DTU

DG-FEM for PDE's Lecture 3

Wednesday, August 8, 12

Lecture 3

- Let's briefly recall what we know
- Why high order methods ?
- Part I:
 - Constructing fluxes for linear systems
 - Approximation theory on the interval
- Part II:
 - Convergence and error estimates
 - Dispersive properties
 - Discrete stability and how to overcome

A brief overview of what's to come

- Lecture I: Introduction and DG-FEM in ID
- Lecture 2: Implementation and numerical aspects
- Lecture 3: Insight through theory
- Lecture 4: Nonlinear problems
- Lecture 5: Extension to two spatial dimensions
- Lecture 6: Introduction to mesh generation
- Lecture 7: Higher order/Global problems
- Lecture 8: 3D and advanced topics

Wednesday, August 8, 12

Let us recall

We already know a lot about the basic DG-FEM

- Stability is provided by carefully choosing the numerical flux.
- Accuracy appears to be given by the local solution representation.
- We can utilize major advances on monotone schemes to design fluxes.
- The scheme generalizes with very few changes to very general problems -- multidimensional systems of conservation laws.

Let us recall

We already know a lot about the basic DG-FEM

- Stability is provided by carefully choosing the numerical flux.
- Accuracy appear to be given by the local solution representation.
- We can utilize major advances on monotone schemes to design fluxes.
- The scheme generalizes with very few changes to very general problems -- multidimensional systems of conservation laws.

At least in principle -- but what can we actually prove ?

Wednesday, August 8, 12

Why high-order accuracy ?

How do I solve a wave-problem to a given accuracy, \mathcal{E}_p , for a specific period of time, ν , most efficiently ?

Why high-order accuracy ?

Let us just make sure we understand why high-order accuracy/methods is a good idea

General concerns/criticism:

- High-order accuracy is not needed for real appl.
- The methods are not robust/flexible
- They only work for smooth problems
- They are hard to do in complex geometries
- They are too expensive

After having worked on these methods for 15 years, I have heard them all

Wednesday, August 8, 12

Why high-order accuracy ?

High-order is important if

- High accuracy is required and it increasingly is !
- Long time integration is needed
- High-dimensional problems (3D) are considered
- Memory restrictions become a bottleneck

Wednesday, August 8, 12

Linear systems and fluxes

Assume first that all coefficients vary smoothly

$$\mathcal{Q}(\boldsymbol{x})\frac{\partial \boldsymbol{u}}{\partial t} + \mathcal{A}_1(\boldsymbol{x})\frac{\partial \boldsymbol{u}}{\partial x} + \mathcal{A}_2(\boldsymbol{x})\frac{\partial \boldsymbol{u}}{\partial y} + \mathcal{B}(\boldsymbol{x})\boldsymbol{u} = 0,$$

The flux along a normal \hat{n} is then

$$\Pi = (\hat{n}_x \mathcal{A}_1(\boldsymbol{x}) + \hat{n}_y \mathcal{A}_2(\boldsymbol{x})). \qquad \hat{\boldsymbol{n}} \cdot \mathcal{F} = \Pi \boldsymbol{u}.$$

Now diagonalize this as

$$\mathcal{Q}^{-1}\Pi = \mathcal{S}\Lambda\mathcal{S}^{-1},$$

 $\Lambda = \Lambda^+ + \Lambda^-,$

and we obtain

$$(\hat{\boldsymbol{n}}\cdot\mathcal{F})^* = \mathcal{QS}\left(\boldsymbol{\Lambda}^+\mathcal{S}^{-1}\boldsymbol{u}^- + \boldsymbol{\Lambda}^-\mathcal{S}^{-1}\boldsymbol{u}^+\right)$$

