DG-FEM for PDE's
 Lecture 3

Jan S Hesthaven
Brown University Jan.Hesthaven@Brown.edu

Wednesday, August 8, 12

Lecture 3

- Let's briefly recall what we know
- Why high order methods ?
- Part I
- Constructing fluxes for linear systems
- Approximation theory on the interval
- Part II:
- Convergence and error estimates
- Dispersive properties
- Discrete stability and how to overcome

A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

Let us recall

We already know a lot about the basic DG-FEM

- Stability is provided by carefully choosing the numerical flux.
- Accuracy appears to be given by the local solution representation.
- We can utilize major advances on monotone schemes to design fluxes.
- The scheme generalizes with very few changes to very general problems -- multidimensional systems of conservation laws.

Let us recall

We already know a lot about the basic DG-FEM

- Stability is provided by carefully choosing the numerical flux.
- Accuracy appear to be given by the local solution representation.
- We can utilize major advances on monotone schemes to design fluxes.
- The scheme generalizes with very few changes to very general problems -- multidimensional systems of conservation laws.

At least in principle -- but what can we actually prove?

Why high-order accuracy ?

Let us just make sure we understand why high-order accuracy/methods is a good idea

General concerns/criticism:

```
- High-order accuracy is not needed for real appl.
- The methods are not robust/flexible
- They only work for smooth problems
- They are hard to do in complex geometries
- They are too expensive
```

After having worked on these methods for 15 years, I have heard them all

Why high-order accuracy?

How do I solve a wave-problem to a given accuracy, ε_{p}, for a specific period of time, ν, most efficiently ?

$$
\text { Memory } \propto\left(\frac{\nu}{\varepsilon_{p}}\right)^{\frac{d}{2 m}}, \text { Work } \propto(2 m)^{d} \nu\left(\frac{\nu}{\varepsilon_{p}}\right)^{\frac{d+1}{2 m}}
$$

2nd order FD
Infinite order FD

Why high-order accuracy ?

High-order is important if

[^0]
Added benefit of high-order support

Wednesday, August 8,12

High-order takes 'some' of the pain out of grid generation

Linear systems and fluxes

Assume first that all coefficients vary smoothly

$$
\mathcal{Q}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}}{\partial t}+\mathcal{A}_{1}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}}{\partial x}+\mathcal{A}_{2}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}}{\partial y}+\mathcal{B}(\boldsymbol{x}) \boldsymbol{u}=0
$$

The flux along a normal \hat{n} is then

$$
\Pi=\left(\hat{n}_{x} \mathcal{A}_{1}(\boldsymbol{x})+\hat{n}_{y} \mathcal{A}_{2}(\boldsymbol{x})\right) . \quad \hat{\boldsymbol{n}} \cdot \mathcal{F}=\Pi \boldsymbol{u} .
$$

Now diagonalize this as

$$
\begin{gathered}
\mathcal{Q}^{-1} \Pi=\mathcal{S} \Lambda \mathcal{S}^{-1} \\
\Lambda=\Lambda^{+}+\Lambda^{-}
\end{gathered}
$$

and we obtain

$$
(\hat{\boldsymbol{n}} \cdot \mathcal{F})^{*}=\mathcal{Q S}\left(\Lambda^{+} \mathcal{S}^{-1} \boldsymbol{u}^{-}+\Lambda^{-} \mathcal{S}^{-1} \boldsymbol{u}^{+}\right),
$$

A bit more on fluxes

Let us briefly look a little more carefully at linear systems

$$
\begin{gathered}
\mathcal{Q}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}}{\partial t}+\nabla \cdot \mathcal{F}=\mathcal{Q}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}}{\partial t}+\frac{\partial \boldsymbol{F}_{1}}{\partial x}+\frac{\partial \boldsymbol{F}_{2}}{\partial y}=0, \\
\mathcal{F}=\left[\boldsymbol{F}_{1}, \boldsymbol{F}_{2}\right]=\left[\mathcal{A}_{1}(\boldsymbol{x}) \boldsymbol{u}, \mathcal{A}_{2}(\boldsymbol{x}) \boldsymbol{u}\right] .
\end{gathered}
$$

Prominent examples are

- Acoustics
- Electromagnetics
- Elasticity

In such cases we can derive exact upwind fluxes

Linear systems and fluxes

For non-smooth coefficients, it is a little more complex
Consider the problem $\frac{\partial u}{\partial t}+\lambda \frac{\partial u}{\partial x}=0, \quad x \in[a, b]$.

Then we clearly have

$$
\frac{d}{d t} \int_{a}^{b} u d x=-\lambda(u(b, t)-u(a, t))=f(a, t)-f(b, t),
$$

$$
\frac{d}{d t} \int_{a}^{b} u d x=\frac{d}{d t}\left((\lambda t-a) u^{-}+(b-\lambda t) u^{+}\right)=\lambda\left(u^{-}-u^{+}\right) .
$$

Linear systems and fluxes

Hence, by simple mass conservation, we achieve

$$
\begin{aligned}
& \quad-\lambda\left(u^{-}-u^{+}\right)+\left(f^{-}-f^{+}\right)=0 . \\
& \text { for } a \rightarrow x^{-}, b \rightarrow x^{+}
\end{aligned}
$$

These are the Rankine-Hugoniot conditions
For the general system, these are

$$
\forall i: \quad-\lambda_{i} \mathcal{Q}\left[\boldsymbol{u}^{-}-\boldsymbol{u}^{+}\right]+\left[(\Pi \boldsymbol{u})^{-}-(\Pi \boldsymbol{u})^{+}\right]=0,
$$

