three entries in Λ, given as

λ1 = −λ, λ2 = 0, λ3 = λ,

with λ > 0; that is, the wave corresponding to λ1 is entering the domain, the
wave corresponding to λ3 is leaving, and λ2 corresponds to a stationary wave
as illustrated in Fig. 2.3.

Following the well-developed theory or Riemann solvers [218, 303], we
know that

∀i : −λiQ[u− − u+] + [(Πu)− − (Πu)+] = 0, (2.20)
must hold across each wave. This is also known as the Rankine-Hugoniot
condition and is a simple consequence of conservation of u across the point of
discontinuity. To appreciate this, consider the scalar wave equation

∂u

∂t
+ λ

∂u

∂x
= 0, x ∈ [a, b].

Integrating over the interval, we have

d

dt

∫ b

a
u dx = −λ (u(b, t) − u(a, t)) = f(a, t) − f(b, t),

since f = λu. On the other hand, since the wave is propagating at a constant
speed, λ, we also have

d

dt

∫ b

a
u dx =

d

dt

(
(λt − a)u− + (b − λt)u+

)
= λ(u− − u+).

Taking a → x− and b → x+, we recover the jump conditions

−λ(u− − u+) + (f− − f+) = 0.

The generalization to Eq. (2.20) is now straightforward.
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n̂ · F = Πu.

The dynamics of the linear system can be understood by considering Q−1Π.
Let us assume that Q−1Π can be diagonalized as

Q−1Π = SΛS−1,

where the diagonal matrix, Λ, has purely real entries; that is, Eq. (2.19) is a
strongly hyperbolic system [142]. We express this as

Λ = Λ+ + Λ−,

corresponding to the elements of Λ that have positive and negative signs, re-
spectively. Thus, the nonzero elements of Λ− correspond to those elements
of the characteristic vector S−1u where the direction of propagation is op-
posite to the normal (i.e., they are incoming components). In contrast, those
elements corresponding to Λ+ reflect components propagating along n̂ (i.e.,
they are leaving through the boundary). The basic picture is illustrated in
Fig. 2.3, where we, for completeness, also illustrate a λ2 = 0 eigenvalue (i.e.,
a nonpropagating mode).

With this basic understanding, it is clear that a numerical upwind flux can
be obtained as

(n̂ · F)∗ = QS
(
Λ+S−1u− + Λ−S−1u+

)
,

by simply combining the information from the two sides of the shared edge in
the appropriate manner.

As intuitive as this approach is, it hinges on the assumption that Q−1 and
Π vary smoothly with x throughout Ω. Unfortunately, this is not the case
for many types of application (e.g., electromagnetic or acoustic problems with
piecewise smooth materials).
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To derive the proper numerical upwind flux for such cases, we need to
be more careful. One should keep in mind that the much simpler local Lax-
Friedrichs flux also works in this case, albeit most likely leading to more
dissipation than if the upwind flux is used.

For simplicity, we assume that we have only three entries in Λ, given as

λ1 = −λ, λ2 = 0, λ3 = λ,

with λ > 0; that is, the wave corresponding to λ1 is entering the domain, the
wave corresponding to λ3 is leaving, and λ2 corresponds to a stationary wave
as illustrated in Fig. 2.3.

Following the well-developed theory or Riemann solvers [218, 303], we
know that

∀i : −λiQ[u− − u+] + [(Πu)− − (Πu)+] = 0, (2.20)
must hold across each wave. This is also known as the Rankine-Hugoniot
condition and is a simple consequence of conservation of u across the point of
discontinuity. To appreciate this, consider the scalar wave equation

∂u

∂t
+ λ

∂u

∂x
= 0, x ∈ [a, b].

Integrating over the interval, we have

d

dt

∫ b

a
u dx = −λ (u(b, t) − u(a, t)) = f(a, t) − f(b, t),

since f = λu. On the other hand, since the wave is propagating at a constant
speed, λ, we also have

d

dt

∫ b

a
u dx =

d

dt

(
(λt − a)u− + (b − λt)u+

)
= λ(u− − u+).

Taking a → x− and b → x+, we recover the jump conditions

−λ(u− − u+) + (f− − f+) = 0.

The generalization to Eq. (2.20) is now straightforward.
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n̂ · F = Πu.

The dynamics of the linear system can be understood by considering Q−1Π.
Let us assume that Q−1Π can be diagonalized as

Q−1Π = SΛS−1,

where the diagonal matrix, Λ, has purely real entries; that is, Eq. (2.19) is a
strongly hyperbolic system [142]. We express this as

Λ = Λ+ + Λ−,

corresponding to the elements of Λ that have positive and negative signs, re-
spectively. Thus, the nonzero elements of Λ− correspond to those elements
of the characteristic vector S−1u where the direction of propagation is op-
posite to the normal (i.e., they are incoming components). In contrast, those
elements corresponding to Λ+ reflect components propagating along n̂ (i.e.,
they are leaving through the boundary). The basic picture is illustrated in
Fig. 2.3, where we, for completeness, also illustrate a λ2 = 0 eigenvalue (i.e.,
a nonpropagating mode).

With this basic understanding, it is clear that a numerical upwind flux can
be obtained as

(n̂ · F)∗ = QS
(
Λ+S−1u− + Λ−S−1u+

)
,

by simply combining the information from the two sides of the shared edge in
the appropriate manner.

As intuitive as this approach is, it hinges on the assumption that Q−1 and
Π vary smoothly with x throughout Ω. Unfortunately, this is not the case
for many types of application (e.g., electromagnetic or acoustic problems with
piecewise smooth materials).
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To derive the proper numerical upwind flux for such cases, we need to
be more careful. One should keep in mind that the much simpler local Lax-
Friedrichs flux also works in this case, albeit most likely leading to more
dissipation than if the upwind flux is used.

For simplicity, we assume that we have only three entries in Λ, given as

λ1 = −λ, λ2 = 0, λ3 = λ,

with λ > 0; that is, the wave corresponding to λ1 is entering the domain, the
wave corresponding to λ3 is leaving, and λ2 corresponds to a stationary wave
as illustrated in Fig. 2.3.

Following the well-developed theory or Riemann solvers [218, 303], we
know that

∀i : −λiQ[u− − u+] + [(Πu)− − (Πu)+] = 0, (2.20)
must hold across each wave. This is also known as the Rankine-Hugoniot
condition and is a simple consequence of conservation of u across the point of
discontinuity. To appreciate this, consider the scalar wave equation

∂u

∂t
+ λ

∂u

∂x
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Integrating over the interval, we have

d

dt

∫ b

a
u dx = −λ (u(b, t) − u(a, t)) = f(a, t) − f(b, t),
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speed, λ, we also have
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)
= λ(u− − u+).

Taking a → x− and b → x+, we recover the jump conditions

−λ(u− − u+) + (f− − f+) = 0.

The generalization to Eq. (2.20) is now straightforward.
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Fig. 2.3. Sketch of the characteristic wave speeds of a three-wave system at a
boundary between two states, u− and u+. The two intermediate states, u∗ and u∗∗,
are used to derive the upwind flux. In this case, λ1 < 0, λ2 = 0, and λ3 > 0.

To derive the proper numerical upwind flux for such cases, we need to
be more careful. One should keep in mind that the much simpler local Lax-
Friedrichs flux also works in this case, albeit most likely leading to more
dissipation than if the upwind flux is used.

For simplicity, we assume that we have only three entries in Λ, given as

λ1 = −λ, λ2 = 0, λ3 = λ,

with λ > 0; that is, the wave corresponding to λ1 is entering the domain, the
wave corresponding to λ3 is leaving, and λ2 corresponds to a stationary wave
as illustrated in Fig. 2.3.

Following the well-developed theory or Riemann solvers [218, 303], we
know that

∀i : −λiQ[u− − u+] + [(Πu)− − (Πu)+] = 0, (2.20)
must hold across each wave. This is also known as the Rankine-Hugoniot
condition and is a simple consequence of conservation of u across the point of
discontinuity. To appreciate this, consider the scalar wave equation

∂u

∂t
+ λ

∂u

∂x
= 0, x ∈ [a, b].

Integrating over the interval, we have

d

dt

∫ b

a
u dx = −λ (u(b, t) − u(a, t)) = f(a, t) − f(b, t),

since f = λu. On the other hand, since the wave is propagating at a constant
speed, λ, we also have

d

dt

∫ b

a
u dx =

d

dt

(
(λt − a)u− + (b − λt)u+

)
= λ(u− − u+).

Taking a → x− and b → x+, we recover the jump conditions

−λ(u− − u+) + (f− − f+) = 0.

The generalization to Eq. (2.20) is now straightforward.

and we obtain
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and the numerical flux is given as

2.4 Interlude on linear hyperbolic problems 37

Returning to the problem in Fig. 2.3, we have the system of equations

λQ−(u∗ − u−) +
[
(Πu)∗ − (Πu)−

]
= 0,

[(Πu)∗ − (Πu)∗∗] = 0,
−λQ+(u∗∗ − u+) +

[
(Πu)∗∗ − (Πu)+

]
= 0,

where (u∗,u∗∗) represents the intermediate states.
The numerical flux can then be obtained by realizing that

(n̂ · F)∗ = (Πu)∗ = (Πu)∗∗,

which one can attempt to express using (u−,u+) through the jump conditions
above. This leads to an upwind flux for the general discontinuous case.

To appreciate this approach, we consider a few examples.

Example 2.5. Consider first the linear hyperbolic problem

∂q

∂t
+ A∂q

∂x
=

∂

∂t

[
u
v

]
+

[
a(x) 0

0 −a(x)

]
∂

∂x

[
u
v

]
= 0,

with a(x) being piecewise constant. For this simple equation, it is clear that
u(x, t) propagates right while v(x, t) propagates left and we could use this to
form a simple upwind flux.

However, let us proceed using the Riemann jump conditions. If we intro-
duce a± as the values of a(x) on two sides of the interface, we recover the
conditions

a−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−a+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Πq)∗ is the numerical flux along
n̂, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

a± 0
0 −a±

] [
u±

v±

]
= n̂ ·

[
a±u±

−a±v±

]
.

A bit of manipulation yields

(Πq)∗ =
1

a+ + a−
(
a+(Πq)− + a−(Πq)+ + a+a−(q− − q+)

)
,

which simplifies as

(Πq)∗ =
2a+a−

a+ + a− n̂ ·
([

{{u}}
−{{v}}

]
+

1
2

[
[[u]]
[[v]]

])
,

and the numerical flux (Aq)∗ follows directly from the definition of (Πq)∗
We observe that if a(x) is smooth (i.e., a− = a+) then the numerical flux is

This approach is general and yields the exact
upwind fluxes -- but requires that the system 
can be solved !
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simply upwinding. Furthermore, for the general case, the above is equivalent
to defining an intermediate wave speed, a∗, as

a∗ =
2a−a+

a+ + a− ,

which is the harmonic average.

Let us also consider a slightly more complicated problem, originating in
electromagnetics.

Example 2.6. Consider the one-dimensional Maxwell’s equations
[

ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.

To simplify the notation, let us write this as

Q∂q

∂t
+ A∂q

∂x
= 0,

where
Q =

[
ε(x) 0
0 µ(x)

]
, A =

[
0 1
1 0

]
, q =

[
E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

Following the general approach, we have

with

Solving this yields Intermediate 
velocity
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ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.

To simplify the notation, let us write this as

Q∂q

∂t
+ A∂q

∂x
= 0,

where
Q =

[
ε(x) 0
0 µ(x)

]
, A =

[
0 1
1 0

]
, q =

[
E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

Following the general approach, we have

with

Solving this yields Intermediate 
velocity

Linear systems and fluxes -- an example

Consider 
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Returning to the problem in Fig. 2.3, we have the system of equations

λQ−(u∗ − u−) +
[
(Πu)∗ − (Πu)−

]
= 0,

[(Πu)∗ − (Πu)∗∗] = 0,
−λQ+(u∗∗ − u+) +

[
(Πu)∗∗ − (Πu)+

]
= 0,

where (u∗,u∗∗) represents the intermediate states.
The numerical flux can then be obtained by realizing that

(n̂ · F)∗ = (Πu)∗ = (Πu)∗∗,

which one can attempt to express using (u−,u+) through the jump conditions
above. This leads to an upwind flux for the general discontinuous case.

To appreciate this approach, we consider a few examples.

Example 2.5. Consider first the linear hyperbolic problem

∂q

∂t
+ A∂q

∂x
=

∂

∂t

[
u
v

]
+

[
a(x) 0

0 −a(x)

]
∂

∂x

[
u
v

]
= 0,

with a(x) being piecewise constant. For this simple equation, it is clear that
u(x, t) propagates right while v(x, t) propagates left and we could use this to
form a simple upwind flux.

However, let us proceed using the Riemann jump conditions. If we intro-
duce a± as the values of a(x) on two sides of the interface, we recover the
conditions

a−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−a+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Πq)∗ is the numerical flux along
n̂, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

a± 0
0 −a±

] [
u±

v±

]
= n̂ ·

[
a±u±

−a±v±

]
.

A bit of manipulation yields

(Πq)∗ =
1

a+ + a−
(
a+(Πq)− + a−(Πq)+ + a+a−(q− − q+)

)
,

which simplifies as

(Πq)∗ =
2a+a−

a+ + a− n̂ ·
([

{{u}}
−{{v}}

]
+

1
2

[
[[u]]
[[v]]

])
,

and the numerical flux (Aq)∗ follows directly from the definition of (Πq)∗
We observe that if a(x) is smooth (i.e., a− = a+) then the numerical flux is
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simply upwinding. Furthermore, for the general case, the above is equivalent
to defining an intermediate wave speed, a∗, as

a∗ =
2a−a+

a+ + a− ,

which is the harmonic average.

Let us also consider a slightly more complicated problem, originating in
electromagnetics.

Example 2.6. Consider the one-dimensional Maxwell’s equations
[

ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.
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E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

Following the general approach, we have

with

Solving this yields Intermediate 
velocity

Linear systems and fluxes -- an example

Consider 

2.4 Interlude on linear hyperbolic problems 37

Returning to the problem in Fig. 2.3, we have the system of equations

λQ−(u∗ − u−) +
[
(Πu)∗ − (Πu)−

]
= 0,

[(Πu)∗ − (Πu)∗∗] = 0,
−λQ+(u∗∗ − u+) +

[
(Πu)∗∗ − (Πu)+

]
= 0,

where (u∗,u∗∗) represents the intermediate states.
The numerical flux can then be obtained by realizing that

(n̂ · F)∗ = (Πu)∗ = (Πu)∗∗,

which one can attempt to express using (u−,u+) through the jump conditions
above. This leads to an upwind flux for the general discontinuous case.
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with a(x) being piecewise constant. For this simple equation, it is clear that
u(x, t) propagates right while v(x, t) propagates left and we could use this to
form a simple upwind flux.

However, let us proceed using the Riemann jump conditions. If we intro-
duce a± as the values of a(x) on two sides of the interface, we recover the
conditions
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and the numerical flux (Aq)∗ follows directly from the definition of (Πq)∗
We observe that if a(x) is smooth (i.e., a− = a+) then the numerical flux is
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which one can attempt to express using (u−,u+) through the jump conditions
above. This leads to an upwind flux for the general discontinuous case.

To appreciate this approach, we consider a few examples.

Example 2.5. Consider first the linear hyperbolic problem

∂q

∂t
+ A∂q

∂x
=

∂

∂t

[
u
v

]
+

[
a(x) 0

0 −a(x)

]
∂

∂x

[
u
v

]
= 0,

with a(x) being piecewise constant. For this simple equation, it is clear that
u(x, t) propagates right while v(x, t) propagates left and we could use this to
form a simple upwind flux.

However, let us proceed using the Riemann jump conditions. If we intro-
duce a± as the values of a(x) on two sides of the interface, we recover the
conditions

a−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−a+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Πq)∗ is the numerical flux along
n̂, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

a± 0
0 −a±

] [
u±

v±

]
= n̂ ·

[
a±u±

−a±v±

]
.

A bit of manipulation yields

(Πq)∗ =
1

a+ + a−
(
a+(Πq)− + a−(Πq)+ + a+a−(q− − q+)

)
,

which simplifies as

(Πq)∗ =
2a+a−

a+ + a− n̂ ·
([

{{u}}
−{{v}}

]
+

1
2

[
[[u]]
[[v]]

])
,

and the numerical flux (Aq)∗ follows directly from the definition of (Πq)∗
We observe that if a(x) is smooth (i.e., a− = a+) then the numerical flux is
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simply upwinding. Furthermore, for the general case, the above is equivalent
to defining an intermediate wave speed, a∗, as

a∗ =
2a−a+

a+ + a− ,

which is the harmonic average.

Let us also consider a slightly more complicated problem, originating in
electromagnetics.

Example 2.6. Consider the one-dimensional Maxwell’s equations
[

ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.