A bit more on fluxes

Let us briefly look a little more carefully at linear systems

$$\mathcal{Q}(\boldsymbol{x})\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot \mathcal{F} = \mathcal{Q}(\boldsymbol{x})\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{F}_1}{\partial x} + \frac{\partial \boldsymbol{F}_2}{\partial y} = 0,$$
$$\mathcal{F} = [\boldsymbol{F}_1, \boldsymbol{F}_2] = [\mathcal{A}_1(\boldsymbol{x})\boldsymbol{u}, \mathcal{A}_2(\boldsymbol{x})\boldsymbol{u}].$$

Prominent examples are

- Acoustics
- Electromagnetics
- Elasticity

In such cases we can derive exact upwind fluxes

Wednesday, August 8, 12

Linear systems and fluxes

For non-smooth coefficients, it is a little more complex

Consider the problem
$$\frac{\partial u}{\partial t} + \lambda \frac{\partial u}{\partial x} = 0, x \in [a, b].$$

 u^{-}
 a b u^{+}

Then we clearly have

$$\frac{d}{dt} \int_a^b u \, dx = -\lambda \left(u(b,t) - u(a,t) \right) = f(a,t) - f(b,t),$$
$$\frac{d}{dt} \int_a^b u \, dx = \frac{d}{dt} \left((\lambda t - a)u^- + (b - \lambda t)u^+ \right) = \lambda (u^- - u^+)$$

Wednesday, August 8, 12

Hence, by simple mass conservation, we achieve

$$-\lambda(u^{-} - u^{+}) + (f^{-} - f^{+}) = 0.$$

for $a \to x^-, b \to x^+$

These are the Rankine-Hugoniot conditions

For the general system, these are

$$\forall i: \quad -\lambda_i \mathcal{Q}[\boldsymbol{u}^- - \boldsymbol{u}^+] + [(\boldsymbol{\Pi}\boldsymbol{u})^- - (\boldsymbol{\Pi}\boldsymbol{u})^+] = 0,$$

They must hold across each wave and can be used to connect across the interface

Wednesday, August 8, 12

Linear systems and fluxes -- an example

Consider

$$\frac{\partial \boldsymbol{q}}{\partial t} + \mathcal{A} \frac{\partial \boldsymbol{q}}{\partial x} = \frac{\partial}{\partial t} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} + \begin{bmatrix} \boldsymbol{a}(x) & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{a}(x) \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} = 0,$$

Following the general approach, we have

$$\begin{split} &a^{-}(\boldsymbol{q}^{*}-\boldsymbol{q}^{-})+(\boldsymbol{\Pi}\boldsymbol{q})^{*}-(\boldsymbol{\Pi}\boldsymbol{q})^{-}=0,\\ &-a^{+}(\boldsymbol{q}^{*}-\boldsymbol{q}^{+})+(\boldsymbol{\Pi}\boldsymbol{q})^{*}-(\boldsymbol{\Pi}\boldsymbol{q})^{+}=0, \end{split}$$

with

$$(\Pi \boldsymbol{q})^{\pm} = \hat{\boldsymbol{n}} \cdot (\mathcal{A} \boldsymbol{q})^{\pm} = \hat{\boldsymbol{n}} \cdot \begin{bmatrix} a^{\pm} & 0 \\ 0 & -a^{\pm} \end{bmatrix} \begin{bmatrix} u^{\pm} \\ v^{\pm} \end{bmatrix} = \hat{\boldsymbol{n}} \cdot \begin{bmatrix} a^{\pm} u^{\pm} \\ -a^{\pm} v^{\pm} \end{bmatrix}.$$

Solving this yields

Intermediate velocity

Linear systems and fluxes

So for the 3-wave problem we have

$$\lambda \mathcal{Q}^{-}(\boldsymbol{u}^{*}-\boldsymbol{u}^{-}) + \left[(\boldsymbol{\Pi}\boldsymbol{u})^{*}-(\boldsymbol{\Pi}\boldsymbol{u})^{-}\right] = 0, \qquad \lambda_{1} \qquad \boldsymbol{u}^{*} \qquad \lambda_{2} \qquad \boldsymbol{u}^{*} \qquad \lambda_{3} \qquad \boldsymbol{u}^{*} \qquad$$

and the numerical flux is given as

$$(\hat{\boldsymbol{n}}\cdot\mathcal{F})^* = (\boldsymbol{\Pi}\boldsymbol{u})^* = (\boldsymbol{\Pi}\boldsymbol{u})^{**},$$

This approach is general and yields the exact upwind fluxes -- but requires that the system can be solved !