They must hold across each wave and can be used to connect across the interface

Linear systems and fluxes

So for the 3-wave problem we have

$$
\begin{aligned}
& \lambda \mathcal{Q}^{-}\left(\boldsymbol{u}^{*}-\boldsymbol{u}^{-}\right)+\left[(\Pi \boldsymbol{u})^{*}-(\Pi \boldsymbol{u})^{-}\right]=0, \\
& {\left[(\Pi \boldsymbol{u})^{*}-(\Pi \boldsymbol{u})^{* *}\right]=0,} \\
& -\lambda \mathcal{Q}^{+}\left(\boldsymbol{u}^{* *}-\boldsymbol{u}^{+}\right)+\left[(\Pi \boldsymbol{u})^{* *}-(\Pi \boldsymbol{u})^{+}\right]=0,
\end{aligned}
$$

and the numerical flux is given as

$$
(\hat{\boldsymbol{n}} \cdot \mathcal{F})^{*}=(\Pi \boldsymbol{u})^{*}=(\Pi \boldsymbol{u})^{* *},
$$

This approach is general and yields the exact upwind fluxes -- but requires that the system can be solved!

Linear systems and fluxes -- an example

Consider Maxwell's equations

$$
\left[\begin{array}{cc}
\varepsilon(x) & 0 \\
0 & \mu(x)
\end{array}\right] \frac{\partial}{\partial t}\left[\begin{array}{l}
E \\
H
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \frac{\partial}{\partial x}\left[\begin{array}{l}
E \\
H
\end{array}\right]=0 .
$$

The exact same approach leads to

$$
H^{*}=\frac{1}{\{Z Z\}\}}\left(\{\{Z H\}\}+\frac{1}{2}[E]\right), E^{*}=\frac{1}{\{\{Y\}\}}\left(\{\{Y E\}\}+\frac{1}{2}[H]\right),
$$

Now assume smooth materials:

$$
H^{*}=\{\{H\}\}+\frac{Y}{2} \llbracket E \rrbracket, \quad E^{*}=\{\{E\}\}+\frac{Z}{2} \llbracket H \rrbracket,
$$

We have recovered the LF flux!

An example

Consider Maxwell's equations

$$
\varepsilon(x) \frac{\partial E}{\partial t}=-\frac{\partial H}{\partial x}, \quad \mu(x) \frac{\partial H}{\partial t}=-\frac{\partial E}{\partial x},
$$

On the DG form

$$
\begin{aligned}
\frac{d \boldsymbol{E}_{h}^{k}}{d t}+\frac{1}{J^{k} \varepsilon^{k}} \mathcal{D}_{r} \boldsymbol{H}_{h}^{k} & =\frac{1}{J^{k} \varepsilon^{k}} \mathcal{M}^{-1}\left[\ell^{k}(x)\left(H_{h}^{k}-H^{*}\right)\right]_{x_{l}^{k}}^{x_{r}^{k}} \\
& =\frac{1}{J^{k} \varepsilon^{k}} \mathcal{M}^{-1} \oint_{x_{l}^{k}}^{x_{r}^{k}} \hat{\boldsymbol{n}} \cdot\left(H_{h}^{k}-H^{*}\right) \ell^{k}(x) d x,
\end{aligned}
$$

with the flux

$$
\begin{aligned}
& H^{-}-H^{*}=\frac{1}{2\{\{Z\}\}}\left(Z^{+} \llbracket H \rrbracket-\llbracket E \rrbracket\right), \\
& E^{-}-E^{*}=\frac{1}{2\{\{Y\}\}}\left(Y^{+} \llbracket E \rrbracket-\llbracket H \rrbracket\right),
\end{aligned}
$$

An example

\% compute time step size
$x \min =\min (\operatorname{abs}(x(1,:)-x(2,:)))$;
CFL=1.0; dt = CFL*xmin;
Nsteps $=$ ceil(FinalTime/dt); dt = FinalTime/Nsteps
\% outer time step loop
for tstep $=1$: Nsteps
for INTRK = 1:5
[rhsE, rhsH] = MaxwellRHS1D(E, H,eps,mu);
resE = rk4a(INTRK)*resE + dt*rhsE;
resH $=$ rk4a(INTRK)*resH + dt*rhsH;
$\mathrm{E}=\mathrm{E}+\mathrm{rk4b}($ INTRK)) resE
H = H+rk4b(INTRK)*resH;
end
\% Increment time
time $=$ time $+d t$;
end

An example

An example

Test example is cavity problem

Lets move on

At this point we have a good understanding of stability for linear problems -- through the flux.