To simplify the notation, let us write this as

Q∂q

∂t
+ A∂q

∂x
= 0,

where
Q =

[
ε(x) 0
0 µ(x)

]
, A =

[
0 1
1 0

]
, q =

[
E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

Following the general approach, we have

with

Solving this yields Intermediate 
velocity
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or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.

The exact same approach leads to 

Now assume smooth materials:

We have recovered the LF flux!

Linear systems and fluxes -- an example

Consider Maxwell’s equations 

38 2 The key ideas

simply upwinding. Furthermore, for the general case, the above is equivalent
to defining an intermediate wave speed, a∗, as

a∗ =
2a−a+

a+ + a− ,

which is the harmonic average.

Let us also consider a slightly more complicated problem, originating in
electromagnetics.

Example 2.6. Consider the one-dimensional Maxwell’s equations
[

ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.

To simplify the notation, let us write this as

Q∂q

∂t
+ A∂q

∂x
= 0,

where
Q =

[
ε(x) 0
0 µ(x)

]
, A =

[
0 1
1 0

]
, q =

[
E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

2.5 Exercises 39

or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.

2.5 Exercises 39

or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.

2.5 Exercises 39

or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.

2.5 Exercises 39

or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.

The exact same approach leads to 

Now assume smooth materials:

We have recovered the LF flux!

Linear systems and fluxes -- an example

Consider Maxwell’s equations 

38 2 The key ideas

simply upwinding. Furthermore, for the general case, the above is equivalent
to defining an intermediate wave speed, a∗, as

a∗ =
2a−a+

a+ + a− ,

which is the harmonic average.

Let us also consider a slightly more complicated problem, originating in
electromagnetics.

Example 2.6. Consider the one-dimensional Maxwell’s equations
[

ε(x) 0
0 µ(x)

]
∂

∂t

[
E
H

]
+

[
0 1
1 0

]
∂

∂x

[
E
H

]
= 0. (2.21)

Here (E,H) = (E(x, t),H(x, t)) represent the electric and magnetic field,
respectively, while ε and µ are the electric and magnetic material properties,
known as permittivity and permeability, respectively.

To simplify the notation, let us write this as

Q∂q

∂t
+ A∂q

∂x
= 0,

where
Q =

[
ε(x) 0
0 µ(x)

]
, A =

[
0 1
1 0

]
, q =

[
E
H

]
,

reflect the spatially varying material coefficients, the one-dimensional rotation
operator, and the vector of state variables, respectively.

The flux is given as Aq and the eigenvalues of Q−1A are ±(εµ)−1/2, reflect-
ing the two counter-propagating light waves propagating at the local speed of
light, c = (εµ)−1/2.

Proceeding by using the Riemann conditions, we obtain

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0,

−c+Q+(q∗ − q+) + (Πq)∗ − (Πq)+ = 0,

where q∗ refers to the intermediate state, (Aq)∗ is the numerical flux, and

(Πq)± = n̂ · (Aq)± = n̂ ·
[

H±

E±

]
.

Simple manipulations yield

(c+Q++c−Q−)(Πq)∗ = c+Q+(Πq)−+c−Q−(Πq)++c−c+Q−Q+
(
q− − q+

)
,

2.5 Exercises 39

or

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1,

represents the impedance of the medium.
If we again consider the simplest case of a continuous medium, things

simplify considerably as

H∗ = {{H}} +
Y

2
[[E]], E∗ = {{E}} +

Z

2
[[H]],

which we recognize as the Lax-Friedrichs flux since

Y

ε
=

Z

µ
=

1
√

εµ
= c

is the speed of light (i.e., the fastest wave speed in the system).

2.5 Exercises

1. Consider the scalar problem

∂u

∂t
= ν

∂2u

∂x2
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

2. Consider the scalar problem

∂u

∂t
=

∂3u

∂x3
, x ∈ [−1, 1].

a) Use an energy method to determine how many boundary conditions
are needed and suggest different combinations.

b) Does the problem preserve energy in a periodic domain?

3. Show that for the linear scalar problem, the local Lax-Friedrichs, the
global Lax-Friedrichs, and the upwind flux are all the same.
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The exact same approach leads to 

Now assume smooth materials:

We have recovered the LF flux!
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3.6 Maxwell’s equations 67

Finally, we need a driver routine where the grid information is read in, the
global grid and the metric are assembled as discussed in Section 3.3, and the
initial conditions are set. An example of this is shown in AdvecDriver1D.m.
All results presented in Chapter 2 have been obtained using this simple code.

AdvecDriver1D.m

% Driver script for solving the 1D advection equations
Globals1D;

% Order of polymomials used for approximation
N = 8;

% Generate simple mesh
[Nv, VX, K, EToV] = MeshGen1D(0.0,2.0,10);

% Initialize solver and construct grid and metric
StartUp1D;

% Set initial conditions
u = sin(x);

% Solve Problem
FinalTime = 10;
[u] = Advec1D(u,FinalTime);

It is worth emphasizing that the above three routines, AdvecRHS1D.m,
Advec1D.m, and AdvecDriver1D.m, are all that is needed to solve the problem
at any order and using any grid. In fact, only AdvecRHS1D.m requires sub-
stantial changes to solve another problem as we will see next, where we discuss
the routines for a more complex problem. The grid information is generated
in MeshGen1D.m, which is described in Appendix B.

3.6 Maxwell’s equations

As a slightly more complicated problem, let us consider the one-dimensional
Maxwell’s equations

ε(x)
∂E

∂t
= −∂H

∂x
, µ(x)

∂H

∂t
= −∂E

∂x
, (3.6)

where (E,H) represent the electric and magnetic fields, respectively, and the
material parameters, ε(x) and µ(x), reflect the electric permittivity and mag-
netic permeability, respectively.

We solve these equations in a fixed domain x ∈ [−2, 2] with both ε(x) and
µ(x) changing discontinuously at x = 0. For simplicity, we assume that the
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materials are otherwise piecewise constant. Relaxing this would only require
minor modifications. Furthermore, we assume that E(−2, 0) = E(2, 0) = 0,
corresponding to a physical situation where the computational domain is
enclosed in a metallic cavity.

To develop the scheme, we take the usual path and seek an approximation
(E,H) " (Eh,Hh) being composed as the direct sum of K local polynomials
(Ek

h,Hk
h) on the form

[
Ek

h(x, t)
Hk

h(x, t)

]
=

Np∑

i=1

[
Ek

h(xk
i , t)

Hk
h(xk

i , t)

]
!k
i (x).

Introducing this into Eq. (3.6) and requiring Maxwell’s equations to be satis-
fied locally on the strong discontinuous Galerkin form yields the semidiscrete
scheme

dEk
h

dt
+

1
Jkεk

DrH
k
h =

1
Jkεk

M−1
[
!k(x)(Hk

h − H∗)
]xk

r

xk
l

=
1

Jkεk
M−1

∮ xk
r

xk
l

n̂ · (Hk
h − H∗)!k(x) dx,

dHk
h

dt
+

1
Jkµk

DrE
k
h =

1
Jkµk

M−1
[
!k(x)(Ek

h − E∗)
]xk

r

xk
l

=
1

Jkεk
M−1

∮ xk
r

xk
l

n̂ · (Ek
h − E∗)!k(x) dx.

As the fluxes, we will use those derived in Example 2.6 on the form

H∗ =
1

{{Z}}

(
{{ZH}} +

1
2
[[E]]

)
, E∗ =

1
{{Y }}

(
{{Y E}} +

1
2
[[H]]

)
,

where

Z± =

√
µ±

ε±
= (Y ±)−1.

This yields the terms

H− − H∗ =
1

2{{Z}}
(
Z+[[H]] − [[E]]

)
,

E− − E∗ =
1

2{{Y }}
(
Y +[[E]] − [[H]]

)
,

as the penalty terms entering on the right-hand side of the semidiscrete
scheme. This is all implemented in MaxwellRHS1D.m.
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MaxwellRHS1D.m

function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)

% function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)
% Purpose : Evaluate RHS flux in 1D Maxwell

Globals1D;

% Compute impedance
Zimp = sqrt(mu./eps);

% Define field differences at faces
dE = zeros(Nfp*Nfaces,K); dE(:) = E(vmapM)-E(vmapP);
dH = zeros(Nfp*Nfaces,K); dH(:) = H(vmapM)-H(vmapP);
Zimpm = zeros(Nfp*Nfaces,K); Zimpm(:) = Zimp(vmapM);
Zimpp = zeros(Nfp*Nfaces,K); Zimpp(:) = Zimp(vmapP);
Yimpm = zeros(Nfp*Nfaces,K); Yimpm(:) = 1./Zimpm(:);
Yimpp = zeros(Nfp*Nfaces,K); Yimpp(:) = 1./Zimpp(:);

% Homogeneous boundary conditions, Ez=0
Ebc = -E(vmapB); dE (mapB) = E(vmapB) - Ebc;
Hbc = H(vmapB); dH (mapB) = H(vmapB) - Hbc;

% evaluate upwind fluxes
fluxE = 1./(Zimpm + Zimpp).*(nx.*Zimpp.*dH - dE);
fluxH = 1./(Yimpm + Yimpp).*(nx.*Yimpp.*dE - dH);

% compute right hand sides of the PDE’s
rhsE = (-rx.*(Dr*H) + LIFT*(Fscale.*fluxE))./eps;
rhsH = (-rx.*(Dr*E) + LIFT*(Fscale.*fluxH))./mu;
return

The temporal integration is done using Maxwell1D.m which is essentially
unchanged from Advec1D.m in the previous section. The only change is that
we are now integrating a system and, thus, need to integrate all components
of the system at each stage.

Maxwell1D.m

function [E,H] = Maxwell1D(E,H,eps,mu,FinalTime);

% function [E,H] = Maxwell1D(E,H,eps,mu,FinalTime)
% Purpose : Integrate 1D Maxwell’s until FinalTime starting with
% conditions (E(t=0),H(t=0)) and materials (eps,mu).

Globals1D;
time = 0;

% Runge-Kutta residual storage

Impedance

Compute field jumps

Boundary conditions

Complete fluxes

Complete computation

Compute interface
impedance
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resE = zeros(Np,K); resH = zeros(Np,K);

% compute time step size
xmin = min(abs(x(1,:)-x(2,:)));
CFL=1.0; dt = CFL*xmin;
Nsteps = ceil(FinalTime/dt); dt = FinalTime/Nsteps;

% outer time step loop
for tstep=1:Nsteps

for INTRK = 1:5
[rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu);

resE = rk4a(INTRK)*resE + dt*rhsE;
resH = rk4a(INTRK)*resH + dt*rhsH;

E = E+rk4b(INTRK)*resE;
H = H+rk4b(INTRK)*resH;

end
% Increment time
time = time+dt;

end
return

In the final routine, MaxwellDriver1D.m, the only significant difference from
AdvecDriver1D.m is the need to also specify the spatial distribution of ε and
µ. In this particular case, we have assumed that these are constant in each el-
ement but can jump between elements. Furthermore, we assume here that the
jump is between the two middle elements. Clearly, this specification is problem
dependent and can be changed as needed. Also, if ε and/or µ vary smoothly
within the elements, this can be specified here with no further changes else-
where.

MaxwellDriver1D.m

% Driver script for solving the 1D Maxwell’s equations
Globals1D;

% Polynomial order used for approximation
N = 6;

% Generate simple mesh
[Nv, VX, K, EToV] = MeshGen1D(-2.0,2.0,80);

% Initialize solver and construct grid and metric
StartUp1D;

% Set up material parameters
eps1 = [ones(1,K/2), 2*ones(1,K/2)];
mu1 = ones(1,K);
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Fig. 3.6. We show the global L2-error as a function of order of approximation, N ,
and number of elements, K ∝ h−1, for the computed E-field solution to Maxwell’s
equations in a metallic cavity with a material interface located at x = 0. On the left,
the grid is conforming to the geometry; that is, there is an element boundary located
at x = 0. On the right, this is violated and the material interface is located in the
middle of an element. The loss of optimal convergence highlights the importance of
using a body-conforming discretization.

Also shown in Fig. 3.6 are the results for the case where K is odd, implying
that x = 0 falls in the middle of an element. This shows a dramatic reduction
in the accuracy of the scheme, which now is second order accurate. We also
observe that, for N even, the order is further reduced to first order. This can
be attributed to the fact that for N even, there is a grid point exactly at
x = 0, whereas for N odd, x = 0 falls between two grid points. For N being
even, one can redefine the material constant at x = 0 to be the average in
order to improve the convergence rate. A closer inspection of the result in Fig.
3.6 for N = 3 indicates a less than second order convergence and a detailed
analysis reveals that the asymptotic rate should be O(h3/2) [234].

This latter example emphasizes the importance of using a geometry-
conforming grid in which the elements align with features where the solution
loses smoothness in order to maintain the global high-order accuracy. How-
ever, even if this is not possible, the results in Fig. 3.6 also show that although
the rate of convergence is reduced, the absolute error is lower for high-order
approximations; that is, the constant in front of the error term decreases with
increasing order.

3.7 Exercises

1. Modify the solver for the scalar advection equation in Section 3.5 to solve

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ [0, 2π],
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At this point we have a good understanding of
stability for linear problems -- through the flux.

Lets now look at accuracy in more detail.

Recall

we assume the local solution to be 
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where u can be both a scalar and a vector. In a similar fashion we also define the jumps along a
normal, n̂, as

[[u]] = n̂−u− + n̂+u+, [[u]] = n̂− · u− + n̂+ · u+.

Note that it is defined differently depending on whether u is a scalar or a vector, u.

2.2 Basic elements of the schemes

In the following, we introduce the key ideas behind the family of discontinuous element methods
that are the main topic of this text. Before getting into generalizations and abstract ideas, let us
develop a basic understanding of the schemes through a simple example.

2.2.1 The first schemes

Consider the linear scalar wave equation

∂u

∂t
+

∂f(u)
∂x

= 0, x ∈ [L,R] = Ω, (2.1)

where the linear flux is given as f(u) = au. This is subject to the appropriate initial conditions

u(x, 0) = u0(x).

Boundary conditions are given when the boundary is an inflow boundary, that is

u(L, t) = g(t) if a ≥ 0,
u(R, t) = g(t) if a ≤ 0.

We approximate Ω by K nonoverlapping elements, x ∈ [xk
l , xk

r ] = Dk, as illustrated in Fig. 2.1. On
each of these elements we express the local solution as a polynomial of order N

x ∈ Dk : uk
h(x, t) =

Np�

n=1

ûk
n(t)ψn(x) =

Np�

i=1

uk
h(xk

i , t)�k
i (x).

Here, we have introduced two complementary expressions for the local solution. In the first one,
known as the modal form, we use a local polynomial basis, ψn(x). A simple example of this could
be ψn(x) = xn−1. In the alternative form, known as the nodal representation, we introduce Np =
N + 1 local grid points, xk

i ∈ Dk, and express the polynomial through the associated interpolating
Lagrange polynomial, �k

i (x). The connection between these two forms is through the definition of
the expansion coefficients, ûk

n. We return to a discussion of these choices in much more detail later;
for now it suffices to assume that we have chosen one of these representations.

The global solution u(x, t) is then assumed to be approximated by the piecewise N -th order
polynomial approximation uh(x, t),

u(x, t) � uh(x, t) =
K�

k=1

uk
h(x, t),

2

The key ideas

2.1 Briefly on notation

While we initially strive to stay away from complex notation a few funda-
mentals are needed. We consider problems posed on the physical domain Ω
with boundary ∂Ω and assume that this domain is well approximated by
the computational domain Ωh. This is a space filling triangulation composed
of a collection of K geometry-conforming nonoverlapping elements, Dk. The
shape of these elements can be arbitrary although we will mostly consider
cases where they are d-dimensional simplexes.

We define the local inner product and L2(Dk) norm

(u, v)Dk =
∫

Dk
uv dx, ‖u‖2

Dk = (u, u)Dk ,

as well as the global broken inner product and norm

(u, v)Ω,h =
K∑

k=1

(u, v)Dk , ‖u‖2
Ω,h = (u, u)Ω,h .

Here, (Ω, h) reflects that Ω is only approximated by the union of Dk, that is

Ω " Ωh =
K⋃

k=1

Dk,

although we will not distinguish the two domains unless needed.
Generally, one has local information as well as information from the neigh-

boring element along an intersection between two elements. Often we will refer
to the union of these intersections in an element as the trace of the element.
For the methods we discuss here, we will have two or more solutions or bound-
ary conditions at the same physical location along the trace of the element.

Recall

we assume the local solution to be 
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As simple as the formulations in the last chapter appear, there is often a
leap between mathematical formulations and an actual implementation of the
algorithms. This is particularly true when one considers important issues such
as efficiency, flexibility, and robustness of the resulting methods.