Wednesday, August 8, 12

Linear systems and fluxes -- an example

Consider Maxwell's equations

$$\begin{bmatrix} \varepsilon(x) & 0 \\ 0 & \mu(x) \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} E \\ H \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} E \\ H \end{bmatrix} = 0.$$

The exact same approach leads to

$$H^* = \frac{1}{\{\!\{Z\}\!\}} \left(\{\!\{ZH\}\!\} + \frac{1}{2}[\![E]\!]\right), \ E^* = \frac{1}{\{\!\{Y\}\!\}} \left(\{\!\{YE\}\!\} + \frac{1}{2}[\![H]\!]\right),$$

Now assume smooth materials:

$$H^* = \{\!\{H\}\!\} + \frac{Y}{2}[\![E]\!], \ E^* = \{\!\{E\}\!\} + \frac{Z}{2}[\![H]\!],$$

We have recovered the LF flux!

An example

Consider Maxwell's equations

$$\varepsilon(x)\frac{\partial E}{\partial t} = -\frac{\partial H}{\partial x}, \ \ \mu(x)\frac{\partial H}{\partial t} = -\frac{\partial E}{\partial x},$$

On the DG form

$$\begin{split} \frac{d\boldsymbol{E}_{h}^{k}}{dt} &+ \frac{1}{J^{k}\varepsilon^{k}}\mathcal{D}_{r}\boldsymbol{H}_{h}^{k} = \frac{1}{J^{k}\varepsilon^{k}}\mathcal{M}^{-1}\left[\boldsymbol{\ell}^{k}(x)(H_{h}^{k}-H^{*})\right]_{x_{l}^{k}}^{x_{r}^{k}} \\ &= \frac{1}{J^{k}\varepsilon^{k}}\mathcal{M}^{-1} \oint_{x_{l}^{k}}^{x_{r}^{k}} \hat{\boldsymbol{n}} \cdot (H_{h}^{k}-H^{*})\boldsymbol{\ell}^{k}(x) \ dx, \end{split}$$

with the flux

$$H^{-} - H^{*} = \frac{1}{2\{\{Z\}\}} \left(Z^{+} \llbracket H \rrbracket - \llbracket E \rrbracket \right),$$
$$E^{-} - E^{*} = \frac{1}{2\{\{Y\}\}} \left(Y^{+} \llbracket E \rrbracket - \llbracket H \rrbracket \right),$$

Wednesday, August 8, 12

An example

```
% compute time step size
xmin = min(abs(x(1,:)-x(2,:)));
CFL=1.0; dt = CFL*xmin;
Nsteps = ceil(FinalTime/dt); dt = FinalTime/Nsteps;
% outer time step loop
for tstep=1:Nsteps
  for INTRK = 1:5
      [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu);
      resE = rk4a(INTRK)*resE + dt*rhsE;
      resH = rk4a(INTRK)*resH + dt*rhsH;
      E = E + rk4b(INTRK) * resE:
      H = H+rk4b(INTRK)*resH;
   end
   % Increment time
   time = time+dt:
end
```

An example

Wednesday, August 8, 12

An example

Lets move on

At this point we have a good understanding of stability for linear problems -- through the flux.