Lets now look at accuracy in more detail.
Recall

$$
\Omega \simeq \Omega_{h}=\bigcup_{k=1}^{K} \mathrm{D}^{k}, \quad u(x, t) \simeq u_{h}(x, t)=\bigoplus_{k=1}^{K} u_{h}^{k}(x, t)
$$

we assume the local solution to be

$$
\begin{aligned}
& x \in \mathrm{D}^{k}=\left[x_{l}^{k}, x_{r}^{k}\right]: u_{h}^{k}(x, t)= \sum_{n=1}^{N_{p}} \hat{u}_{n}^{k}(t) \psi_{n}(x)= \\
& \text { modal basis } \quad \sum_{i=1}^{N_{p}} u_{h}^{k}\left(x_{i}^{k}, t\right) \ell_{i}^{k}(x) . \\
& \text { nodal basis }
\end{aligned}
$$

A second look at approximation

We will need a little more notation
Regular energy norms

$$
\|u\|_{\Omega}^{2}=\int_{\Omega} u^{2} d \boldsymbol{x} \quad\|u\|_{\Omega, h}^{2}=\sum_{k=1}^{K}\|u\|_{\mathrm{D}^{k}}^{2}, \quad\|u\|_{\mathrm{D}^{k}}^{2}=\int_{\mathrm{D}^{k}} u^{2} d \boldsymbol{x} .
$$

Sobolev norms

$$
\|u\|_{\Omega, q}^{2}=\sum_{|\alpha|=0}^{q}\left\|u^{(\alpha)}\right\|_{\Omega}^{2},\|u\|_{\Omega, q, h}^{2}=\sum_{k=1}^{K}\|u\|_{\mathrm{D}^{k}, q}^{2},\|u\|_{\mathrm{D}^{k}, q}^{2}=\sum_{|\alpha|=0}^{q}\left\|u^{(\alpha)}\right\|_{\mathrm{D}^{k}}^{2},
$$

Semi-norms

$$
|u|_{\Omega, q, h}^{2}=\sum_{k=1}^{K}|u|_{\mathrm{D}^{k}, q}^{2},|u|_{\mathrm{D}^{k}, q}^{2}=\sum_{|\alpha|=q}\left\|u^{(\alpha)}\right\|_{\mathrm{D}^{k}}^{2} .
$$

Local approximation

To simplify matters, introduce local affine mapping

$$
x \in \mathrm{D}^{k}: x(r)=x_{l}^{k}+\frac{1+r}{2} h^{k}, \quad h^{k}=x_{r}^{k}-x_{l}^{k}, \quad r \in[-1,1]
$$

We have already introduced the Legendre polynomials

$$
\begin{aligned}
& u(r) \simeq u_{h}(r)=\sum_{n=1}^{N_{p}} \hat{u}_{n} \tilde{P}_{n-1}(r)=\sum_{i=1}^{N_{p}} u\left(r_{i}\right) \ell_{i}(r), \\
& \boldsymbol{u}=\mathcal{V} \hat{\boldsymbol{u}}, \mathcal{V}^{T} \boldsymbol{\ell}(r)=\tilde{\boldsymbol{P}}(r), \quad \mathcal{V}_{i j}=\tilde{P}_{j}\left(r_{i}\right) .
\end{aligned}
$$

and r_{i} are the Legendre Gauss Lobatto points:
It is robust -- but is it accurate ?

Approximation theory

Recall

$$
\Omega \simeq \Omega_{h}=\bigcup_{k=1}^{K} \mathrm{D}^{k}, \quad u(x, t) \simeq u_{h}(x, t)=\bigoplus_{k=1}^{K} u_{h}^{k}(x, t)
$$

we assume the local solution to be

$$
x \in \mathrm{D}^{k}=\left[x_{l}^{k}, x_{r}^{k}\right]: u_{h}^{k}(x, t)=\sum_{n=1}^{N_{p}} \hat{u}_{n}^{k}(t) \psi_{n}(x)=\sum_{i=1}^{N_{p}} u_{h}^{k}\left(x_{i}^{k}, t\right) \ell_{i}^{k}(x) .
$$

The question is in what sense is $u(x, t) \simeq u_{h}(x, t)$
We have observed improved accuracy in two ways

- Increase K/decrease h
- Increase N

Approximation theory

Let us assume all elements have size h and consider

$$
v(r)=u(h r)=u(x) ;
$$

We consider expansions as

$$
v_{h}(r)=\sum_{n=0}^{N} \hat{v}_{n} \tilde{P}_{n}(r), \quad \tilde{P}_{n}(r)=\frac{P_{n}(r)}{\sqrt{\gamma_{n}}}, \quad \gamma_{n}=\frac{2}{2 n+1} . \quad \tilde{v}_{n}=\int_{1} v(r) \tilde{P}_{n}(r) d r .
$$

Theorem 4.1. Assume that $v \in H^{p}(\mathrm{I})$ and that v_{h} represents a polynomial projection of order N. Then

$$
\left\|v-v_{h}\right\|_{\mathbf{l}, q} \leq N^{\rho-p}|v|_{\mathbf{I}, p},
$$

where

$$
\rho= \begin{cases}\frac{3}{2} q, & 0 \leq q \leq 1 \\ 2 q-\frac{1}{2}, & q \geq 1\end{cases}
$$

and $0 \leq q \leq p$.

Approximation theory

We consider

$$
v_{h}(r)=\sum_{n=0}^{N} \hat{v}_{n} \tilde{P}_{n}(r), \tilde{v}_{h}(r)=\sum_{n=0}^{N} \tilde{v}_{n} \tilde{P}_{n}(r), \quad \boldsymbol{v}=\boldsymbol{V} \hat{\boldsymbol{v}}
$$

Compare the two

$$
\begin{aligned}
&(\mathcal{V} \hat{\boldsymbol{v}})_{i}=v_{h}\left(r_{i}\right)= \sum_{n=0}^{\infty} \tilde{v}_{n} \tilde{P}_{n}\left(r_{i}\right)=\sum_{n=0}^{N} \tilde{v}_{n} \tilde{P}_{n}\left(r_{i}\right)+\sum_{n=N+1}^{\infty} \tilde{v}_{n} \tilde{P}_{n}\left(r_{i}\right), \\
& \mathcal{V} \hat{\boldsymbol{v}}=\mathcal{V} \tilde{\boldsymbol{v}}+\sum_{n=N+1}^{\infty} \tilde{v}_{n} \tilde{P}_{n}(\boldsymbol{r}), \\
& v_{h}(r)=\tilde{v}_{h}(r)+\tilde{\boldsymbol{P}}^{T}(r) \mathcal{V}^{-1} \sum_{n=N+1}^{\infty} \tilde{v}_{n} \tilde{P}_{n}(\boldsymbol{r}) .
\end{aligned}
$$