In this chapter we address these issues by first discussing details such as
the form of the local basis and, subsequently, how one implements the nodal
DG-FEMs in a flexible way. To keep things simple, we continue the emphasis
on one-dimensional linear problems, although this results in a few apparently
unnecessarily complex constructions. We ask the reader to bear with us, as
this slightly more general approach will pay off when we begin to consider
more complex nonlinear and/or higher-dimensional problems.

3.1 Legendre polynomials and nodal elements

In Chapter 2 we started out by assuming that one can represent the global
solution as a the direct sum of local piecewise polynomial solution as

u(x, t) ! uh(x, t) =
K⊕

k=1

uk
h(xk, t).

The careful reader will note that this notation is a bit careless, as we do not
address what exactly happens at the overlapping interfaces. However, a more
careful definition does not add anything essential at this point and we will use
this notation to reflect that the global solution is obtained by combining the
K local solutions as defined by the scheme.

The local solutions are assumed to be of the form

x ∈ Dk = [xk
l , xk

r ] : uk
h(x, t) =

Np∑

n=1

ûk
n(t)ψn(x) =

Np∑

i=1

uk
h(xk

i , t)"k
i (x).
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(u, v)Ω,h =
K∑

k=1

(u, v)Dk , ‖u‖2
Ω,h = (u, u)Ω,h .

Here, (Ω, h) reflects that Ω is only approximated by the union of Dk, that is

Ω " Ωh =
K⋃

k=1

Dk,

although we will not distinguish the two domains unless needed.
Generally, one has local information as well as information from the neigh-

boring element along an intersection between two elements. Often we will refer
to the union of these intersections in an element as the trace of the element.
For the methods we discuss here, we will have two or more solutions or bound-
ary conditions at the same physical location along the trace of the element.

Recall

we assume the local solution to be 
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As simple as the formulations in the last chapter appear, there is often a
leap between mathematical formulations and an actual implementation of the
algorithms. This is particularly true when one considers important issues such
as efficiency, flexibility, and robustness of the resulting methods.

In this chapter we address these issues by first discussing details such as
the form of the local basis and, subsequently, how one implements the nodal
DG-FEMs in a flexible way. To keep things simple, we continue the emphasis
on one-dimensional linear problems, although this results in a few apparently
unnecessarily complex constructions. We ask the reader to bear with us, as
this slightly more general approach will pay off when we begin to consider
more complex nonlinear and/or higher-dimensional problems.

3.1 Legendre polynomials and nodal elements

In Chapter 2 we started out by assuming that one can represent the global
solution as a the direct sum of local piecewise polynomial solution as

u(x, t) ! uh(x, t) =
K⊕

k=1

uk
h(xk, t).

The careful reader will note that this notation is a bit careless, as we do not
address what exactly happens at the overlapping interfaces. However, a more
careful definition does not add anything essential at this point and we will use
this notation to reflect that the global solution is obtained by combining the
K local solutions as defined by the scheme.

The local solutions are assumed to be of the form

x ∈ Dk = [xk
l , xk

r ] : uk
h(x, t) =

Np∑

n=1

ûk
n(t)ψn(x) =

Np∑

i=1

uk
h(xk

i , t)"k
i (x).

modal basis nodal basis
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We did not, however, discuss the specifics of this representation, as this is less
important from a theoretical point of view. The results in Example 2.4 clearly
illustrate, however, that the accuracy of the method is closely linked to the
order of the local polynomial representation and some care is warranted when
choosing this.

Let us begin by introducing the affine mapping

x ∈ Dk : x(r) = xk
l +

1 + r

2
hk, hk = xk

r − xk
l , (3.1)

with the reference variable r ∈ I = [−1, 1]. We consider local polynomial
representations of the form

x ∈ Dk : uk
h(x(r), t) =

Np∑

n=1

ûk
n(t)ψn(r) =

Np∑

i=1

uk
h(xk

i , t)"k
i (r).

Let us first discuss the local modal expansion,

uh(r) =
Np∑

n=1

ûnψn(r).

where we have dropped the superscripts for element k and the explicit time
dependence, t, for clarity of notation.

As a first choice, one could consider ψn(r) = rn−1 (i.e., the simple mono-
mial basis). This leaves only the question of how to recover ûn. A natural way
is by an L2-projection; that is by requiring that

(u(r),ψm(r))I =
Np∑

n=1

ûn (ψn(r),ψm(r))I ,

for each of the Np basis functions ψn. We have introduced the inner product
on the interval I as

(u, v)I =
∫ 1

−1
uv dx.

This yields
Mû = u,

where
Mij = (ψi,ψj)I , û = [û1, . . . , ûNp ]T , ui = (u,ψi)I ,

leading to Np equations for the Np unknown expansion coefficients, ûi. How-
ever, note that

Mij =
1

i + j − 1
[
1 + (−1)i+j

]
, (3.2)

which resembles a Hilbert matrix, known to be very poorly conditioned. If we
compute the condition number, κ(M), for M for increasing order of approx-
imation, N , we observe in Table 3.1 the very rapidly deteriorating condition-
ing of M. The reason for this is evident in Eq. (3.2), where the coefficient

r ∈ [−1, 1]

We have already introduced the Legendre polynomials

Lets summarize this

So we have the local approximations
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Fig. 3.3. On the left is shown the location of the left half of the Jacobi-Gauss-
Lobatto nodes for N = 16 as a function of α, the type of the polynomial. Note that
α = 0 corresponds to the LGL nodes. On the right is shown the behavior of the
Vandermonde determinant as a function of α for different values of N , confirming
the optimality of the LGL nodes but also showing robustness of the interpolation
to this choice.

decay in the value of the determinant, indicating possible problems in the
interpolation. Considering the corresponding nodal distribution in Fig. 3.3
for these values of α, this is perhaps not surprising.

This highlights that it is the overall structure of the nodes rather than
the details of the individual node position that is important; for example, one
could optimize these nodal sets for various applications.

To summarize matters, we have local approximations of the form

u(r) ! uh(r) =
Np∑

n=1

ûnP̃n−1(r) =
Np∑

i=1

u(ri)"i(r), (3.3)

where ξi = ri are the Legendre-Gauss-Lobatto quadrature points. A central
component of this construction is the Vandermonde matrix, V, which estab-
lishes the connections

u = Vû, VT !(r) = P̃ (r), Vij = P̃j(ri).

By carefully choosing the orthonormal Legendre basis, P̃n(r), and the nodal
points, ri, we have ensured that V is a well-conditioned object and that the
resulting interpolation is well behaved. A script for initializing V is given in
Vandermonde1D.m.
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and     are the Legendre Gauss Lobatto points: ri
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Here,

!i(r) =
Np∏

j=1
j !=i

r − ξj

ξi − ξj
,

is the interpolating Lagrange polynomial with the property !i(rj) = δij . It is
well known that !i(r) exists and is unique as long as the ξi’s are distinct.

If we define the Lebesque constant

Λ = max
r

Np∑

i=1

|!i(r)|,

we realize that

‖u−uh‖∞ = ‖u−u∗+u∗−uh‖∞ ≤ ‖u−u∗‖∞+‖u∗−uh‖∞ ≤ (1+Λ)‖u−u∗‖∞,

where ‖ ·‖ ∞ is the usual maximum norm and u∗ represents the best approx-
imating polynomial of order N . Hence, the Lebesque constant indicates how
far away the interpolation may be from the best possible polynomial repre-
sentation u∗. Note that Λ is determined solely by the grid points, ξi. To get
an optimal approximation, we should therefore aim to identify those points,
ξi, that minimize the Lebesque constant.

To appreciate how this relates to the conditioning of V, recognize that as
a consequence of uniqueness of the polynomial interpolation, we have

VT !(r) = P̃ (r),

where ! = [!1(r), . . . , !Np(r)]T and P̃ (r) = [P̃0(r), . . . , P̃N (r)]T . We are inter-
ested in the particular solution, !, which minimizes the Lebesque constant. If
we recall Cramer’s rule for solving linear systems of equations

!i(r) =
Det[VT (:, 1),VT (:, 2), . . . , P̃ (r),VT (:, i + 1), . . . ,VT (:, Np)]

Det(VT )
.

It suggests that it is reasonable to seek ξi such that the denominator (i.e., the
determinant of V), is maximized.

For this one dimensional case, the solution to this problem is known in a
relatively simple form as the Np zeros of [151, 159]

f(r) = (1 − r2)P̃ ′
N (r).

These are closely related to the normalized Legendre polynomials and are
known as the Legendre-Gauss-Lobatto (LGL) quadrature points. Using the
library routine JacobiGL.m in Appendix A, these nodes can be computed as

>> [r] = JacobiGL(0,0,N);

zeros of 

This leads to a robust way of computing/evaluating 
a high-order polynomial approximation. 

but is it accurate ?

Lets summarize this

So we have the local approximations
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u = Vû, VT !(r) = P̃ (r), Vij = P̃j(ri).

By carefully choosing the orthonormal Legendre basis, P̃n(r), and the nodal
points, ri, we have ensured that V is a well-conditioned object and that the
resulting interpolation is well behaved. A script for initializing V is given in
Vandermonde1D.m.

and     are the Legendre Gauss Lobatto points: ri

3.1 Legendre polynomials and nodal elements 47

Here,

!i(r) =
Np∏

j=1
j !=i

r − ξj

ξi − ξj
,

is the interpolating Lagrange polynomial with the property !i(rj) = δij . It is
well known that !i(r) exists and is unique as long as the ξi’s are distinct.

If we define the Lebesque constant

Λ = max
r

Np∑

i=1

|!i(r)|,

we realize that

‖u−uh‖∞ = ‖u−u∗+u∗−uh‖∞ ≤ ‖u−u∗‖∞+‖u∗−uh‖∞ ≤ (1+Λ)‖u−u∗‖∞,

where ‖ ·‖ ∞ is the usual maximum norm and u∗ represents the best approx-
imating polynomial of order N . Hence, the Lebesque constant indicates how
far away the interpolation may be from the best possible polynomial repre-
sentation u∗. Note that Λ is determined solely by the grid points, ξi. To get
an optimal approximation, we should therefore aim to identify those points,
ξi, that minimize the Lebesque constant.

To appreciate how this relates to the conditioning of V, recognize that as
a consequence of uniqueness of the polynomial interpolation, we have

VT !(r) = P̃ (r),

where ! = [!1(r), . . . , !Np(r)]T and P̃ (r) = [P̃0(r), . . . , P̃N (r)]T . We are inter-
ested in the particular solution, !, which minimizes the Lebesque constant. If
we recall Cramer’s rule for solving linear systems of equations

!i(r) =
Det[VT (:, 1),VT (:, 2), . . . , P̃ (r),VT (:, i + 1), . . . ,VT (:, Np)]

Det(VT )
.

It suggests that it is reasonable to seek ξi such that the denominator (i.e., the
determinant of V), is maximized.

For this one dimensional case, the solution to this problem is known in a
relatively simple form as the Np zeros of [151, 159]

f(r) = (1 − r2)P̃ ′
N (r).

These are closely related to the normalized Legendre polynomials and are
known as the Legendre-Gauss-Lobatto (LGL) quadrature points. Using the
library routine JacobiGL.m in Appendix A, these nodes can be computed as

>> [r] = JacobiGL(0,0,N);

zeros of 

This leads to a robust way of computing/evaluating 
a high-order polynomial approximation. 

but is it accurate ?

It is robust -- but is it accurate ?
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4

Insight through theory

While the last chapters have focused on basic ideas and their implementa-
tion as a computational method, further insight into the performance of the
method can be gained by revisiting some issues in more detail. To keep things
relatively simple, we focus on the properties of the scheme for one-dimensional
linear problems. However, as we will see later, many of the results obtained
here carry over to multidimensional problems and even nonlinear problems
with just a few modifications.

4.1 A bit more notation

Before we embark on a more rigorous discussion, we need to introduce some
additional notation. In particular, both global norms, defined on Ω, and bro-
ken norms, defined over Ωh as sums of K elements Dk, need to be introduced.

For the solution, u(x, t), we define the global L2-norm over the domain
Ω ∈ Rd as

‖u‖2
Ω =

∫

Ω
u2 dx

as well as the broken norms

‖u‖2
Ω,h =

K∑

k=1

‖u‖2
Dk , ‖u‖2

Dk =
∫

Dk
u2 dx.

In a similar way, we define the associated Sobolev norms

‖u‖2
Ω,q =

q∑

|α|=0

‖u(α)‖2
Ω , ‖u‖2

Ω,q,h =
K∑

k=1

‖u‖2
Dk

,q
, ‖u‖2

Dk
,q

=
q∑

|α|=0

‖u(α)‖2
Dk ,

where α is a multi-index of length d. For the one-dimensional case, most
often considered in this chapter, this norm is simply the L2-norm of the q-th
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derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation
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derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

A second look at approximation
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The key ideas

2.1 Briefly on notation

While we initially strive to stay away from complex notation a few funda-
mentals are needed. We consider problems posed on the physical domain Ω
with boundary ∂Ω and assume that this domain is well approximated by
the computational domain Ωh. This is a space filling triangulation composed
of a collection of K geometry-conforming nonoverlapping elements, Dk. The
shape of these elements can be arbitrary although we will mostly consider
cases where they are d-dimensional simplexes.

We define the local inner product and L2(Dk) norm

(u, v)Dk =
∫

Dk
uv dx, ‖u‖2

Dk = (u, u)Dk ,

as well as the global broken inner product and norm

(u, v)Ω,h =
K∑

k=1

(u, v)Dk , ‖u‖2
Ω,h = (u, u)Ω,h .

Here, (Ω, h) reflects that Ω is only approximated by the union of Dk, that is

Ω " Ωh =
K⋃

k=1

Dk,

although we will not distinguish the two domains unless needed.
Generally, one has local information as well as information from the neigh-

boring element along an intersection between two elements. Often we will refer
to the union of these intersections in an element as the trace of the element.
For the methods we discuss here, we will have two or more solutions or bound-
ary conditions at the same physical location along the trace of the element.

Recall

we assume the local solution to be 

3

Making it work in one dimension

As simple as the formulations in the last chapter appear, there is often a
leap between mathematical formulations and an actual implementation of the
algorithms. This is particularly true when one considers important issues such
as efficiency, flexibility, and robustness of the resulting methods.

In this chapter we address these issues by first discussing details such as
the form of the local basis and, subsequently, how one implements the nodal
DG-FEMs in a flexible way. To keep things simple, we continue the emphasis
on one-dimensional linear problems, although this results in a few apparently
unnecessarily complex constructions. We ask the reader to bear with us, as
this slightly more general approach will pay off when we begin to consider
more complex nonlinear and/or higher-dimensional problems.

3.1 Legendre polynomials and nodal elements

In Chapter 2 we started out by assuming that one can represent the global
solution as a the direct sum of local piecewise polynomial solution as

u(x, t) ! uh(x, t) =
K⊕

k=1

uk
h(xk, t).

The careful reader will note that this notation is a bit careless, as we do not
address what exactly happens at the overlapping interfaces. However, a more
careful definition does not add anything essential at this point and we will use
this notation to reflect that the global solution is obtained by combining the
K local solutions as defined by the scheme.

The local solutions are assumed to be of the form

x ∈ Dk = [xk
l , xk

r ] : uk
h(x, t) =

Np∑

n=1

ûk
n(t)ψn(x) =

Np∑

i=1

uk
h(xk

i , t)"k
i (x).

The question is in what sense is 

We have observed improved accuracy in two ways
‣ Increase K/decrease h
‣ Increase N
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where u can be both a scalar and a vector. In a similar fashion we also define the jumps along a
normal, n̂, as

[[u]] = n̂−u− + n̂+u+, [[u]] = n̂− · u− + n̂+ · u+.

Note that it is defined differently depending on whether u is a scalar or a vector, u.

2.2 Basic elements of the schemes

In the following, we introduce the key ideas behind the family of discontinuous element methods
that are the main topic of this text. Before getting into generalizations and abstract ideas, let us
develop a basic understanding of the schemes through a simple example.

2.2.1 The first schemes

Consider the linear scalar wave equation

∂u

∂t
+

∂f(u)
∂x

= 0, x ∈ [L,R] = Ω, (2.1)

where the linear flux is given as f(u) = au. This is subject to the appropriate initial conditions

u(x, 0) = u0(x).

Boundary conditions are given when the boundary is an inflow boundary, that is

u(L, t) = g(t) if a ≥ 0,
u(R, t) = g(t) if a ≤ 0.

We approximate Ω by K nonoverlapping elements, x ∈ [xk
l , xk

r ] = Dk, as illustrated in Fig. 2.1. On
each of these elements we express the local solution as a polynomial of order N

x ∈ Dk : uk
h(x, t) =

Np�

n=1

ûk
n(t)ψn(x) =

Np�

i=1

uk
h(xk

i , t)�k
i (x).