Lets now look at accuracy in more detail.

$$\label{eq:recall} \begin{split} \mathbf{Recall} & \\ \boldsymbol{\varOmega} \simeq \boldsymbol{\varOmega}_h = \bigcup_{k=1}^K \mathbf{D}^k, \qquad \qquad \boldsymbol{u}(\boldsymbol{x},t) \simeq \boldsymbol{u}_h(\boldsymbol{x},t) = \bigoplus_{k=1}^K \boldsymbol{u}_h^k(\boldsymbol{x},t), \end{split}$$

we assume the local solution to be

Wednesday, August 8, 12

A second look at approximation

We will need a little more notation

Regular energy norms

$$\|u\|_{\varOmega}^2 = \int_{\varOmega} u^2 \, doldsymbol{x} \qquad \|u\|_{\varOmega,h}^2 = \sum_{k=1}^K \|u\|_{\mathsf{D}^k}^2 \,, \ \|u\|_{\mathsf{D}^k}^2 = \int_{\mathsf{D}^k} u^2 \, doldsymbol{x}.$$

Sobolev norms

$$\|u\|_{\Omega,q}^2 = \sum_{|\alpha|=0}^q \|u^{(\alpha)}\|_{\Omega}^2, \ \|u\|_{\Omega,q,h}^2 = \sum_{k=1}^K \|u\|_{\mathsf{D}^k,q}^2, \ \|u\|_{\mathsf{D}^k,q}^2 = \sum_{|\alpha|=0}^q \|u^{(\alpha)}\|_{\mathsf{D}^k}^2,$$

Semi-norms

$$|u|_{\varOmega,q,h}^2 = \sum_{k=1}^K |u|_{\mathsf{D}^k,q}^2, \ |u|_{\mathsf{D}^k,q}^2 = \sum_{|\alpha|=q} \|u^{(\alpha)}\|_{\mathsf{D}^k}^2.$$

Local approximation

To simplify matters, introduce local affine mapping

$$x \in \mathsf{D}^k: \; x(r) = x_l^k + \frac{1+r}{2}h^k, \;\; h^k = x_r^k - x_l^k, \quad r \in [-1,1]$$

We have already introduced the Legendre polynomials

$$u(r) \simeq u_h(r) = \sum_{n=1}^{N_p} \hat{u}_n \tilde{P}_{n-1}(r) = \sum_{i=1}^{N_p} u(r_i)\ell_i(r),$$

$$\boldsymbol{u} = \mathcal{V} \hat{\boldsymbol{u}}, \ \mathcal{V}^T \boldsymbol{\ell}(r) = \tilde{\boldsymbol{P}}(r), \ \mathcal{V}_{ij} = \tilde{P}_j(r_i).$$

and r_i are the Legendre Gauss Lobatto points:

Wednesday, August 8, 12

Approximation theory

Recall

$$\Omega \simeq \Omega_h = \bigcup_{k=1}^K \mathsf{D}^k, \qquad u(x,t) \simeq u_h(x,t) = \bigoplus_{k=1}^K u_h^k(x,t),$$

we assume the local solution to be

$$x \in \mathsf{D}^k = [x_l^k, x_r^k]: \ u_h^k(x, t) = \sum_{n=1}^{N_p} \hat{u}_n^k(t) \psi_n(x) = \sum_{i=1}^{N_p} u_h^k(x_i^k, t) \ell_i^k(x).$$

The question is in what sense is $u(x,t) \simeq u_h(x,t)$

We have observed improved accuracy in two ways

- Increase K/decrease h
- Increase N

Approximation theory

Let us assume all elements have size h and consider

v(r) = u(hr) = u(x);

$$v_h(r) = \sum_{n=0}^{N} \hat{v}_n \tilde{P}_n(r), \quad \tilde{P}_n(r) = \frac{P_n(r)}{\sqrt{\gamma_n}}, \quad \gamma_n = \frac{2}{2n+1}, \quad \tilde{v}_n = \int_1^{-1} v(r) \tilde{P}_n(r) \, dr$$

 $\psi_i(r)$

Theorem 4.1. Assume that $v \in H^p(I)$ and that v_h represents a polynomial projection of order N. Then

 $||v - v_h||_{l,q} \le N^{\rho - p} |v|_{l,p},$

 $\rho = \begin{cases} \frac{3}{2}q, & 0 \le q \le 1\\ 2q - \frac{1}{2}, & q > 1 \end{cases}$

where

and 0 < q < p.