Approximation theory

A sharper result can be obtained by using
Lemma 4.4. If $v \in H^{p}(I), p \geq 1$ then

$$
\left\|v^{(q)}-v_{h}^{(q)}\right\|_{\mathrm{I}, 0} \leq\left[\frac{(N+1-\sigma)!}{(N+1+\sigma-4 q)!}\right]^{1 / 2}|v|_{\mathbf{I}, \sigma},
$$

$$
\text { where } \sigma=\min (N+1, p) \text { and } q \leq p
$$

Note that in the limit of $N \gg$ p we recover

$$
\left\|v^{(q)}-v_{h}^{(q)}\right\|_{\mathrm{l}, 0} \leq N^{2 q-p}|v|_{\mid, p},
$$

A minor issues arises -- these results are based on projections and we are using interpolations?

Approximation theory

Consider this term

$$
\begin{gathered}
\tilde{\boldsymbol{P}}^{T}(r) \mathcal{V}^{-1} \sum_{n=N+1}^{\infty} \tilde{v}_{n} \tilde{P}_{n}(\boldsymbol{r})=\sum_{n=N+1}^{\infty} \tilde{v}_{n}\left(\tilde{\boldsymbol{P}}^{T}(r) \mathcal{V}^{-1} \tilde{P}_{n}(\boldsymbol{r})\right), \\
\tilde{\boldsymbol{P}}^{T}(r) \mathcal{V}^{-1} \tilde{P}_{n}(\boldsymbol{r})=\sum_{l=0}^{N} \tilde{p}_{l} \tilde{P}_{l}(r), \quad \mathcal{V} \tilde{\boldsymbol{p}}=\tilde{P}_{n}(\boldsymbol{r}),
\end{gathered}
$$

Caused by interpolation of highfrequency unresolved modes

Aliasing
Caused by the grid

Approximation theory

This has a some impact on the accuracy
Theorem 4.5. Assume that $v \in H^{p}(\mathrm{I}), p>\frac{1}{2}$, and that v_{h} represents a polynomial interpolation of order N. Then

$$
\left\|v-v_{h}\right\|_{\mathbf{l}, q} \leq N^{2 q-p+1 / 2}|v|_{\mathbf{I}, p}
$$

where $0 \leq q \leq p$.
To also account for the cell size we have

```
Theorem 4.7. Assume that }u\in\mp@subsup{H}{}{p}(\mp@subsup{\textrm{D}}{}{k})\mathrm{ and that }\mp@subsup{u}{h}{}\mathrm{ represents a piecewise
polynomial approximation of order N. Then
    |u-u}\mp@subsup{u}{h}{}\mp@subsup{|}{\Omega,q,h}{}\leqC\mp@subsup{h}{}{\sigma-q}|u\mp@subsup{|}{\Omega,\sigma,h}{}
for 0}\leqq\leq\sigma, and \sigma=\operatorname{min}(N+1,p)
```


Approximation theory

Approximation theory

Combining everything, we have the general result
Theorem 4.8. Assume that $u \in H^{p}\left(\mathrm{D}^{k}\right), p>1 / 2$, and that u_{h} represents a piecewise polynomial interpolation of order N. Then

$$
\left\|u-u_{h}\right\|_{\Omega, q, h} \leq C \frac{h^{\sigma-q}}{N^{p-2 q-1 / 2}}|u|_{\Omega, \sigma, h}
$$

```
for 0<q<\sigma, and \sigma=\operatorname{min}(N+1,p)
```

$$
\text { with } h=\max _{k} h^{k}
$$

Lets summarize Part I

Fluxes:

- For linear systems, we can derive exact upwind fluxes using Rankine-Hugonoit conditions.

Accuracy:

- Legendre polynomials are the right basis
- Local accuracy depends on elementwise smoothness
- Aliasing appears due to the grid but is under control
- For smooth problems, we have a spectral method
- Convergence can be recovered in two ways
- Increase N
- Decrease h

Convergence of the solution at all times ?

Lecture 3

- Let's briefly recall what we know
-Why high-order methods ?
- Part I:
- Constructing fluxes for linear systems
- Approximation theory on the interval
- Part II:
- Convergence and error estimates
- Dispersive properties
- Discrete stability and how to overcome

Convergence and all that

Let us introduce the error

$$
\boldsymbol{\varepsilon}(\boldsymbol{x}, t)=\boldsymbol{u}(\boldsymbol{x}, t)-\boldsymbol{u}_{h}(\boldsymbol{x}, t)
$$

What we really seek is convergence

$$
\forall t \in[0, T]: \lim _{\operatorname{dof} \rightarrow \infty}\|\varepsilon(t)\|_{\Omega, h} \rightarrow 0 .
$$

This is often a little complicated to get to due to the requirement for all t.

Let us get to it in a different way.