Here, we have introduced two complementary expressions for the local solution. In the first one,
known as the modal form, we use a local polynomial basis, ψn(x). A simple example of this could
be ψn(x) = xn−1. In the alternative form, known as the nodal representation, we introduce Np =
N + 1 local grid points, xk

i ∈ Dk, and express the polynomial through the associated interpolating
Lagrange polynomial, �k

i (x). The connection between these two forms is through the definition of
the expansion coefficients, ûk

n. We return to a discussion of these choices in much more detail later;
for now it suffices to assume that we have chosen one of these representations.

The global solution u(x, t) is then assumed to be approximated by the piecewise N -th order
polynomial approximation uh(x, t),

u(x, t) � uh(x, t) =
K�

k=1

uk
h(x, t),
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2.2.1 The first schemes
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∂u

∂t
+

∂f(u)
∂x

= 0, x ∈ [L,R] = Ω, (2.1)

where the linear flux is given as f(u) = au. This is subject to the appropriate initial conditions

u(x, 0) = u0(x).

Boundary conditions are given when the boundary is an inflow boundary, that is

u(L, t) = g(t) if a ≥ 0,
u(R, t) = g(t) if a ≤ 0.

We approximate Ω by K nonoverlapping elements, x ∈ [xk
l , xk

r ] = Dk, as illustrated in Fig. 2.1. On
each of these elements we express the local solution as a polynomial of order N

x ∈ Dk : uk
h(x, t) =

Np�

n=1

ûk
n(t)ψn(x) =

Np�

i=1

uk
h(xk

i , t)�k
i (x).

Here, we have introduced two complementary expressions for the local solution. In the first one,
known as the modal form, we use a local polynomial basis, ψn(x). A simple example of this could
be ψn(x) = xn−1. In the alternative form, known as the nodal representation, we introduce Np =
N + 1 local grid points, xk

i ∈ Dk, and express the polynomial through the associated interpolating
Lagrange polynomial, �k

i (x). The connection between these two forms is through the definition of
the expansion coefficients, ûk

n. We return to a discussion of these choices in much more detail later;
for now it suffices to assume that we have chosen one of these representations.

The global solution u(x, t) is then assumed to be approximated by the piecewise N -th order
polynomial approximation uh(x, t),

u(x, t) � uh(x, t) =
K�

k=1

uk
h(x, t),

We have observed improved accuracy in two ways
• Increase K/decrease h
• Increase N
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how well and in what sense can we expect uh to approximate u?
As observed experimentally, we have two ways to improve the quality

of uh as an approximation of u: One can keep the order, N , of the local
approximation fixed and increase the number of elements, K, known as h-
refinement. Alternatively, one can keep K fixed and increase N , known as
order or p-refinement. While both lead to a better approximation, they achieve
this in different ways and it is important to understand when to use which
path to achieve convergence.

Let us first estimate what can be expected under order refinement. For
simplicity, we assume that all elements have length h (i.e., Dk = xk + r

2h
where xk = 1

2 (xk
r +xk

l ) represents the cell center and r ∈ [−1, 1] is the reference
coordinate).

We begin by considering the standard interval and introduce the new vari-
able

v(r) = u(hr) = u(x);

that is, v is defined on the standard interval, I = [−1, 1], and xk = 0, x ∈
[−h, h]. We discussed in Chapter 3 the advantage of using a local orthonormal
basis – in this case, the normalized Legendre polynomials

P̃n(r) =
Pn(r)
√

γn
, γn =

2
2n + 1

.

Here, Pn(r) are the classic Legendre polynomials of order n. A key property
of these polynomials is that they satisfy a singular Sturm-Liouville problem

d

dr
(1 − r2)

d

dr
P̃n + n(n + 1)P̃n = 0. (4.2)

Let us consider the basic question of how well

vh(r) =
N∑

n=0

v̂nP̃n(r),

represents v ∈ L2(I). Note, that for simplicity of the notation and to conform
with standard notation, we now have the sum running from 0 to N rather
than from 1 to N + 1 = Np, as used previously.

Prior to discussing interpolation, used throughout this text, we consider
the properties of the projection where we utilize the orthonomality of P̃n(r)
to find ṽn as

ṽn =
∫

I
v(r)P̃n(r) dr.

We consider expansions as
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ûk
nψn(x) =

Np∑

i=1

uk
h(xi)"k

i (x),

how well and in what sense can we expect uh to approximate u?
As observed experimentally, we have two ways to improve the quality

of uh as an approximation of u: One can keep the order, N , of the local
approximation fixed and increase the number of elements, K, known as h-
refinement. Alternatively, one can keep K fixed and increase N , known as
order or p-refinement. While both lead to a better approximation, they achieve
this in different ways and it is important to understand when to use which
path to achieve convergence.

Let us first estimate what can be expected under order refinement. For
simplicity, we assume that all elements have length h (i.e., Dk = xk + r

2h
where xk = 1

2 (xk
r +xk

l ) represents the cell center and r ∈ [−1, 1] is the reference
coordinate).

We begin by considering the standard interval and introduce the new vari-
able

v(r) = u(hr) = u(x);

that is, v is defined on the standard interval, I = [−1, 1], and xk = 0, x ∈
[−h, h]. We discussed in Chapter 3 the advantage of using a local orthonormal
basis – in this case, the normalized Legendre polynomials

P̃n(r) =
Pn(r)
√

γn
, γn =

2
2n + 1

.

Here, Pn(r) are the classic Legendre polynomials of order n. A key property
of these polynomials is that they satisfy a singular Sturm-Liouville problem

d

dr
(1 − r2)

d

dr
P̃n + n(n + 1)P̃n = 0. (4.2)

Let us consider the basic question of how well

vh(r) =
N∑

n=0

v̂nP̃n(r),

represents v ∈ L2(I). Note, that for simplicity of the notation and to conform
with standard notation, we now have the sum running from 0 to N rather
than from 1 to N + 1 = Np, as used previously.

Prior to discussing interpolation, used throughout this text, we consider
the properties of the projection where we utilize the orthonomality of P̃n(r)
to find ṽn as
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Local approximation in 1D - modes
Interpolating normalized Legendre polynomials ψn(r) = P̃n−1(r).
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4.3 Approximations by orthogonal polynomials and consistency 79

An immediate consequence of the orthonormality of the basis is that

‖v − vh‖2
I =

∞∑

n=N+1

|ṽn|2,

recognized as Parseval’s identity. A basic result for this approximation error
follows directly.

Theorem 4.1. Assume that v ∈ Hp(I) and that vh represents a polynomial
projection of order N . Then

‖v − vh‖I,q ≤ Nρ−p|v|I,p,

where
ρ =

{
3
2q, 0 ≤ q ≤ 1
2q − 1

2 , q ≥ 1

and 0 ≤ q ≤ p.

Proof. We will just sketch the proof; the details can be found in [43]. Com-
bining the definition of ṽn and Eq. (4.2), we recover

|ṽn| ≤
(

1
n(n + 1)

)p ∫

I
v(2p)(r)P̃n(r) dr,

by integration by parts 2p times. Combining this with Parseval’s identity
yields the required estimate in L2:

‖v − vh‖I,0 ≤ N−p|v|I,p,

for v ∈ Hp(I), p ≥ 0.
An intuitive understanding of the bound in the higher norms can be ob-

tained by recalling the classic inverse inequality [43, 296]
∥∥∥∥∥

dP̃n(r)
dr

∥∥∥∥∥
I,0

≤ n2
∥∥∥P̃n(r)

∥∥∥
I,0

;

that is, one should generally expect to lose two orders of convergence for
each derivative, as reflected in the theorem. The more delicate estimate in
the theorem relies on careful estimates of the behavior of the polynomials and
properties of Sobolev spaces. We will not repeat the arguments here but refer
to [43] for the details. !

Note in particular that a consequence of this result is that if the local
solution is smooth (i.e., v ∈ Hp(I) for p large), convergence is very fast and
exponential for an analytic function [297]. Thus, we recover the trademark of
a classic spectral method [159] where the error decays exponentially fast with
increasing N .

We will need a slightly refined estimate to get an improved insight into
the convergence. For this, we need the following lemma [280].

We consider expansions as
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Lemma 4.2. Assume that for v ∈ Hp(I), p ≥ 0,

v(r) =
N∑

n=0

ṽnP̃n(r).

Then ∫ 1

−1
|v(q)|2(1 − r2)qdr =

∑

n≥q

|ṽn|2
(n + q)!
(n − q)!

≤ |v|2I,q,

for 0 ≤ q ≤ p.

The proof relies on properties of the orthogonal polynomials and the details
can be found in [280]. With this one can establish the result:

Lemma 4.3. If v ∈ Hp(I), p ≥ 1, then

‖v − vh‖I,0 ≤
[
(N + 1 − σ)!
(N + 1 + σ)!

]1/2

|v|I,σ,

where σ = min(N + 1, p).

Proof. Through Parseval’s identity we have

‖v − vh‖2
I,0 =

∞∑

n=N+1

|ṽn|2 =
∞∑

n=N+1

|ṽn|2
(n − σ)!
(n + σ)!

(n + σ)!
(n − σ)!

.

Provided σ ≤ N + 1, we have

‖v − vh‖2
I,0 ≤ (N + 1 − σ)!

(N + 1 + σ)!

∞∑

n=N+1

|ṽn|2
(n + σ)!
(n − σ)!

,

which, combined with Lemma 4.2 and σ = min(N + 1, p), gives the result. !

A generalization of this is the following result.

Lemma 4.4. If v ∈ Hp(I), p ≥ 1 then
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|ṽn|2 =
∞∑

n=N+1
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4.3 Approximations by orthogonal polynomials and consistency 81

The above estimates are all related to projections. However, as we dis-
cussed in Chapter 3, we are often concerned with the interpolations of v
where

v = Vv̂,

is based on N + 1 points. The difference may be minor, but it is essential to
appreciate it. Consider

vh(r) =
N∑

n=0

v̂nP̃n(r), ṽh(r) =
N∑

n=0

ṽnP̃n(r),

where vh(x) is the usual approximation based on interpolation and ṽh(r) refers
to the approximation based on projection.

By the interpolation property we have

(Vv̂)i = vh(ri) =
∞∑

n=0

ṽnP̃n(ri) =
N∑

n=0

ṽnP̃n(ri) +
∞∑

n=N+1

ṽnP̃n(ri),

from which we recover

Vv̂ = Vṽ +
∞∑

n=N+1

ṽnP̃n(r), r = (r0, . . . , rN )T .

This implies

vh(r) = ṽh(r) + P̃
T
(r)V−1

∞∑

n=N+1

ṽnP̃n(r).

Now, consider the additional term on the right-hand side,

P̃
T
(r)V−1

∞∑

n=N+1

ṽnP̃n(r) =
∞∑

n=N+1

ṽn

(
P̃

T
(r)V−1P̃n(r)

)
,

which is allowed provided v ∈ Hp(I), p > 1/2 [280]. Since

P̃
T
(r)V−1P̃n(r) =

N∑

l=0

p̃lP̃l(r), Vp̃ = P̃n(r),

we can interpret the additional term as those high-order modes (recall n > N)
that look like lower order modes on the grid. It is exactly this phenomenon
that is known as aliasing and which is the fundamental difference between an
interpolation and a projection.

The final statement, the proof of which is technical and given in [27], yields
the following
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N∑

n=0
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N∑

n=0
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∞∑

n=N+1
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ṽnP̃n(r),

where vh(x) is the usual approximation based on interpolation and ṽh(r) refers
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vh(r) = ṽh(r) + P̃
T
(r)V−1

∞∑

n=N+1
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ṽnP̃n(ri),

from which we recover

Vv̂ = Vṽ +
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vh(r) = ṽh(r) + P̃
T
(r)V−1

∞∑

n=N+1
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ṽnP̃n(r) =
∞∑

n=N+1

ṽn
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Figure 2.7 Illustration of aliasing. The three waves, n = 6, n = −2 and n = −10
are all interpreted as a n = −2 wave on an 8-point grid. Consequently, the n = −2
appears as more energetic after the discrete Fourier transform than in the original
signal.

computationally different ways to approximate the derivative of a function. In
the following subsections, we assume that our function u and all its derivatives
are continuous and periodic on [0, 2π ].

Using expansion coefficients Given the values of the function u(x) at the
points x j , differentiating the basis functions in the interpolant yields

d
dx

IN u(x) =
∑

|n|≤N/2

inũneinx , (2.17)

where

ũn = 1
Nc̃n

N−1∑

j=0

u(x j )e−inx j ,

are the coefficients of the interpolant IN u(x) given in Equations (2.8)–(2.9).
Higher order derivatives can be obtained simply by further differentiating the
basis functions.

Note that, unlike in the case of the continuous approximation, the derivative
of the interpolant is not the interpolant of the derivative, i.e.,

IN
du
dx

#= IN
d

dx
IN u, (2.18)

unless u(x) ∈ B̃N .
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Theorem 4.5. Assume that v ∈ Hp(I), p > 1
2 , and that vh represents a

polynomial interpolation of order N . Then

‖v − vh‖I,q ≤ N2q−p+1/2|v|I,p,

where 0 ≤ q ≤ p.

Note in particular that the order of convergence can be up to one order
lower due to the aliasing errors, but not worse than that.

Example 4.6. Let us revisit Example 3.2 where we considered the error when
computing the discrete derivative. Using Theorem 4.5, we get a crude estimate
as

‖v′ −Drvh‖I,0 ≤ ‖v − vh‖I,1 ≤ N5/2−p|v|I,p.

For the first example, that is,

v(r) = exp(sin(πr)),

this confirms the exponential convergence since v(r) is analytic.
However, for the second problem,

v(0)(r) =
{
− cos(πr), −1 ≤ r < 0

cos(πr), 0 ≤ r ≤ 1,
dv(i+1)

dr
= v(i), i = 0, 1, 2, 3 . . . ,

the situation is different. Note that v(i) ∈ Hi(I). In this case, the computations
indicate

‖(v(i))r −Drv
(i)
h ‖I,0 ≤ CN1/2−i,

which is considerably better than indicated by the general result. An improved
estimate, valid only for interpolation of Gauss-Lobatto grid points, is [27]

‖v′ −Drvh‖I,0 ≤ N1−p|v|I,p,

and is much closer to the observed behavior but suboptimal. This is, however,
a sharp result for the general case, reflecting that special cases may show
better results.

We return to the behavior for the general element of length h to recover
the estimates for u(x) rather than v(r). We have the following bound:

Theorem 4.7. Assume that u ∈ Hp(Dk) and that uh represents a piecewise
polynomial approximation of order N . Then

‖u − uh‖Ω,q,h ≤ Chσ−q|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).
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Combining everything, we have the general result

4.4 Stability 83

Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

with

Approximation theory

Combining everything, we have the general result

4.4 Stability 83

Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

4.4 Stability 83

Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

with

Wednesday, August 8, 12

Approximation theory
3.2 Elementwise operations 55

0 16 32 48 64
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N

||u
x 
− 

D 
u h

||

101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N

||u
x 
− 

D 
u h

||

u(1)

u(2)

u(3)

N−1/2

N−3/2

N−5/2

Fig. 3.5. On the left, we show the global L2-error for the derivative of the smooth
function in Example 3.2, highlighting exponential convergence. On the right, we show
the global L2-error for the derivative of the functions in Example 3.2, illustrating
algebraic convergence closely connected to the regularity of the function.

To offer a more complete picture of the accuracy of the discrete derivative,
let us also consider the sequence of functions

u(0)(x) =
{
− cos(πx), −1 ≤ x < 0

cos(πx), 0 ≤ x ≤ 1,
du(i+1)

dx
= u(i), i = 0, 1, 2, 3 . . . .

Note that u(i+1) ∈ Ci; that is, u(1) is continuous but its derivative is discon-
tinuous. In Fig. 3.5 we show the L2-error for the discrete derivative of u(i) for
i = 1, 2, 3. We now observe a more moderate convergence rate as

∥∥∥∥
du(i)

dx
−Dru

(i)
h

∥∥∥∥
Ω

∝ N1/2−i.

If we recall that (
û(i)

x

)

n
= û(i−1)

n ∝ 1
ni

then a rough estimate follows directly since
∥∥∥∥

du(i)

dx
−Dru

(i)
h

∥∥∥∥
2

Ω

≤
∞∑

n=N+1

1
n2i

≤ 1
N2i−1

,

confirming the close connection between accuracy and smoothness indicated
in Fig. 3.5. We shall return to a more detailed discussion of these aspects in
Chapter 4 where we shall also realize that things are a bit more complex than
the above result indicates.

To complete the discussion of the local operators, we consider the remain-
ing local operator that is responsible for extracting the surface terms of the
form
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54 3 Making it work in one dimension

[
−0.50 0.50
−0.50 0.50

]
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[−1.50 2.00 −0.50
−0.50 0.00 0.50

0.50 −2.00 1.50

]
,





−5.00 6.76 −2.67 1.41 −0.50
−1.24 0.00 1.75 −0.76 0.26

0.38 −1.34 0.00 1.34 −0.38
−0.26 0.76 −1.75 0.00 1.24

0.50 −1.41 2.67 −6.76 5.00




,





−18.00 24.35 −9.75 5.54 −3.66 2.59 −1.87 1.28 −0.50
−4.09 0.00 5.79 −2.70 1.67 −1.15 0.82 −0.56 0.22

0.99 −3.49 0.00 3.58 −1.72 1.08 −0.74 0.49 −0.19
−0.44 1.29 −2.83 0.00 2.85 −1.38 0.86 −0.55 0.21

0.27 −0.74 1.27 −2.66 0.00 2.66 −1.27 0.74 −0.27
−0.21 0.55 −0.86 1.38 −2.85 0.00 2.83 −1.29 0.44

0.19 −0.49 0.74 −1.08 1.72 −3.58 0.00 3.49 −0.99
−0.22 0.56 −0.82 1.15 −1.67 2.70 −5.79 0.00 4.09

0.50 −1.28 1.87 −2.59 3.66 −5.54 9.75 −24.35 18.00





Fig. 3.4. Examples of differentiation matrices, Dr, for orders N = 1, 2, 4 in the top
row and N = 8 in the bottom row.

Examples of differentiation matrices for different orders of approximation
are shown in Fig. 3.4. A few observations are worth making regarding these
operators. Inspection of Fig. 3.4 shows that

Dr,(i,j) = −Dr,(N−i,N−j),

known as skew-antisymmetric. This is a general property as long as ri = rN−i

(i.e., the interpolation points are symmetric around r = 0) and this can be ex-
plored to compute fast matrix-vector products [291]. Furthermore, we notice
that each row-sum is exactly zero, reflecting that the derivative of a constant
is zero. This also implies that Dr has at least one zero eigenvalue. A more
careful analysis will in fact show that Dr is nilpotent; that is, it has N + 1
zero eigenvalues and only one eigenvector. Thus, Dr is not diagonizable but
is similar only to a rank N + 1 Jordan block. These and other details are
discussed in depth in [159].

Example 3.2. To illustrate the accuracy of derivatives computed using Dr, let
us consider a few examples.

We first consider the following analytic function

u(x) = exp(sin(πx)), x ∈ [−1, 1],

and compute the errors of the computed derivatives as a function of the order
of the approximation, N . In Fig. 3.5 we show the L2-error as a function of
N and observe an exponentially fast decay of the error, known as spectral
convergence [159]. This is a clear indication of the strength of very high-order
methods for the approximation of smooth functions.
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Lets summarize Part I

Fluxes:
‣ For linear systems, we can derive exact upwind fluxes 
using Rankine-Hugonoit conditions.

Accuracy:
‣ Legendre polynomials are the right basis
‣ Local accuracy depends on elementwise smoothness
‣ Aliasing appears due to the grid but is under control
‣ For smooth problems, we have a spectral method
‣ Convergence can be recovered in two ways
‣ Increase N
‣ Decrease h

Convergence of the solution at all times ?
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Lecture 3

‣ Let’s briefly recall what we know

‣ Why high-order methods ?

‣ Part I:

‣ Constructing fluxes for linear systems

‣ Approximation theory on the interval

‣ Part II:

‣ Convergence and error estimates

‣ Dispersive properties

‣ Discrete stability and how to overcome
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Lets recall convergence etc

We consider the system

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

which we assume is wellposed in the sense

The semi-discrete scheme is given as

truncation error

Lets recall convergence etc

We consider the system

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

which we assume is wellposed in the sense

The semi-discrete scheme is given as

Inserting the exact solution u into the scheme yields

truncation error

Lets recall convergence etc

We consider the system

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

which we assume is wellposed in the sense

The semi-discrete scheme is given as

Inserting the exact solution u into the scheme yields

truncation error

Lets recall convergence etc

We consider the system

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

which we assume is wellposed in the sense

The semi-discrete scheme is given as

Inserting the exact solution u into the scheme yields

truncation error

Wednesday, August 8, 12

Convergence and all that

Let us introduce the error

What we really seek is convergence

This is often a little complicated to get to due to
the requirement for all t.

Let us get to it in a different way.

Convergence and all that

Let us introduce the error

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

What we really seek is convergence

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

This is often a little complicated to get to due to
the requirement for all t.

Let us get to it in a different way.

Convergence and all that

Let us introduce the error

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

What we really seek is convergence

76 4 Insight through theory

derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

This is often a little complicated to get to due to
the requirement for all t.

Let us get to it in a different way.

Wednesday, August 8, 12

Convergence and all that

Let us consider the error equation4.3 Approximations by orthogonal polynomials and consistency 77

d

dt
ε + Lhε = T (u(x, t)),

with the exact solution

ε(t) − exp (−Lht) ε(0) =
∫ t

0
exp (Lh(s − t)) T (u(s)) ds,

where we have suppressed the explicit dependence of x for simplicity. Inte-
grating over the elements and summing up, we obtain

‖ε(t)‖Ω,h ≤ ‖ exp (−Lht) ε(0)‖Ω,h +
∥∥∥∥
∫ t

0
exp (Lh(s − t)) T (u(s)) ds

∥∥∥∥
Ω,h

.

Furthermore, since
∥∥∥∥
∫ t

0
exp (Lh(s−t)) T (u(s)) ds

∥∥∥∥
Ω,h

≤
∫ t

0
‖ exp (Lh(s−t)) ‖Ω,h‖T (u(s))‖Ω,h ds,

it suffices to ensure consistency in the sense that
{

limdof→∞ ‖ε(0)‖Ω,h = 0,
limdof→∞ ‖T (u(t))‖Ω,h = 0

and stability as

lim
dof→∞

‖ exp (−Lht) ‖Ω,h ≤ Ch exp(αht), t ≥ 0, (4.1)

to guarantee convergence. Note the close resemblance between stability and
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derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

This is of course part of the celebrated Lax-Richtmyer 
equivalence theorem

Convergence and all that
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Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

for which we proved stability as
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by using an energy method to obtain the result

1
2

d

dt
‖uh‖2

Ω,h ≤ c‖uh‖2
Ω,h,

which suffices to guarantee stability. In fact, we managed to prove that c ≤ 0,
ensuring that αh ≤ 0 in the stability estimate, Eq. (4.1).

Stability of the linear system follows directly from this result with slight
differences emerging only in the choice of the flux. Consider the general case

∂u

∂t
+ A∂u

∂x
= 0,

where A is an m×m diagonizable matrix with purely real eigenvalues (i.e., a
hyperbolic problem). We also assume that appropriate boundary conditions
and initial conditions are provided. A simple scheme for this could be based
on central fluxes as

Mk dui

dt
+

m∑

j=1

AijSuj =
1
2

∫

∂Dk

m∑

j=1

Aijn̂ · [[uj ]] dx,

where ui represents the i-th component of u.
Since A is assumed to be uniformly diagonizable, we have

A = RΛR−1,

and the above scheme transforms as

Mk dvi

dt
+ ΛiiSvi =

1
2

∫

∂Dk
Λiin̂ · [[vj ]] dx,

where vi = R−1ui. This is the scheme for the scalar wave equation for which
we have already established stability. Stability for the system follows then
directly since

‖uh(t)‖2
Ω,h = ‖Rvh(t)‖2

Ω,h ≤ ‖R‖2
Ω,h‖vh(t)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖vh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖R−1uh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h‖R−1‖2

Ω,h exp(αht)‖uh(0)‖2
Ω,h.

If ‖R‖2
Ω,h‖R−1‖2

Ω,h ≤ Ch stability follows. This is, however, ensured if A is
uniformly diagonizable.

In an entirely similar way, one can establish stability of the system with
upwind fluxes provided upwinding is done on the characteristic variables (i.e.,
on v in the above example).

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields
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4.5 Error estimates and error boundedness

With stability and consistency established we can straightforwardly claim
convergence for a number of different linear problems; for example

∂u

∂t
+ a

∂u

∂x
= 0. (4.3)

Theorem 4.5 establishes consistency for the approximation of the spatial oper-
ator and we established stability in Chapter 2. From the equivalence theorem,
convergence follows, albeit with time-dependent constants that may grow ex-
ponentially fast in time. The direct use of the consistency results would indi-
cate an accuracy of the form

‖u − uh‖Ω,h ≤ hN

Np−5/2
|u|Ω,p,h,

for a smooth u. However, if we recall the results in Chapter 2, this appears to
be suboptimal since we observed a behavior like

‖u(T ) − uh(T )‖Ω,h ≤ hN+1(C1 + TC2).

To recover these results, let us consider the problem in a bit more detail and
establish convergence directly rather than through the equivalence theorem.

We define the bilinear form, B(u,φ), as

B(u,φ) = (ut,φ)Ω + a(ux, v)Ω = 0

for all smooth test functions, φ(x, t), and u(x, t) being a solution to Eq. (4.3).
For simplicity we assume that the problem is periodic, but this is not essential.

An immediate consequence of this is

B(u, u) = 0 =
1
2

d

dt
‖u‖2

Ω ;

that is, the problem conserves energy, as we have already discussed. This also
implies that we if solve Eq. (4.3) with two different initial conditions, u1(0)
and u2(0), we have the error equation

1
2

d

dt
‖ε‖2

Ω = 0,

or
‖ε(T )‖Ω = ‖u1(0) − u2(0)‖Ω ,

where we have defined the error ε(t) = u1(t) − u2(t).
We will now mimic this for the discrete case as

Bh(uh,φh) = ((uh)t,φh)Ω,h+a((uh)x,φh)Ω,h−(n̂ ·(auh−(au)∗),φh)∂Ω,h = 0,
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Example 2.4. Consider Eq. (2.1) as

∂u

∂t
− 2π

∂u

∂x
= 0, x ∈ [0, 2π],

with periodic boundary conditions and initial condition as

u(x, 0) = sin(lx), l =
2π

λ
,

where λ is the wavelength. We use the strong form, Eq. (2.8), although for this simple example, the
weak form yields identical results. The nodes are chosen as the Legendre-Gauss-Lobatto nodes as we
shall discuss in detail in Chapter 3. An upwind flux is used and a fourth-order explicit Runge-Kutta
method is employed to integrate the equations in time with the timestep chosen small enough to
ensure that timestep errors can be neglected (See Chapter 3 for details on the implementation).

In Table 2.1 we list a number of results, showing the global L2-error at final time T = π as a
function of the number of elements, K, and the order of the local approximation, N . Inspecting
these results, we observe several things. First, the scheme is clearly convergent and there are two
roads to a converged result; one can increase the local order of approximation, N , and/or one can
increase the number of elements, K.

Table 2.1. Global L2-errors when solving the wave equation using K elements each with a local order
of approximation, N . Note that for N = 8, the finite precision dominates and destroys the expected
convergence rate.

N\ K 2 4 8 16 32 64 Convergence rate
1 – 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 � 9.0

The rate by which the results converge are not, however, the same when changing N and K. If
we define h = 2π/K as a measure of the size of the local element, we observe that

�u− uh�Ω,h ≤ ChN+1.

Thus, it is the order of the local approximation that gives the fast convergence rate. The constant,
C, does not depend on h, but it may depend on the final time, T , of the solution. To highlight this,
we consider in Table 2.2 the same problem but solved at different final times, T .

This indicates a linear scaling in time as

�u− uh�Ω,h ≤ C(T )hN+1 � (c1 + c2T )hN+1,

Clearly, c1 and c2 are problem-dependent constants.
The high accuracy reflected in Table 2.1, however, comes at a price. In Table 2.3 we show the

approximate execution times, scaled to one for (N,K) = (1, 2), for all the examples in Table 2.1.
The execution time and, thus, the computational effort scales approximately like
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Table 2.2. Global L2-errors as a function of the final time T when solving the wave
equation using K elements each with a local order of approximation, N .

Final time (T) π 10π 100π 1000π 2000π

(N,K)=(2,4) 4.3E-02 7.8E-02 5.6E-01 >1 >1
(N,K)=(4,2) 3.3E-03 4.4E-03 2.8E-02 2.6E-01 4.8E-01
(N,K)=(4,4) 3.1E-04 3.3E-04 3.4E-04 7.7E-04 1.4E-03

Table 2.3. Scaled execution times when solving the wave equation using K elements
each with a local order of approximation, N .

N\K 2 4 8 16 32 64

1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.
16 57.8 121. 279. 664. 1958. 5256.

Clearly, c1 and c2 are problem-dependent constants.
The high accuracy reflected in Table 2.1, however, comes at a price. In

Table 2.3 we show the approximate execution times, scaled to one for (N,K) =
(1, 2), for all the examples in Table 2.1. The execution time and, thus, the
computational effort scales approximately like

Time ! C(T )K(N + 1)2,

where C, again, scales with the final time in a linear fashion. We recall that
the timestep is taken to be very small and constant for all cases; that is, the
constant C depends both on T and the size of the timestep. As we will discuss
in more detail in Chapter 4, this timestep also depends on N and K, but here
we neglect this effect.

At first it could look as if high order accuracy (i.e., high values of N)
is not really worth considering. A closer look at the results above, however,
speaks to the contrary. Clearly, if one wishes very high accuracy, then only
the use of high values of N offers this. However, even for a moderate accuracy,
a high-order method can be superior in terms of execution time.

Consider, as an example, an error of O(5 × 10−3). From the results in
Table 2.1 we see that this can be achieved through different combinations of
(N,K) [e.g., (1, 32), (2, 8), and (4, 2)]. Comparing with the result in Table 2.3,
however, the latter combination, having the highest order of approximation, is
clearly also the fastest. Additionally, based on the results listed in Table 2.2,
one furthermore benefits from using high values of N if long time integration
is required.

To further emphasize some important aspects of the scheme, we show
in Fig. 2.2 the computed solution obtained in different ways. Using N = 1
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Example 2.4. Consider Eq. (2.1) as

∂u

∂t
− 2π

∂u

∂x
= 0, x ∈ [0, 2π],

with periodic boundary conditions and initial condition as

u(x, 0) = sin(lx), l =
2π

λ
,

where λ is the wavelength. We use the strong form, Eq. (2.8), although for this
simple example, the weak form yields identical results. The nodes are chosen
as the Legendre-Gauss-Lobatto nodes as we shall discuss in detail in Chapter
3. An upwind flux is used and a fourth-order explicit Runge-Kutta method is
employed to integrate the equations in time with the timestep chosen small
enough to ensure that timestep errors can be neglected (See Chapter 3 for
details on the implementation).

In Table 2.1 we list a number of results, showing the global L2-error at
final time T = π as a function of the number of elements, K, and the order
of the local approximation, N . Inspecting these results, we observe several
things. First, the scheme is clearly convergent and there are two roads to a
converged result; one can increase the local order of approximation, N , and/or
one can increase the number of elements, K.

The rate by which the results converge are not, however, the same when
changing N and K. If we define h = 2π/K as a measure of the size of the
local element, we observe that

‖u − uh‖Ω,h ≤ ChN+1.

Thus, it is the order of the local approximation that gives the fast convergence
rate. The constant, C, does not depend on h, but it may depend on the final
time, T , of the solution. To highlight this, we consider in Table 2.2 the same
problem but solved at different final times, T .

This indicates a linear scaling in time as

‖u − uh‖Ω,h ≤ C(T )hN+1 % (c1 + c2T )hN+1,

Table 2.1. Global L2-errors when solving the wave equation using K elements each
with a local order of approximation, N . Note that for N = 8, the finite precision
dominates and destroys the expected convergence rate.

N\K 2 4 8 16 32 64 Convergence rate

1 – 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 !9.0
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Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

for which we proved stability as
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by using an energy method to obtain the result

1
2

d

dt
‖uh‖2

Ω,h ≤ c‖uh‖2
Ω,h,

which suffices to guarantee stability. In fact, we managed to prove that c ≤ 0,
ensuring that αh ≤ 0 in the stability estimate, Eq. (4.1).

Stability of the linear system follows directly from this result with slight
differences emerging only in the choice of the flux. Consider the general case

∂u

∂t
+ A∂u

∂x
= 0,

where A is an m×m diagonizable matrix with purely real eigenvalues (i.e., a
hyperbolic problem). We also assume that appropriate boundary conditions
and initial conditions are provided. A simple scheme for this could be based
on central fluxes as

Mk dui

dt
+

m∑

j=1

AijSuj =
1
2

∫

∂Dk

m∑

j=1

Aijn̂ · [[uj ]] dx,

where ui represents the i-th component of u.
Since A is assumed to be uniformly diagonizable, we have

A = RΛR−1,

and the above scheme transforms as

Mk dvi

dt
+ ΛiiSvi =

1
2

∫

∂Dk
Λiin̂ · [[vj ]] dx,

where vi = R−1ui. This is the scheme for the scalar wave equation for which
we have already established stability. Stability for the system follows then
directly since

‖uh(t)‖2
Ω,h = ‖Rvh(t)‖2

Ω,h ≤ ‖R‖2
Ω,h‖vh(t)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖vh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖R−1uh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h‖R−1‖2

Ω,h exp(αht)‖uh(0)‖2
Ω,h.