Lets recall convergence etc

We consider the system

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\mathcal{A} \frac{\partial \boldsymbol{u}}{\partial x}=0
$$

which we assume is wellposed in the sense

$$
\|\boldsymbol{u}(t)\|_{\Omega} \leq C \exp (\alpha t)\|\boldsymbol{u}(0)\|_{\Omega} .
$$

The semi-discrete scheme is given as

$$
\frac{d \boldsymbol{u}_{h}}{d t}+\mathcal{L}_{h} \boldsymbol{u}_{h}=0 .
$$

Inserting the exact solution u into the scheme yields

$$
\frac{d \boldsymbol{u}}{d t}+\mathcal{L}_{h} \boldsymbol{u}=\mathcal{T}(\boldsymbol{u}(x, t))
$$

truncation error

Convergence and all that

Let us consider the error equation

$$
\frac{d}{d t} \varepsilon+\mathcal{L}_{h} \varepsilon=\mathcal{T}(\boldsymbol{u}(\boldsymbol{x}, t))
$$

The solution is given as

$$
\boldsymbol{\varepsilon}(t)-\exp \left(-\mathcal{L}_{h} t\right) \boldsymbol{\varepsilon}(0)=\int_{0}^{t} \exp \left(\mathcal{L}_{h}(s-t)\right) \mathcal{T}(\boldsymbol{u}(s)) d s,
$$

Now consider

$$
\|\varepsilon(t)\|_{\Omega, h} \leq\left\|\exp \left(-\mathcal{L}_{h} t\right) \varepsilon(0)\right\|_{\Omega, h}+\left\|\int_{0}^{t} \exp \left(\mathcal{L}_{h}(s-t)\right) \mathcal{T}(\boldsymbol{u}(s)) d s\right\|_{\Omega, k}
$$

$$
\left\|\int_{0}^{t} \exp \left(\mathcal{L}_{h}(s-t)\right) \mathcal{T}(\boldsymbol{u}(s)) d s\right\|_{\Omega, h} \leq \int_{0}^{t}\left\|\exp \left(\mathcal{L}_{h}(s-t)\right)\right\|_{\Omega, h}\|\mathcal{T}(\boldsymbol{u}(s))\|_{\Omega, h} d s,
$$

Convergence and all that

So if we require consistency

$$
\left\{\begin{array}{l}
\lim _{\operatorname{dof} \rightarrow \infty}\|\varepsilon(0)\|_{\Omega, h}=0, \\
\lim _{\operatorname{dof} \rightarrow \infty}\|\mathcal{T}(\boldsymbol{u}(t))\|_{\Omega, h}=0
\end{array}\right.
$$

and stability

$$
\lim _{\operatorname{dof} \rightarrow \infty}\left\|\exp \left(-\mathcal{L}_{h} t\right)\right\|_{\Omega, h} \leq C_{h} \exp \left(\alpha_{h} t\right), \quad t \geq 0
$$

we obtain convergence

$$
\forall t \in[0, T]: \lim _{\operatorname{dof} \rightarrow \infty}\|\varepsilon(t)\|_{\Omega, h} \rightarrow 0
$$

This is of course part of the celebrated Lax-Richtmyer equivalence theorem

Back to the example

Consider again the simple example

$\frac{\partial u}{\partial t}-2 \pi \frac{\partial u}{\partial x}=0, \quad x \in[0,2 \pi],$					$u(x, 0)=\sin (l x), \quad l=\frac{2 \pi}{\lambda}$,		
$\underline{N \backslash K}$	2	4	8	16	32	64	Convergence rate\|
1	-	4.0E-01	9.1E-02	2.3E-02	5.7E-03	1.4E-03	2.0
2	2.0E-01	4.3E-02	6.3E-03	8.0E-04	1.0E-04	1.3E-05	3.0
4	3.3E-03	3.1E-04	9.9E-06	3.2E-07	$1.0 \mathrm{E}-08$	$3.3 \mathrm{E}-10$	5.0
8	2.1E-07	2.5E-09	4.8E-12	2.2E-13	$5.0 \mathrm{E}-13$	6.6E-13	$\simeq 9.0$

The error clearly behaves as
$\left\|u-u_{h}\right\|_{\Omega, h} \leq C h^{N+1}$.

Convergence and all that
Recall

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0
$$

for which we proved stability as

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\Omega, h}^{2} \leq c\left\|u_{h}\right\|_{\Omega, h}^{2}
$$

This generalizes easily to systems when upwinding is used on the characteristic variables.

Combining this with the accuracy analysis yields

$$
\left\|u-u_{h}\right\|_{\Omega, h} \leq \frac{h^{N}}{N^{p-5 / 2}}|u|_{\Omega, p, h}
$$

Back to the example

What about time dependence

Final time (T)	π	10π	100π	1000π	2000π
$(\mathrm{~N}, \mathrm{~K})=(2,4)$	$4.3 \mathrm{E}-02$	$7.8 \mathrm{E}-02$	$5.6 \mathrm{E}-01$	>1	>1
$(\mathrm{~N}, \mathrm{~K})=(4,2)$	$3.3 \mathrm{E}-03$	$4.4 \mathrm{E}-03$	$2.8 \mathrm{E}-02$	$2.6 \mathrm{E}-01$	$4.8 \mathrm{E}-01$
$(\mathrm{~N}, \mathrm{~K})=(4,4)$	$3.1 \mathrm{E}-04$	$3.3 \mathrm{E}-04$	$3.4 \mathrm{E}-04$	$7.7 \mathrm{E}-04$	$1.4 \mathrm{E}-03$

The error behaves as

$$
\left\|u-u_{h}\right\|_{\Omega, h} \leq C(T) h^{N+1} \simeq\left(c_{1}+c_{2} T\right) h^{N+1},
$$

Convergence and all that

Recall

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0
$$

for which we proved stability as

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{h}\right\|_{\Omega, h}^{2} \leq c\left\|u_{h}\right\|_{\Omega, h}^{2}
$$

This generalizes easily to systems when upwinding is used on the characteristic variables.
Combining this with the accuracy analysis yields

$$
\left\|u-u_{h}\right\|_{\Omega, h} \leq \frac{h^{N}}{N^{p-5 / 2}}|u|_{\Omega, p, h},
$$

but we observed

$$
\left\|u(T)-u_{h}(T)\right\|_{\Omega, h} \leq h^{N+1}\left(C_{1}+T C_{2}\right)
$$

Error estimates

We will now mimic this for the semi-discrete problem
$\mathcal{B}_{h}\left(u_{h}, \phi_{h}\right)=\left(\left(u_{h}\right)_{t}, \phi_{h}\right)_{\Omega, h}+a\left(\left(u_{h}\right)_{x}, \phi_{h}\right)_{\Omega, h}-\left(\hat{\boldsymbol{n}} \cdot\left(a u_{h}-(a u)^{*}\right), \phi_{h}\right)_{\partial \Omega, h}=0$,
Let us use a central flux

$$
(a u)^{*}=\{\{a u\}\},
$$

to obtain
$\mathcal{B}_{h}\left(u_{h}, \phi_{h}\right)=\left(\left(u_{h}\right)_{t}, \phi_{h}\right)_{\Omega, h}+a\left(\left(u_{h}\right)_{x}, \phi_{h}\right)_{\Omega, h}-\frac{1}{2}\left(\llbracket a u_{h} \rrbracket, \phi_{h}\right)_{\partial \Omega, h}=0$.
Observe

$$
\mathcal{B}_{h}\left(u, \phi_{h}\right)=0, \quad \sim \mathcal{B}_{h}\left(\varepsilon, \phi_{h}\right)=0, \varepsilon=u-u_{h} .
$$

Using

$$
\mathcal{B}_{h}\left(\varepsilon_{h}, \varepsilon_{h}\right)=\frac{1}{2} \frac{d}{d t}\left\|\varepsilon_{h}\right\|_{\Omega, h}^{2} .
$$

Error estimates

To get closer to the observed behavior, we need to be a little more careful.

Define

$$
\mathcal{B}(u, \phi)=\left(u_{t}, \phi\right)_{\Omega}+a\left(u_{x}, v\right)_{\Omega}=0
$$

we have

$$
\mathcal{B}(u, u)=0=\frac{1}{2} \frac{d}{d t}\|u\|_{\Omega}^{2} ; \quad \text { periodic } \mathbf{B C}
$$

For two different solutions we have

$$
\varepsilon(t)=u_{1}(t)-u_{2}(t)
$$

$$
\frac{1}{2} \frac{d}{d t}\|\varepsilon\|_{\Omega}^{2}=0, \quad \square\|\varepsilon(T)\|_{\Omega}=\left\|u_{1}(0)-u_{2}(0)\right\|_{\Omega}
$$

Error estimates

Now consider

$$
\frac{1}{2} \frac{d}{d t}\left\|\varepsilon_{N}\right\|_{\Omega, h}^{2}=\mathcal{B}_{h}\left(\mathcal{P}_{N} u-u, \varepsilon_{h}\right)
$$

one proves (with some work)

$$
\begin{aligned}
\left|\mathcal{B}_{h}\left(u-\mathcal{P}_{N} u, \varepsilon_{h}\right)\right| & \leq \frac{1}{2}\left((\{\{a q\}\},\{\{a q\}\})_{\partial \Omega, h}+\left(\varepsilon_{h}, \varepsilon_{h}\right)_{\partial \Omega, h}\right) \\
& \leq C|a| h^{2 \sigma-1}\|u\|_{\Omega, h, \sigma+1}^{2}
\end{aligned}
$$

$$
\Longrightarrow \frac{d}{d t}\left\|\varepsilon_{h}\right\|_{\Omega, h}^{2} \leq C|a| h^{2 \sigma-1}\|u\|_{\Omega, h, \sigma+1}^{2}
$$

$$
\Longrightarrow\left\|\varepsilon_{h}(T)\right\| \leq\left(C_{1}+C_{2} T\right) h^{N+1 / 2}
$$

Better -- but not quite there

Error estimates

The observe full order

$$
\left\|u(T)-u_{h}(T)\right\|_{\Omega, h} \leq h^{N+1}\left(C_{1}+T C_{2}\right)
$$

is in fact a special case !
It only works when
\checkmark When full upwinding on all characteristic variables are used
\checkmark Proof is only valid for the linear case
\checkmark Proof relies on ID superconvergence results
In spite of this, optimal convergence is observed in many problems - why ?