If ‖R‖2
Ω,h‖R−1‖2

Ω,h ≤ Ch stability follows. This is, however, ensured if A is
uniformly diagonizable.

In an entirely similar way, one can establish stability of the system with
upwind fluxes provided upwinding is done on the characteristic variables (i.e.,
on v in the above example).

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields

4.5 Error estimates and error boundedness 85

4.5 Error estimates and error boundedness

With stability and consistency established we can straightforwardly claim
convergence for a number of different linear problems; for example

∂u

∂t
+ a

∂u

∂x
= 0. (4.3)

Theorem 4.5 establishes consistency for the approximation of the spatial oper-
ator and we established stability in Chapter 2. From the equivalence theorem,
convergence follows, albeit with time-dependent constants that may grow ex-
ponentially fast in time. The direct use of the consistency results would indi-
cate an accuracy of the form

‖u − uh‖Ω,h ≤ hN

Np−5/2
|u|Ω,p,h,

for a smooth u. However, if we recall the results in Chapter 2, this appears to
be suboptimal since we observed a behavior like

‖u(T ) − uh(T )‖Ω,h ≤ hN+1(C1 + TC2).

To recover these results, let us consider the problem in a bit more detail and
establish convergence directly rather than through the equivalence theorem.

We define the bilinear form, B(u,φ), as

B(u,φ) = (ut,φ)Ω + a(ux, v)Ω = 0

for all smooth test functions, φ(x, t), and u(x, t) being a solution to Eq. (4.3).
For simplicity we assume that the problem is periodic, but this is not essential.

An immediate consequence of this is

B(u, u) = 0 =
1
2

d

dt
‖u‖2

Ω ;

that is, the problem conserves energy, as we have already discussed. This also
implies that we if solve Eq. (4.3) with two different initial conditions, u1(0)
and u2(0), we have the error equation

1
2

d

dt
‖ε‖2

Ω = 0,

or
‖ε(T )‖Ω = ‖u1(0) − u2(0)‖Ω ,

where we have defined the error ε(t) = u1(t) − u2(t).
We will now mimic this for the discrete case as

Bh(uh,φh) = ((uh)t,φh)Ω,h+a((uh)x,φh)Ω,h−(n̂ ·(auh−(au)∗),φh)∂Ω,h = 0,

but we observed
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,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
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4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,

for which we proved stability as
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by using an energy method to obtain the result

1
2

d

dt
‖uh‖2

Ω,h ≤ c‖uh‖2
Ω,h,

which suffices to guarantee stability. In fact, we managed to prove that c ≤ 0,
ensuring that αh ≤ 0 in the stability estimate, Eq. (4.1).

Stability of the linear system follows directly from this result with slight
differences emerging only in the choice of the flux. Consider the general case

∂u

∂t
+ A∂u

∂x
= 0,

where A is an m×m diagonizable matrix with purely real eigenvalues (i.e., a
hyperbolic problem). We also assume that appropriate boundary conditions
and initial conditions are provided. A simple scheme for this could be based
on central fluxes as

Mk dui

dt
+

m∑

j=1

AijSuj =
1
2

∫

∂Dk

m∑

j=1

Aijn̂ · [[uj ]] dx,

where ui represents the i-th component of u.
Since A is assumed to be uniformly diagonizable, we have

A = RΛR−1,

and the above scheme transforms as

Mk dvi

dt
+ ΛiiSvi =

1
2

∫

∂Dk
Λiin̂ · [[vj ]] dx,

where vi = R−1ui. This is the scheme for the scalar wave equation for which
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directly since

‖uh(t)‖2
Ω,h = ‖Rvh(t)‖2

Ω,h ≤ ‖R‖2
Ω,h‖vh(t)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖vh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h exp(αht)‖R−1uh(0)‖2

Ω,h

≤ ‖R‖2
Ω,h‖R−1‖2

Ω,h exp(αht)‖uh(0)‖2
Ω,h.

If ‖R‖2
Ω,h‖R−1‖2

Ω,h ≤ Ch stability follows. This is, however, ensured if A is
uniformly diagonizable.

In an entirely similar way, one can establish stability of the system with
upwind fluxes provided upwinding is done on the characteristic variables (i.e.,
on v in the above example).

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields
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4.5 Error estimates and error boundedness

With stability and consistency established we can straightforwardly claim
convergence for a number of different linear problems; for example

∂u

∂t
+ a

∂u

∂x
= 0. (4.3)

Theorem 4.5 establishes consistency for the approximation of the spatial oper-
ator and we established stability in Chapter 2. From the equivalence theorem,
convergence follows, albeit with time-dependent constants that may grow ex-
ponentially fast in time. The direct use of the consistency results would indi-
cate an accuracy of the form

‖u − uh‖Ω,h ≤ hN

Np−5/2
|u|Ω,p,h,

for a smooth u. However, if we recall the results in Chapter 2, this appears to
be suboptimal since we observed a behavior like

‖u(T ) − uh(T )‖Ω,h ≤ hN+1(C1 + TC2).

To recover these results, let us consider the problem in a bit more detail and
establish convergence directly rather than through the equivalence theorem.

We define the bilinear form, B(u,φ), as

B(u,φ) = (ut,φ)Ω + a(ux, v)Ω = 0

for all smooth test functions, φ(x, t), and u(x, t) being a solution to Eq. (4.3).
For simplicity we assume that the problem is periodic, but this is not essential.

An immediate consequence of this is

B(u, u) = 0 =
1
2

d

dt
‖u‖2

Ω ;

that is, the problem conserves energy, as we have already discussed. This also
implies that we if solve Eq. (4.3) with two different initial conditions, u1(0)
and u2(0), we have the error equation

1
2

d

dt
‖ε‖2

Ω = 0,

or
‖ε(T )‖Ω = ‖u1(0) − u2(0)‖Ω ,

where we have defined the error ε(t) = u1(t) − u2(t).
We will now mimic this for the discrete case as

Bh(uh,φh) = ((uh)t,φh)Ω,h+a((uh)x,φh)Ω,h−(n̂ ·(auh−(au)∗),φh)∂Ω,h = 0,
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for all test functions, φh ∈ Vh, and uh ∈ Vh is the numerical solution, where

Vh =
K⊕

k=1

span
{

P̃n(Dk)
}N

n=0
,

is the space of piecewise polynomials of order no larger than N defined on
Ωh(" Ω).

We again assume that a simple central flux of the type

(au)∗ = {{au}},

is used and obtain

Bh(uh,φh) = ((uh)t,φh)Ω,h + a((uh)x,φh)Ω,h − 1
2
([[auh]],φh)∂Ω,h = 0.

Since the jump term vanishes for the exact (smooth) solution, we have

Bh(u,φh) = 0,

which results in the error equation

Bh(ε,φh) = 0, ε = u − uh.

Observe that ε is not in the space of piecewise polynomials, Vh. Let us there-
fore write this as

Bh(ε,φh) = Bh(εh,φh) + Bh(ε − εh,φh) = 0, (4.4)

where we define

εh(r, t) =
N∑

n=0

ε̃n(t)P̃n(r) = Phε(r, t),

as the N -th-order projection of ε onto the basis spanned by the orthonormal
basis, P̃n(r). We recall that a consequence of this is the Galerkin orthogonality

n = 0, . . . , N :
∫ 1

−1
(ε − εh)P̃n(r)dr = 0.

If we take φh = εh to mimic the continuous case, we recover

Bh(εh, εh) = ((εh)t, εh)Ω,h + a((εh)x, εh)Ω,h − 1
2
([[aεh]], εh)∂Ω,h.

After local integration by parts in space and using the periodicity, it is easily
seen that the boundary term vanishes when both sides of an element are added
and we recover

Bh(εh, εh) =
1
2

d

dt
‖εh‖2

Ω,h.
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= 0. (4.3)
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convergence follows, albeit with time-dependent constants that may grow ex-
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Thus, if we can estimate the left-hand side, we can estimate the behavior of
the error. Recall Eq. (4.4) to recover

1
2

d

dt
‖εN‖2

Ω,h = Bh(PNu − u, εh),

since
PNε − ε = PN (u − uh) − (u − uh) = PNu − u.

Here, PNu represents the projection of the exact solution onto the space of
piecewise N -th-order polynomials. Take q = Phu − u and consider

Bh(q, εh)Ω,h = (qt, εh)Ω,h + a(qx, εh)Ω,h − 1
2
([[aq]], εh)∂Ω,h

= (qt, εh)Ω,h − a(q, (εh)x)Ω,h + (n̂ · {{aq}}, εh)∂Ω,h

= (n̂ · {{aq}}, εh)∂Ω,h,

due to the nature of the projection. To bound this, we need the following
result:

Lemma 4.9. If u ∈ Hp+1(Dk ∪ Dk+1), then

|{{aq}}|xk
r

= |{{a(u − PNu)}}|xk
r
≤ Ckhσ−1/2 |a|

2
|u|Dk

,σ
,

where the constant, Ck, depends only on k, and σ = min(N + 1, p).

The proof follows from the application of the Bramble-Hilbert lemma [59],
Theorem 4.8, and the standard trace inequality [59]

‖uh‖∂D ≤ C(N)√
h

‖uh‖D.

We then have

|Bh(u − PNu, εh)| ≤ 1
2

(({{aq}}, {{aq}})∂Ω,h + (εh, εh)∂Ω,h)

≤ C|a|h2σ−1‖u‖2
Ω,h,σ+1,

by using Lemma 4.9 to bound the first part and Theorem 4.8 in combination
with the trace inequality to bound the second term.

The final result is

d

dt
‖εh‖2

Ω,h ≤ C|a|h2σ−1‖u‖2
Ω,h,σ+1,

from which we recover an improved result of the type

‖εh(T )‖ ≤ (C1 + C2T )hN+1/2,
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4.5 Error estimates and error boundedness
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∂u

∂t
+ a

∂u

∂x
= 0. (4.3)
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Np−5/2
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1
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dt
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Let us consider the error equation4.3 Approximations by orthogonal polynomials and consistency 77

d

dt
ε + Lhε = T (u(x, t)),

with the exact solution

ε(t) − exp (−Lht) ε(0) =
∫ t

0
exp (Lh(s − t)) T (u(s)) ds,

where we have suppressed the explicit dependence of x for simplicity. Inte-
grating over the elements and summing up, we obtain

‖ε(t)‖Ω,h ≤ ‖ exp (−Lht) ε(0)‖Ω,h +
∥∥∥∥
∫ t

0
exp (Lh(s − t)) T (u(s)) ds

∥∥∥∥
Ω,h

.

Furthermore, since
∥∥∥∥
∫ t

0
exp (Lh(s−t)) T (u(s)) ds

∥∥∥∥
Ω,h

≤
∫ t

0
‖ exp (Lh(s−t)) ‖Ω,h‖T (u(s))‖Ω,h ds,

it suffices to ensure consistency in the sense that
{

limdof→∞ ‖ε(0)‖Ω,h = 0,
limdof→∞ ‖T (u(t))‖Ω,h = 0

and stability as

lim
dof→∞

‖ exp (−Lht) ‖Ω,h ≤ Ch exp(αht), t ≥ 0, (4.1)

to guarantee convergence. Note the close resemblance between stability and
well-posedness.

This result, one half of the celebrated equivalence theorem by Lax and
Richtmyer [215], suggests a natural approach to establish convergence for
linear problems. First, we can focus on understanding consistency (e.g., the
approximation of functions and operators) and, second, on the question of
stability or boundedness of the operators.

4.3 Approximations by orthogonal polynomials
and consistency

We will first discuss how well one can approximate functions and derivatives
of functions in order to understand the consistency of the schemes.

Let us consider what happens in the local element, Dk, and how well one
can approximate the local solution. In other words, if we approximate the
global function, u(x), as a piecewise N -th order polynomial function as

u(x) % uh(x) =
K⊕

k=1

uk
h(x),
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The solution is given as

Now consider
Recall

Assume stability

Convergence and all that
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and stability

we obtain convergence
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derivative. We will also define the space of functions, u ∈ Hq(Ω), as those
functions for which ‖u‖Ω,q or ‖u‖Ω,q,h is bounded.

Finally, we will need the semi-norms

|u|2Ω,q,h =
K∑

k=1

|u|2Dk
,q

, |u|2Dk
,q

=
∑

|α|=q

‖u(α)‖2
Dk .

4.2 Briefly on convergence

Let us consider the one-dimensional hyperbolic system

∂u

∂t
+ A∂u

∂x
= 0,

where A is diagonizable and we assume that appropriate boundary conditions
are available to ensure well-posedness; that is, there exists constants C and α
such that

‖u(t)‖Ω ≤ C exp(αt)‖u(0)‖Ω .

Let us assume that the solution is being approximated by an N -th-order
piecewise polynomial, uh, which satisfies the semidiscrete scheme

duh

dt
+ Lhuh = 0.

Here, Lh represents the discrete approximation of A∂x. Inserting the exact
solution, u, into the semidiscrete form yields

du

dt
+ Lhu = T (u(x, t)),

where T (u) is the truncation error, or the error by which the exact solution
fails to satisfy the discrete approximation.

If we now introduce the error

ε(x, t) = u(x, t) − uh(x, t),

it is natural to seek convergence in the sense that

∀t ∈ [0, T ] : lim
dof→∞

‖ε(t)‖Ω,h → 0.

We have introduced the notion of degrees of freedom (dof) to reflect that
convergence can be achieved either by decreasing the cell size, h, by increasing
the order of the approximation, N , or by doing both simultaneously, known
as hp-convergence.

Proving convergence directly is, however, complicated due to the need to
prove it for all time. Fortunately, there is shortcut. Consider the error equation

This is of course part of the celebrated Lax-Richtmyer 
equivalence theoremError in I.C.

Error 
accumulation

Approximation theory

Combining everything, we have the general result

4.4 Stability 83

Proof. Introduce the new variable

v(r) = u(hr) = u(x).

Then

|v|2I,q =
∫

I

(
v(q)

)2
dr =

∫

Dk
h2q−1

(
u(q)

)2
dx = h2q−1|u|2Dk

,q
.

Similarly fashion, we have

‖u‖2
Dk

,q
=

q∑

p=0

|u|2Dk
,p

=
q∑

p=0

h1−2p|v|2I,p ≤ h1−2q‖v‖2
I,q.

We combine these estimates to obtain

‖u − uh‖2
Dk

,q
≤ h1−2q‖v − vh‖2

I,q ≤ h1−2q|v|2I,σ = h2σ−2q|u|2Dk
,σ

,

where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
all elements yields the result. !

For a more general grid where the element length is variable, it is natural to
use h = maxk hk (i.e., the maximum interval length). Combining this with
Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,

for 0 ≤ q ≤ σ, and σ = min(N + 1, p).

This result gives the essence of the approximation properties; that is, it shows
clearly under which conditions on u we can expect consistency and what
convergence rate to expect depending on the regularity of u and the norm in
which the error is measured.

4.4 Stability

Stability is, in many ways, harder to deal with than consistency. In Chapter
2 we established stability for the simple scalar problem

∂u

∂t
+ a

∂u

∂x
= 0,
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.
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where we have used Lemma 4.4 and defined σ = min(N +1, p). Summing over
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For a more general grid where the element length is variable, it is natural to
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Theorem 4.7 yields the main approximation result:

Theorem 4.8. Assume that u ∈ Hp(Dk), p > 1/2, and that uh represents a
piecewise polynomial interpolation of order N . Then

‖u − uh‖Ω,q,h ≤ C
hσ−q

Np−2q−1/2
|u|Ω,σ,h,
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2 we established stability for the simple scalar problem
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in the limit where p ! N +1 for u ∈ Hp(Ω). This very general result was first
proven in [217]. Changing the flux to a more general flux does not change the
result [60].

The recovery of the optimal O(hN+1) result relies on the use of a supercon-
vergence property of the Legendre-Gauss-Radau points and is a special case
that only applies to linear problem with strict upwinding. The main idea is to
replace the orthogonal projection with the downwinded Gauss-Radau points.
In this case, the Galerkin orthogonality no longer holds, but the boundary
terms in the fluxes, estimated in Lemma 4.9 for the previous case, vanish
identically and the main error contribution comes from the interior parts of
the scheme that can be estimated by the results in Theorem 4.8. This results
in the optimal estimate

‖εh(T )‖Ω,h ≤ C(N)hN+1(1 + C1(N)T ),

and confirms exactly what we observed previously. It also shows that we can-
not hope for slower than linear growth in time of the error. The optimal
convergence rate has been proven in [217] for the linear case and a further
discussion of these techniques can be found in [60, 190].

4.6 Dispersive properties

Further insight into the accuracy of the scheme can be gained by discussing
the dissipative and dispersive properties of the scheme.

For this, let us consider the simple wave equation

∂u

∂t
+ a

∂u

∂x
= 0, (4.5)

u(x, 0) = exp(ilx),

where x ∈ R and l is the wavenumber of the initial condition. If we seek
spatially periodic solutions of the form

u(x, t) = exp(i(lx − ωt)),

we easily recover that ω = al, known as the dispersion relation with a being
the exact phase velocity. The purpose of the discussion in this chapter is
to understand how well the discontinuous Galerkin scheme reproduces this
behavior.

We now assume that the computational domain is split into equidistant
elements, Dk, all of length h. Following the approach in Section 2.2 we recover
the basic semidiscrete local scheme

h

2
Mduk

h

dt
+ aSuk = eN

[
(auk

h) − (auk
h)∗

]
xk

r
− e0

[
(auk

h) − (auk
h)∗

]
xk

l
,
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where x ∈ [xk
l , xk

r ], h = xk
r − xk

l , and ei is an N + 1 long zero vector with 1 in
entry i.

We consider the general flux

(au)∗ = {{au}} + |a|1 − α

2
[[u]].

To further simplify matters, we assume that a ≥ 0 and look for local solutions
of the form

uk
h(xk, t) = Uk

h exp[i(lxk − ωt)],

where Uk
h is a vector of coefficients. We seek to understand the relationship

between l and ω for the discrete approach, known as the discrete or numerical
dispersion relation. Inserting this into the scheme yields

h

2
Mduk

h

dt
+ aSuk =

aα

2
eN

(
uk

h(xk
r ) − uk+1

h (xk+1
l )

)

−a(2 − α)
2

e0

(
uk

h(xk
l ) − uk−1

h (xk−1
r )

)
.

Assume periodicity of the solution as

uk+1
h (xk+1

l ) = exp(ilh)uk
h(xk

l ), uk−1
h (xk−1

r ) = exp(−ilh)uk
h(xk

r )

to recover the expression
[
iωh

2
M + aS − aα

2
eN

(
eT

N − exp(ilh)eT
0

)

+
a(2 − α)

2
e0

(
eT

0 − exp(−ilh)eT
N

)]
Uk

h = 0.

This is recognized as a generalized eigenvalue problem
[
2S − αeN

(
eT

N − exp(iL(N + 1))eT
0

)

+ (2 − α)e0

(
eT

0 − exp(−iL(N + 1))eT
N

)]
Uk

h = iΩMUk
h.

We have normalized things as

L =
lh

N + 1
=

2π

λ

h

N + 1
= 2πp−1, Ω =

ωh

a
,

where
p =

λ

h/(N + 1)
is a measure of the number of degrees of freedom per wavelength. The min-
imum meaningful value for this is clearly 2 to uniquely identify a wave. We
recognize that L = Ω/(N + 1) is now the numerical dispersion relation, and
by solving the eigenvalue problem for Ω = Ωr + iΩi, one recovers the disper-
sion relation of the numerical scheme, with Ωr representing an approximation
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in the limit where p ! N +1 for u ∈ Hp(Ω). This very general result was first
proven in [217]. Changing the flux to a more general flux does not change the
result [60].

The recovery of the optimal O(hN+1) result relies on the use of a supercon-
vergence property of the Legendre-Gauss-Radau points and is a special case
that only applies to linear problem with strict upwinding. The main idea is to
replace the orthogonal projection with the downwinded Gauss-Radau points.
In this case, the Galerkin orthogonality no longer holds, but the boundary
terms in the fluxes, estimated in Lemma 4.9 for the previous case, vanish
identically and the main error contribution comes from the interior parts of
the scheme that can be estimated by the results in Theorem 4.8. This results
in the optimal estimate

‖εh(T )‖Ω,h ≤ C(N)hN+1(1 + C1(N)T ),

and confirms exactly what we observed previously. It also shows that we can-
not hope for slower than linear growth in time of the error. The optimal
convergence rate has been proven in [217] for the linear case and a further
discussion of these techniques can be found in [60, 190].
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Further insight into the accuracy of the scheme can be gained by discussing
the dissipative and dispersive properties of the scheme.

For this, let us consider the simple wave equation
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u(x, 0) = exp(ilx),

where x ∈ R and l is the wavenumber of the initial condition. If we seek
spatially periodic solutions of the form

u(x, t) = exp(i(lx − ωt)),

we easily recover that ω = al, known as the dispersion relation with a being
the exact phase velocity. The purpose of the discussion in this chapter is
to understand how well the discontinuous Galerkin scheme reproduces this
behavior.

We now assume that the computational domain is split into equidistant
elements, Dk, all of length h. Following the approach in Section 2.2 we recover
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where x ∈ [xk
l , xk

r ], h = xk
r − xk

l , and ei is an N + 1 long zero vector with 1 in
entry i.

We consider the general flux

(au)∗ = {{au}} + |a|1 − α

2
[[u]].

To further simplify matters, we assume that a ≥ 0 and look for local solutions
of the form

uk
h(xk, t) = Uk

h exp[i(lxk − ωt)],

where Uk
h is a vector of coefficients. We seek to understand the relationship

between l and ω for the discrete approach, known as the discrete or numerical
dispersion relation. Inserting this into the scheme yields
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Mduk

h

dt
+ aSuk =
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2
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uk

h(xk
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h (xk+1
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)
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h (xk−1
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Assume periodicity of the solution as

uk+1
h (xk+1
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l ), uk−1
h (xk−1
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h(xk
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to recover the expression
[
iωh

2
M + aS − aα

2
eN

(
eT

N − exp(ilh)eT
0

)

+
a(2 − α)

2
e0

(
eT

0 − exp(−ilh)eT
N

)]
Uk

h = 0.

This is recognized as a generalized eigenvalue problem
[
2S − αeN

(
eT

N − exp(iL(N + 1))eT
0

)

+ (2 − α)e0

(
eT

0 − exp(−iL(N + 1))eT
N

)]
Uk

h = iΩMUk
h.

We have normalized things as

L =
lh

N + 1
=

2π

λ

h

N + 1
= 2πp−1, Ω =

ωh

a
,

where
p =

λ

h/(N + 1)
is a measure of the number of degrees of freedom per wavelength. The min-
imum meaningful value for this is clearly 2 to uniquely identify a wave. We
recognize that L = Ω/(N + 1) is now the numerical dispersion relation, and
by solving the eigenvalue problem for Ω = Ωr + iΩi, one recovers the disper-
sion relation of the numerical scheme, with Ωr representing an approximation
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in the limit where p ! N +1 for u ∈ Hp(Ω). This very general result was first
proven in [217]. Changing the flux to a more general flux does not change the
result [60].

The recovery of the optimal O(hN+1) result relies on the use of a supercon-
vergence property of the Legendre-Gauss-Radau points and is a special case
that only applies to linear problem with strict upwinding. The main idea is to
replace the orthogonal projection with the downwinded Gauss-Radau points.
In this case, the Galerkin orthogonality no longer holds, but the boundary
terms in the fluxes, estimated in Lemma 4.9 for the previous case, vanish
identically and the main error contribution comes from the interior parts of
the scheme that can be estimated by the results in Theorem 4.8. This results
in the optimal estimate

‖εh(T )‖Ω,h ≤ C(N)hN+1(1 + C1(N)T ),

and confirms exactly what we observed previously. It also shows that we can-
not hope for slower than linear growth in time of the error. The optimal
convergence rate has been proven in [217] for the linear case and a further
discussion of these techniques can be found in [60, 190].

4.6 Dispersive properties

Further insight into the accuracy of the scheme can be gained by discussing
the dissipative and dispersive properties of the scheme.

For this, let us consider the simple wave equation

∂u

∂t
+ a

∂u

∂x
= 0, (4.5)

u(x, 0) = exp(ilx),

where x ∈ R and l is the wavenumber of the initial condition. If we seek
spatially periodic solutions of the form

u(x, t) = exp(i(lx − ωt)),

we easily recover that ω = al, known as the dispersion relation with a being
the exact phase velocity. The purpose of the discussion in this chapter is
to understand how well the discontinuous Galerkin scheme reproduces this
behavior.

We now assume that the computational domain is split into equidistant
elements, Dk, all of length h. Following the approach in Section 2.2 we recover
the basic semidiscrete local scheme
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where x ∈ [xk
l , xk

r ], h = xk
r − xk

l , and ei is an N + 1 long zero vector with 1 in
entry i.

We consider the general flux

(au)∗ = {{au}} + |a|1 − α

2
[[u]].

To further simplify matters, we assume that a ≥ 0 and look for local solutions
of the form

uk
h(xk, t) = Uk

h exp[i(lxk − ωt)],

where Uk
h is a vector of coefficients. We seek to understand the relationship

between l and ω for the discrete approach, known as the discrete or numerical
dispersion relation. Inserting this into the scheme yields

h

2
Mduk

h

dt
+ aSuk =

aα

2
eN

(
uk

h(xk
r ) − uk+1

h (xk+1
l )

)

−a(2 − α)
2

e0

(
uk

h(xk
l ) − uk−1

h (xk−1
r )

)
.

Assume periodicity of the solution as

uk+1
h (xk+1

l ) = exp(ilh)uk
h(xk

l ), uk−1
h (xk−1

r ) = exp(−ilh)uk
h(xk

r )

to recover the expression
[
iωh

2
M + aS − aα

2
eN

(
eT

N − exp(ilh)eT
0

)

+
a(2 − α)

2
e0

(
eT

0 − exp(−ilh)eT
N

)]
Uk

h = 0.

This is recognized as a generalized eigenvalue problem
[
2S − αeN

(
eT

N − exp(iL(N + 1))eT
0

)

+ (2 − α)e0

(
eT

0 − exp(−iL(N + 1))eT
N

)]
Uk

h = iΩMUk
h.

We have normalized things as

L =
lh

N + 1
=

2π

λ

h

N + 1
= 2πp−1, Ω =

ωh

a
,

where
p =

λ

h/(N + 1)
is a measure of the number of degrees of freedom per wavelength. The min-
imum meaningful value for this is clearly 2 to uniquely identify a wave. We
recognize that L = Ω/(N + 1) is now the numerical dispersion relation, and
by solving the eigenvalue problem for Ω = Ωr + iΩi, one recovers the disper-
sion relation of the numerical scheme, with Ωr representing an approximation
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Fig. 4.2. Numerical dispersion relations for the linear advection operator with a
purely central flux. The dashed line represents the exact case and the solid lines
reflect the dispersion characteristics for the three numerical modes at N = 2.
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Fig. 4.3. On the left, we show the numerical dispersion relations for the linear ad-
vection operator with an upwind flux. The dashed line represents the exact case and
the dotted curves are the spurious modes. On the right, we illustrate the dissipation
associated with the three modes.

Computational studies of the dispersive and dissipative properties of DG-
FEM were initiated in [181, 284], including extensions to two spatial di-
mensions. Steps toward a more rigorous analysis were taken in [179, 180],
including extensions to two-dimensional problems and the impact of bound-
ary conditions. A number of concluding conjectures made in that work have
subsequently been proven in [9]. In the following, we will outline the key results
of this analysis.

In the highly resolved region lh ! 1, we have, provided α "= 1, the disper-
sive error [9]
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Fig. 4.1. On the left, we show the numerical dispersion relations for the linear
advection operator with an upwind flux. The dashed line represents the exact case
and the solid lines the numerical dispersion relation for the physical mode at different
orders. On the right, we illustrate the dissipation associated with the different orders.

to the frequency ω, and Ωi is the dissipation associated with the scheme. In
particular, we note that

Ωr

(N + 1)L
= ah(L)

provides a measure of the phase velocity of the numerical scheme and its
dependence on the wavelength of the wave, measured in terms of degrees of
freedom per wavelength, p.

In Fig. 4.1, we show the dispersion relation for the pure upwind scheme,
α = 0, for a range of orders of approximation, for the physical mode only. As
expected, we see that for L ! 1, the numerical phase velocity is very close to
the physical wave speed and this agreement improves for a broader range of L
as the order of the approximation increases, confirming the benefits of using
high-order schemes for wave propagation. Furthermore, we see that there is
a range of marginally resolved wavenumbers for which the numerical wave
speed is faster than the physical speed. For the highest wavenumbers, one
observes backward propagating spurious waves, as is also seen in most other
methods. Also shown in Fig. 4.1 is Ωi for the different orders of approximation,
reflecting a significant dissipation of the high-frequency components (i.e., the
wavenumbers that are only marginally resolved).

As we already know, the central flux yields a conservative scheme, reflected
through Ωi = 0 for this case. The dispersion curves for this case are, however,
more complex than for the upwind case, as shown in Fig. 4.2, where they are
shown for N = 2. For N = 1 (not shown), the dispersion relation is similar to
that of the upwinded scheme whereas the situation for N = 2 is very different,
in particular for L " π/4, indicating that the scheme could exhibit unphysical
behavior even for well-resolved waves.

In contrast to this, we show in Fig. 4.3 the real and imaginary parts of
all three modes for the upwinded N = 2 scheme. This clearly illustrates the
physical mode but also that the unphysical modes are severely damped.
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Computational studies of the dispersive and dissipative properties of DG-
FEM were initiated in [181, 284], including extensions to two spatial di-
mensions. Steps toward a more rigorous analysis were taken in [179, 180],
including extensions to two-dimensional problems and the impact of bound-
ary conditions. A number of concluding conjectures made in that work have
subsequently been proven in [9]. In the following, we will outline the key results
of this analysis.

In the highly resolved region lh ! 1, we have, provided α "= 1, the disper-
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and the dissipative error is
∣∣∣I(l̃h)

∣∣∣ !
1
2

[
N !

(2N + 1)!

]2

(1 − α)(−1)N

(lh)2N+2,

as was also conjectured in [179]. Recall that l is the exact wavenumber and l̃
reflects the numerical wavenumber (recall l̃h = Ω).

For the nondissipative central flux (i.e., α = 1) the situation is a little
more complicated since

∣∣∣R(l̃h) −R(lh)
∣∣∣ !

1
2

[
N !

(2N + 1)!

]2 {
− 1

2 (lh)2N+3, N even
2(lh)2N+1, N odd,

illustrating an order reduction for odd values of N . Note that, in all cases,
the coefficient in front of the (lh) decreases rapidly with N , emphasizing the
benefits of using large values of N .

These excellent dispersive properties help to understand why one very
often observes O(hN+1) error in the computational experiments even if the
error analysis does not support this. It is simply the approximation error
associated with the representation of the initial conditions showing up as a
dominating component. The additional dispersive and dissipative errors are
accumulating at a very slow rate and will not show up unless a very long time
integration is required.

The above discussion answers directly how the dispersive and dissipative
errors will behave in the limit of h approaching zero while keeping N and l
fixed (i.e., under h-refinement). However, it is also interesting to consider the
other case in which lh is kept fixed but we increase N (i.e., order refinement).

If we now define the relative phase error

ρN =

∣∣∣∣∣
exp(ilh) − exp(il̃h)

exp(ilh)

∣∣∣∣∣ ,

the convergence of ρN falls into three separate regions with distinct behavior
[9]:

ρN !






2N + 1 < lh − C(lh)1/3, no convergence

lh−o(lh)1/3 <2N+1<lh+o(lh)1/3, O(N−1/3) convergence

2N + 1 # lh, O(hl/(2N + 1))2N+2 convergence

.

It is interesting to note that the threshold for no convergence is

2 ! lh

N + 1
= 2πp−1;

that is, one needs p ≥ π to achieve convergence, in agreement with classic
results from spectral methods [136].

A final theorem provides a useful guideline to determine the resolution
requirements for a general wave problem [9].

The dispersive accuracy is excellent!
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Dispersive properties
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Fig. 4.3. On the left, we show the numerical dispersion relations for the linear ad-
vection operator with an upwind flux. The dashed line represents the exact case and
the dotted curves are the spurious modes. On the right, we illustrate the dissipation
associated with the three modes.
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A final theorem provides a useful guideline to determine the resolution
requirements for a general wave problem [9].
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Convergence for p ≥ π
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So far we have not done anything to discretize time.

4.7 Discrete stability and timestep choices 93

Theorem 4.10. Let κ > 1 be fixed. If N, lh → ∞ such that (2N +1)/lh → κ,
then

ρN # C exp(−β(N + 1/2)),

where β > 0 and C are constants, depending on κ but not on N .

Thus, as long as κ > 1 (i.e., p > π), there is exponential decay of the phase
error.

In [10] the analysis of dispersion and dissipation for wave problems is ex-
tended to the second-order wave equation, using some of the schemes discussed
in Chapter 7 for the spatial approximation. We will not discuss these results
here and refer to the original work for the details. Dispersion and dissipation
characteristics of DG schemes specialized to Maxwell’s equations are discussed
in [240, 276].