Dispersive properties

Consider again

$$
\begin{array}{r}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0, \\
u(x, 0)=\exp (i l x),
\end{array} \quad \quad u(x, t)=\exp (i(l x-\omega t)),
$$

The scheme is given as

$$
\begin{gathered}
\frac{h}{2} \mathcal{M} \frac{d \boldsymbol{u}_{h}^{k}}{d t}+a \mathcal{S} \boldsymbol{u}^{k}=\boldsymbol{e}_{N}\left[\left(a u_{h}^{k}\right)-\left(a u_{h}^{k}\right)^{*}\right]_{x_{r}^{k}}-\boldsymbol{e}_{0}\left[\left(a u_{h}^{k}\right)-\left(a u_{h}^{k}\right)^{*}\right]_{x_{i}^{k}}, \\
(a u)^{*}=\{\{a u\}\}+|a| \frac{1-\alpha}{2} \llbracket u \rrbracket .
\end{gathered}
$$

Look for solutions of the form

$$
\boldsymbol{u}_{h}^{k}\left(x^{k}, t\right)=\boldsymbol{U}_{h}^{k} \exp \left[i\left(l x^{k}-\omega t\right)\right]
$$

Why often optimal anyway?

Assume stability

$$
\lim _{\operatorname{dof} \rightarrow \infty}\left\|\exp \left(-\mathcal{L}_{h} t\right)\right\|_{\Omega, h} \leq C_{h} \exp \left(\alpha_{h} t\right), \quad t \geq 0
$$

Recall

$\left\|u-u_{h}\right\|_{\Omega, q, h} \leq C \frac{h^{\sigma-q}}{N^{p-2 q-1 / 2}}|u|_{\Omega, \sigma, h}, \quad \sigma=\min (N+1, p)$.

Dispersive properties

We recover

$$
\begin{aligned}
& {\left[2 \mathcal{S}-\alpha \boldsymbol{e}_{N}\left(\boldsymbol{e}_{N}^{T}-\exp (i L(N+1)) \boldsymbol{e}_{0}^{T}\right)\right.} \\
& \left.\quad+(2-\alpha) \boldsymbol{e}_{0}\left(\boldsymbol{e}_{0}^{T}-\exp (-i L(N+1)) \boldsymbol{e}_{N}^{T}\right)\right] \boldsymbol{U}_{h}^{k}=i \Omega \mathcal{M} \boldsymbol{U}_{h}^{k}
\end{aligned}
$$

Where

$$
\begin{aligned}
& L=\frac{l h}{N+1}=\frac{2 \pi}{\lambda} \frac{h}{N+1}=2 \pi p^{-1}, \Omega=\frac{\omega h}{a}, \\
& p=\frac{\lambda}{h /(N+1)}=\text { DoF per wavelength }
\end{aligned}
$$

So for a fixed L we solve the eigenvalue problem
.. and the eigenvalue will tell us how the wave propagates

Dispersive properties

Upwind fluxes

Central fluxes

Wednesday, August 8, 12

Discrete stability

So far we have not done anything to discretize time.

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \Rightarrow \frac{d \boldsymbol{u}_{h}}{d t}+\mathcal{L}_{h} \boldsymbol{u}_{h}=0 .
$$

We shall consider the use of ERK methods

$$
\begin{aligned}
\boldsymbol{k}^{(1)} & =\mathcal{L}_{h}\left(\boldsymbol{u}_{h}^{n}, t^{n}\right), \\
\boldsymbol{k}^{(2)} & =\mathcal{L}_{h}\left(\boldsymbol{u}_{h}^{n}+\frac{1}{2} \Delta t \boldsymbol{k}^{(1)}, t^{n}+\frac{1}{2} \Delta t\right), \\
\boldsymbol{k}^{(3)} & =\mathcal{L}_{h}\left(\boldsymbol{u}_{h}^{n}+\frac{1}{2} \Delta t \boldsymbol{k}^{(2)}, t^{n}+\frac{1}{2} \Delta t\right), \\
\boldsymbol{k}^{(4)} & =\mathcal{L}_{h}\left(\boldsymbol{u}_{h}^{n}+\Delta t \boldsymbol{k}^{(3)}, t^{n}+\Delta t\right), \\
\boldsymbol{u}_{h}^{n+1} & =\boldsymbol{u}_{h}^{n}+\frac{1}{6} \Delta t\left(\boldsymbol{k}^{(1)}+2 \boldsymbol{k}^{(2)}+2 \boldsymbol{k}^{(3)}+\boldsymbol{k}^{(4)}\right),
\end{aligned}
$$

Dispersive properties

There are some analytic results available (upwind)

$$
\begin{gathered}
|\mathcal{R}(\tilde{l} h)-\mathcal{R}(l h)| \simeq \frac{1}{2}\left[\frac{N!}{(2 N+1)!}\right]^{2}(l h)^{2 N+3}, \\
|\mathcal{I}(\tilde{l} h)| \simeq \frac{1}{2}\left[\frac{N!}{(2 N+1)!}\right]^{2}(1-\alpha)^{(-1)^{N}}(l h)^{2 N+2},
\end{gathered}
$$

The dispersive accuracy is excellent!
Define the relative phase error

$$
\rho_{N}=\left|\frac{\exp (i l h)-\exp (i \tilde{l} h)}{\exp (i l h)}\right|,
$$

$\rho_{N} \simeq \begin{cases}2 N+1<l h-C(l h)^{1 / 3}, & \text { no convergence } \\ l h-o(l h)^{1 / 3}<2 N+1<l h+o(l h)^{1 / 3} & \mathcal{O}\left(N^{-1 / 3}\right) \text { convergence } \\ 2 N+1 \gg l h, & \mathcal{O}(h l /(2 N+1))^{2 N+2}\end{cases}$
Convergence for $\quad 2 \simeq \frac{l h}{N+1}=2 \pi p^{-1} ;$

Discrete stability

and also a Low Storage form

$$
\begin{aligned}
& \boldsymbol{p}^{(0)}=\boldsymbol{u}^{n}, \\
& i \in[1, \ldots, 5]:\left\{\begin{array}{l}
\boldsymbol{k}^{(i)}=a_{i} \boldsymbol{k}^{(i-1)}+\Delta t \mathcal{L}_{h}\left(\boldsymbol{p}^{(i-1)}, t^{n}+c_{i} \Delta t\right), \\
\boldsymbol{p}^{(i)}=\boldsymbol{p}^{(i-1)}+b_{i} \boldsymbol{k}^{(i)},
\end{array}\right. \\
& \boldsymbol{u}_{h}^{n+1}=\boldsymbol{p}^{(5)} .
\end{aligned}
$$

Consider

$$
u_{t}=\lambda u, \quad \operatorname{Real}(\lambda) \leq 0
$$

The stability region defines the timestep that gives stability.