4.7 Discrete stability and timestep choices

Most of the above analysis pertains to stability and convergence of the semi-
discrete form; that is, we have discretized space but kept time continuous, to
obtain a system of ordinary differential equations as

∂u

∂t
+ a

∂u

∂x
= 0 ⇒ duh

dt
+ Lhuh = 0.

Here, uh is the vector of unknowns (nodes or modes) and Lh represents the
discrete approximation to the periodic operator, a∂x.

To obtain a fully discrete scheme, we then use a method for the integra-
tion of systems of ordinary differential equations. As we already discussed
in Chapter 3, the most popular choice is a Runge-Kutta method, but other
choices are certainly also possible [40, 143, 144].

Regardless of the choice of the time integration method, however, we need
to choose the time-step, ∆t, used to advance the discrete form from tn to
tn+1. This choice has to take into account the balance between accuracy and
stability of the temporal scheme.

A standard technique, resulting in necessary but not sufficient conditions
on ∆t, is to consider the scalar test problem,

ut = λu, Real(λ) ≤ 0,

and define the stability region, C, associated with the timestepping scheme
as that region in the complex plane of λ∆t for which the scheme is stable;
examples for two explicit Runge-Kutta methods are shown in Fig. 4.4.

The connection between this simple case and the more general case is that
the eigenvalues of Lh play the role of λ, and to ensure stability, we must choose
∆t small enough so that the full eigenvalue spectrum fits inside the stability
region of the time integration scheme.

3.4 Dealing with time 63

rk4a = [ 0.0 ...
-567301805773.0/1357537059087.0 ...
-2404267990393.0/2016746695238.0 ...
-3550918686646.0/2091501179385.0 ...
-1275806237668.0/842570457699.0];

rk4b = [ 1432997174477.0/9575080441755.0 ...
5161836677717.0/13612068292357.0 ...
1720146321549.0/2090206949498.0 ...
3134564353537.0/4481467310338.0 ...
2277821191437.0/14882151754819.0];

rk4c = [ 0.0 ...
1432997174477.0/9575080441755.0 ...
2526269341429.0/6820363962896.0 ...
2006345519317.0/3224310063776.0 ...
2802321613138.0/2924317926251.0];

3.4 Dealing with time

The emphasis so far has been on the spatial dimension and a discrete rep-
resentation of this. This reflects a method-of-lines approach where we dis-
cretize space and time separately, and use some standard technique to solve
the ordinary differential equations for the latter.

We follow this approach here and, furthermore, focus on the use of explicit
Runge-Kutta (RK) methods for integration in the temporal dimension. To
discretize the semidiscrete problem

duh

dt
= Lh (uh, t) ,

where uh is the vector of unknowns, we can use the standard fourth-order
four stage explicit RK method (ERK)

k(1) = Lh (un
h, tn) ,

k(2) = Lh

(
un

h +
1
2
∆tk(1), tn +

1
2
∆t

)
,

k(3) = Lh

(
un

h +
1
2
∆tk(2), tn +

1
2
∆t

)
,

k(4) = Lh

(
un

h + ∆tk(3), tn + ∆t
)

,

un+1
h = un

h +
1
6
∆t

(
k(1) + 2k(2) + 2k(3) + k(4)

)
, (3.4)

to advance from un
h to un+1

h , separated by the timestep, ∆t.
As simple and widely used as this classic ERK approach is, it has the

disadvantage that it requires four extra storage arrays, k(i). An attractive

We shall consider the use of ERK methods
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64 3 Making it work in one dimension

Table 3.2. Coefficients for the low-storage five-stage fourth-order ERK method
(LSERK).

i ai bi ci

1 0
1432997174477
9575080441755

0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 −2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

alternative to this is a low-storage version [46] of the fourth-order method
(LSERK) of the form

p(0) = un,

i ∈ [1, . . . , 5] :

{
k(i) = aik

(i−1) + ∆tLh

(
p(i−1), tn + ci∆t

)
,

p(i) = p(i−1) + bik
(i),

un+1
h = p(5). (3.5)

The coefficients needed in the LSERK are given in Table 3.2. The main differ-
ence here is that only one additional storage level is required, thus reducing
the memory usage significantly. On the other hand, this comes at the price of
an additional function evaluation, as the low-storage version has five stages.

At first, it would seem that the additional stage makes the low-storage
approach less interesting due to the added cost. However, as we will discuss
in more detail in Chapter 4, the added cost in the low-storage RK is offset by
allowing a larger stable timestep, ∆t.

It should be emphasized that these methods are not exclusive and many
alternatives exist [40, 143, 144]. In particular, for strongly nonlinear problems,
the added nonlinear stability of strong stability-preserving methods may be
advantageous, as we will discuss further in Chapter 5.

3.5 Putting it all together

Let us now return to the simple linear wave equation

∂u

∂t
+ 2π

∂u

∂x
= 0, x ∈ [0, 2π],

u(x, 0) = sin(x),
u(0, t) = − sin(2πt).

and also a Low Storage form

Consider 
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Fig. 4.4. Regions of absolute stability the explicit classic fourth-order Runge-Kutta
(ERK) methods and the low-storage fourth-order, five-stage method (LSERK).

Before we continue, it is worthwhile trying to understand the scaling of
Lh as a function of N and h. Recall first that

Lh =
2a

h
M−1 [S − E ] ,

where E is a zero matrix with unity entries in the two diagonal corners.
Consider now

h2

4a2
‖Lh‖2

I =
h2

4a2
sup
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I

≤ ‖Dr‖2
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≤ C1N
4 + C2N

2 + C3N
3 ≤ CN4,

where we have used the well-known inequality [280]
∥∥∥∥

duh

dx
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I
≤

√
3N2‖uh‖I,

and the inverse trace inequality [320]

‖uh‖∂I ≤
N + 1√

2
‖uh‖I.

This results in a scaling as

‖Lh‖Dk ≤ C
a

hk
N2

The stability region
defines the timestep
that gives stability.
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Fig. 4.5. Structure of the eigenvalue spectrum, λN , for N = 24 and periodic bound-
ary conditions. On the left, for a purely central flux; in the middle for partially
upwinded flux; and on the right, for a fully upwinded flux.

for element Dk of size hk. Note, however, that this is a crude estimate as
it does not account for differences introduced through the fluxes and other
choices; that is, it is only an upper bound and the situation may be better
than this.

Let us consider the wave equation again and assume that we have only
one domain, r ∈ [−1, 1], and that a = 1. In Fig. 4.5 we show the eigenvalue
spectrum for the basic differentiation operator with periodic boundary condi-
tions at N = 24 but for different choices of the flux. We note in particular the
purely imaginary spectrum for the central flux, consistent with the energy-
conserving nature of this discretization. Note also that as soon as α #= 1, a
negative real part is associated with some of the eigenvalues, reflecting the
dissipative nature of the spatial scheme.

Comparing with the stability regions for the two explicit Runge-Kutta
methods in Fig. 4.4, it is clear that we can always choose ∆t sufficiently small
so that we can ensure ∆tλN to be inside the region of stability – a necessary
condition for discrete stability. A sufficient condition is a bit more restrictive
[326] and the necessary condition turns out to be an excellent guideline.

To turn this into a useful approach, we need to understand how one chooses
a stable ∆t in a semiautomatic fashion for different values of N . We show in
Fig. 4.6 the magnitude of the maximum eigenvalue as a function of N . A
couple of things are worth noticing. First, for large values of N , we see that
max(λN ) ∝ N2, as expected based on the previous analysis, indicating that
we should expect ∆t ∝ N−2.

It is instructive to consider another example where homogeneous boundary
conditions rather than periodic boundary are enforced on the single domain;
that is, it has less relevance for the general multi-element scheme. In Fig. 4.7
we show the corresponding eigenvalue spectrum for the basic differentiation
operator with N = 24 but for different choices of the flux. We note that for
α > 0 there is little qualitative difference between these results and those
shown in Fig. 4.5. For the pure upwinding case the situation is, however,
different. In particular, it appears that for small values of N (e.g., N < 30), the
growth rate of max(λN ) is different (e.g., max(λN ) ∝ N), but then changes

The structure also matters
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for larger values of N for the upwind flux; this is also what is reflected in
Fig. 4.6. This is a well-understood phenomenon and is related to a strong
non-normality of the discrete differentiation matrix for the pure upwinding
case. It is studied in detail in [309], highlighting that the O(N) growth rate is
in fact theoretically correct but finite precision effects makes the eigenvectors
highly sensitive, resulting in a practical bound proportional to N2 rather
than N , even for small values of N . It is curiosity rather than something truly
useful, as even small changes destroy this effect as illustrated above.

A guideline for stability for the general choice of flux is illustrated in Fig.
4.6 as an upper bound of the type

The estimate 

∆t ≤ C h
aN2

is sharp !
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max(|λN |) ≤ 3
2

max
i

(∆ir)−1,

where, as previously introduced, ∆ir is the grid spacing between the nodes
in the standard element, I = [−1, 1]. We can generally expect a timestep
limitation like

∆t ≤ C(N)min(∆x),

where C contains the constant 2/3 as well as information about the extension
of the region of absolute stability (Fig. 4.4).

The extension to more general cases is straightforward. If we consider

∂u

∂t
+ a

∂u

∂x
= 0,

and a general grid with elements of different lengths, hk, we have

∆t ≤ C
1
|a| min

k,i

hk

2
(∆ir),

as a reasonable bound, also known as the Courant-Friedrichs-Levy (CFL)
condition. For the general case of a system

∂u

∂t
+ A∂u

∂x
= 0,

we must ensure that the fastest waves are stable; that is, we obtain a bound
like

∆t ≤ C
1

max(|λ(A)|) min
k,i

hk

2
(∆ir),

where λ(A) represent the real eigenvalues of A, as these are the velocities
associated with the characteristic waves of the system.

4.8 Taming the CFL condition

As we have just seen, the timestep associated with a discontinuous Galerkin
discretization of a first-order operator has a scaling that asymptotically be-
haves as O

(
h/N2

)
when the order of polynomials, N , is increased or h is

decreased. This is primarily because the underlying discretization spaces con-
sists of polynomials defined on each element.

To further highlight the nature of this, we recall the following polynomial
inequalities (see e.g., [90, 296] for details and generalizations):

Theorem 4.11. The inequality
∣∣∣∣
dq

dx
(x)

∣∣∣∣ ≤
N√

1 − x2
‖q‖∞ , −1 < x < 1,

holds for every N -th-order polynomial, q.
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There are tricks to play to improve on this
‣ Mappings to improve the scaling
‣ Covolume filtering techniques
‣ Local time-stepping

See text for a discussion of other methods
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• Local time-stepping

See text for a discussion of these methods

Discrete stability

General guidelines

4.8 Taming the CFL condition 97

max(|λN |) ≤ 3
2

max
i

(∆ir)−1,

where, as previously introduced, ∆ir is the grid spacing between the nodes
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Local time-stepping

Problem: Small cells, even just one, cause a very small 
global time-step in an explicit scheme.

Time Step Size Stability Restriction

for Explicit Time-domain Methods

• Time step size !t is subject to stability restriction:

where " is the CFL number and !x is a measure of cell size and shape.

• Smallest cell determines size of time step !t for stable time integration.

• Single small red cell of size !x/10 forces the use of  time step size ten times 

smaller for all the remaining blue cells => simulation runs ten times slower.

• Many targets have geometrical features that require extremely small cells to 

resolve, such as sharp tips, grooves, gapes, and various other small details:

cxt /!#! "

 Regular Cell !x 

Small Cell !x/10 

EMCC, May 22, 2008

East Hartford, CT

Time Step Size Stability Restriction

for Explicit Time-domain Methods
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where " is the CFL number and !x is a measure of cell size and shape.

• Smallest cell determines size of time step !t for stable time integration.

• Single small red cell of size !x/10 forces the use of  time step size ten times 

smaller for all the remaining blue cells => simulation runs ten times slower.

• Many targets have geometrical features that require extremely small cells to 

resolve, such as sharp tips, grooves, gapes, and various other small details:

cxt /!#! "

 Regular Cell !x 

Small Cell !x/10 

EMCC, May 22, 2008

East Hartford, CT

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability

∆t ≤ C∆x ≤ C1
h

N2
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Local time-stepping

Recall the ERK scheme
Local Time-Stepping

Warburton-Hagstrom-Wilcox Approach [1]
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• Use regular AB3 to time-advance each coarse and fine mesh cell group:

tn

tn+1/2

tn+1

tn

tn+1

tn-1/2

tn-1 tn-1

tn-2

21$nu

• Use “half-step” AB3 to compute              at outer boundary of fine mesh.

It is needed to compute                 :

21$nu

)( 21$nuF

EMCC, May 22, 2008

East Hartford, CT [1] "Simplified local time stepping for discontinuous Galerkin methods“, in preparation. 

EMF 2009, May 28 2009, Mondovi 21

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

• Multistep methods

• One step methods
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Paper on Taylor scheme: M. Dumbser,C.-D. Munz, Arbitrary High Order Discontinuous Galerkin Scheme
EMF 2009, May 28 2009, Mondovi 21
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Markus Clemens
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Paper on Taylor scheme: M. Dumbser,C.-D. Munz, Arbitrary High Order Discontinuous Galerkin Scheme

We consider a multi-step scheme

EMF 2009, May 28 2009, Mondovi 20

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

LSERK-time explicit integration:

(Low Storage Explicit Runge-Kutta method)

Adams-Bashforth explicit time integration:

Pictures (right): Hesthaven,Warburton:Nodal Discontinuous Galerkin Methods,p.94 

& http://www.caam.rice.edu/~caam452/
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Local time-stepping

Substantial recent work by 
       Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes, 
restricted to 2nd order in time.

Layout for multi-rate local time-stepping

Local Time-Stepping

• Local time-stepping is time-advancing smaller cells with small time 

steps while time-advancing larger cells with large time steps:

• Presumably, most cells are time-advanced by 4!t and a small number of 

them are time-advanced by smaller time steps for appreciable speedup.

• Pattern can be extended to arbitrary number of levels with time step 

sizes !t, 2!t, 4!t,…, 2n!t.

tn

tn+1/4

tn+1/2

tn+1

tn+3/4

tn

tn+1

!t "!t #!t

EMCC, May 22, 2008

East Hartford, CT
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Local time-stepping

Challenge: Achieving this at high-order accuracy
Local Time-Stepping

Warburton-Hagstrom-Wilcox Approach [1]
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For all interior cells

At interface cells

This generalizes to many levels and arbitrary time-step fractions

Local Time-Stepping

Warburton-Hagstrom-Wilcox Approach [1]
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Local time-stepping
Sharp tips: Ogive

• Mesh refinement is necessary to capture the sharp tip geometry.

EMCC, May 22, 2008

East Hartford, CT

Local Time-Stepping Bistatic RCS Results for Ogive

• Solutions are essentially indistinguishable from each other

EMCC, May 22, 2008

East Hartford, CT

Execution Times with Local Time-Stepping

for Ogive

• One time level:

– N
o
= 23742

• Two time levels:

– N
o
=   151 (<1%)

– N
1
= 23591 (99%)

• Three time levels:

– N
o
=   151 (<1%)

– N
1
=  1959  (8%)

– N
2
= 21632 (91%)

• Four time levels:

– N
o
=   151 (<1%)

– N
1
=  1959  (8%)

– N
2
= 12622 (53%)

– N
3
=  9010 (38%)

EMCC, May 22, 2008

East Hartford, CT

Computations by 
HyperComp Inc
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Local time-stepping

Segmentation is done in preprocessing
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Ideally suited for local DG scheme

Known problems: 
        No known stability proof
        Time-step is not optimal (about 80%)

EMF 2009, May 28 2009, Mondovi 29

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Example Simulation time with

Adams-Bashford

(global time step)

Adams-Bashford

(local time step)

LSERK

(global time step)

Resonator 100% 59% 45%

3dB-Coupler 100% 29% 45%

Airplane 100% 15% 45%

EMF 2009, May 28 2009, Mondovi 29

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Example Simulation time with

Adams-Bashford

(global time step)

Adams-Bashford

(local time step)

LSERK

(global time step)

Resonator 100% 59% 45%

3dB-Coupler 100% 29% 45%

Airplane 100% 15% 45%
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Local time-stepping

EMF 2009, May 28 2009, Mondovi 29

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Example Simulation time with

Adams-Bashford

(global time step)

Adams-Bashford

(local time step)

LSERK

(global time step)

Resonator 100% 59% 45%

3dB-Coupler 100% 29% 45%

Airplane 100% 15% 45%

Computations by Nico Godel, Hamburg

The potential speed up is considerable -- and the 
more complex the better !
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A brief summary

We now have a good understanding all key aspects of 
the DG-FEM scheme for linear first order problems

‣ We understand both accuracy and stability and what
      we can expect.
‣ The dispersive properties are excellent.
‣ The discrete stability is a little less encouraging. 
     A scaling like

     is the Achilles Heel -- but there are ways!
∆t ≤ C h

aN2

... but what about nonlinear problems ?
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