Discrete stability

Consider

$$
\mathcal{L}_{h}=\frac{2 a}{h} \mathcal{M}^{-1}[\mathcal{S}-\mathcal{E}]
$$

We have $\frac{h^{2}}{4 a^{2}}\left\|\mathcal{L}_{h}\right\|_{\mathrm{I}}^{2}=\frac{h^{2}}{4 a^{2}} \sup _{\left\|u_{h}\right\|=1}\left\|\mathcal{L}_{h} u_{h}\right\|_{\mathrm{I}}^{2}$

$$
\begin{aligned}
& \leq\left\|\mathcal{D}_{r}\right\|_{\mathrm{I}}^{2}+\left\|\mathcal{M}^{-1} \mathcal{E}\right\|_{\mathrm{I}}^{2}+2 \sup _{\left\|u_{h}\right\|=1}\left(\mathcal{D}_{r} u_{h}, \mathcal{M}^{-1} \mathcal{E} u_{h}\right)_{\mathrm{I}} \\
& \leq C_{1} N^{4}+C_{2} N^{2}+C_{3} N^{3} \leq C N^{4}
\end{aligned}
$$

So we should expect

$$
\left\|\mathcal{L}_{h}\right\|_{\mathrm{D}^{k}} \leq C \frac{a}{h^{k}} N^{2}
$$

Which would indicate

$$
\Delta t \leq C \frac{h}{a N^{2}}
$$

Discrete stability

General guidelines

\[

\]

There are tricks to play to improve on this

- Mappings to improve the scaling
- Covolume filtering techniques
- Local time-stepping

See text for a discussion of other methods

Discrete stability

The structure also matters

The estimate

$$
\Delta t \leq C \frac{h}{a N^{2}}
$$

is sharp !

Local time-stepping

Problem: Small cells, even just one, cause a very small global time-step in an explicit scheme.

$$
\begin{array}{l|l|l|l}
\hline & & & \Delta t \leq C \Delta x \leq C_{1} \frac{h}{N^{2}}
\end{array}
$$

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.
Old problems: accuracy and stability

Local time-stepping

Recall the ERK scheme

We consider a multi-step scheme

Wednesday, August 8, 12

Local time-stepping

Challenge:Achieving this at high-order accuracy

For all interior cells $\quad u_{n+1}=u_{n}+\frac{\Delta t}{12}\left[23 F\left(u_{n}\right)-16 F\left(u_{n-1}\right)+5 F\left(u_{n-2}\right)\right]$

At interface cells $u_{n+1 / 2} \quad u_{n+1 / 2}=u_{n}+\frac{\Delta t}{12}\left[17 F\left(u_{n}\right)-7 F\left(u_{n-1}\right)+2 F\left(u_{n-2}\right)\right]$
This generalizes to many levels and arbitrary time-step fractions

Local time-stepping

Substantial recent work by
Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc
Most of the recent work is based on LF-like schemes, restricted to 2 nd order in time.

Layout for multi-rate local time-stepping

Wednesday, August 8,12

Local time-stepping

$\mathrm{N}_{\mathrm{o}}=23742$

- Two time levels:
$\mathrm{N}_{\mathrm{o}}=151(<18)$
$\mathrm{N}_{1}=23591(998)$
Three time levels:
$\mathrm{N}_{\mathrm{o}}=151(<18)$
$\mathrm{N}_{1}=1959(88)$
$\mathrm{N}_{1}=1959(88)$
$\mathrm{N}_{2}=21632$ (918)
Four time levels:
$\mathrm{N}_{\mathrm{o}}=151(<18)$
$\mathrm{N}_{1}=1959(8 \%)$
$N_{1}=1959(88)$
$N_{2}=12622(538)$
$\mathrm{N}_{3}=9010(388)$

Wednesday, August 8,12

Local time-stepping

Segmentation is done in preprocessing

A brief summary

We now have a good understanding all key aspects of the DG-FEM scheme for linear first order problems

- We understand both accuracy and stability and what we can expect.
- The dispersive properties are excellent.
- The discrete stability is a little less encouraging.

A scaling like

$$
\Delta t \leq C \frac{h}{a N^{2}}
$$

is the Achilles Heel -- but there are ways!

> ... but what about nonlinear problems?

The potential speed up is considerable -- and the more complex the better !

Example	Simulation time with		
	Adams-Bashford (global time step)	Adams-Bashford (local time step)	LSERK (global time step)
Resonator	100%	59%	45%
3dB-Coupler	100%	29%	45%
Airplane	100%	15%	45%

Computations by Nico Godel, Hamburg

[^0]: - High accuracy is required - and it increasingly is ! - Long time integration is needed
 - High-dimensional problems (3D) are considered - Memory restrictions become a bottleneck