Wednesday, August 8, 12

Approximation theory

We consider $v_h(r) = \sum_{n=0}^{N} \hat{v}_n \tilde{P}_n(r), \quad \tilde{v}_h(r) = \sum_{n=0}^{N} \tilde{v}_n \tilde{P}_n(r), \quad \boldsymbol{v} = \mathcal{V} \hat{\boldsymbol{v}},$

Compare the two

$$\begin{aligned} (\mathcal{V}\hat{\boldsymbol{v}})_i &= v_h(r_i) = \sum_{n=0}^{\infty} \tilde{v}_n \tilde{P}_n(r_i) = \sum_{n=0}^{N} \tilde{v}_n \tilde{P}_n(r_i) + \sum_{n=N+1}^{\infty} \tilde{v}_n \tilde{P}_n(r_i), \\ \mathcal{V}\hat{\boldsymbol{v}} &= \mathcal{V}\tilde{\boldsymbol{v}} + \sum_{n=N+1}^{\infty} \tilde{v}_n \tilde{P}_n(\boldsymbol{r}), \\ v_h(r) &= \tilde{v}_h(r) + \tilde{\boldsymbol{P}}^T(r) \mathcal{V}^{-1} \sum_{n=N+1}^{\infty} \tilde{v}_n \tilde{P}_n(\boldsymbol{r}). \end{aligned}$$

Approximation theory

A sharper result can be obtained by using

Lemma 4.4. If $v \in H^p(\mathsf{I})$, $p \ge 1$ then $\|v^{(q)} - v_h^{(q)}\|_{\mathsf{I},0} \le \left[\frac{(N+1-\sigma)!}{(N+1+\sigma-4q)!}\right]^{1/2} |v|_{\mathsf{I},\sigma},$ where $\sigma = \min(N+1,p)$ and $q \le p$.

Note that in the limit of N>>p we recover

$$\|v^{(q)} - v_h^{(q)}\|_{\mathbf{I},0} \le N^{2q-p} |v|_{\mathbf{I},p},$$

A minor issues arises -- these results are based on projections and we are using interpolations ?

Wednesday, August 8, 12

Approximation theory

Consider this term $\tilde{\boldsymbol{P}}^{T}(r)\mathcal{V}^{-1}\sum_{n=N+1}^{\infty}\tilde{v}_{n}\tilde{P}_{n}(\boldsymbol{r}) = \sum_{n=N+1}^{\infty}\tilde{v}_{n}\left(\tilde{\boldsymbol{P}}^{T}(r)\mathcal{V}^{-1}\tilde{P}_{n}(\boldsymbol{r})\right),$ $\tilde{\boldsymbol{P}}^{T}(r)\mathcal{V}^{-1}\tilde{P}_{n}(\boldsymbol{r}) = \sum_{l=0}^{N}\tilde{p}_{l}\tilde{P}_{l}(r), \quad \mathcal{V}\tilde{\boldsymbol{p}} = \tilde{P}_{n}(\boldsymbol{r}),$

Caused by interpolation of highfrequency unresolved modes

Aliasing

Caused by the grid

Approximation theory

This has a some impact on the accuracy

Theorem 4.5. Assume that $v \in H^p(I)$, $p > \frac{1}{2}$, and that v_h represents a polynomial interpolation of order N. Then

 $||v - v_h||_{l,q} \le N^{2q-p+1/2} |v||_{l,p},$

where $0 \leq q \leq p$.

To also account for the cell size we have

Theorem 4.7. Assume that $u \in H^p(\mathsf{D}^k)$ and that u_h represents a piecewise polynomial approximation of order N. Then

$$||u - u_h||_{\Omega,q,h} \le Ch^{\sigma-q} |u|_{\Omega,\sigma,h}$$

for $0 \le q \le \sigma$, and $\sigma = \min(N+1, p)$.

Wednesday, August 8, 12

Approximation theory

Approximation theory

Combining everything, we have the general result

Theorem 4.8. Assume that $u \in H^p(D^k)$, p > 1/2, and that u_h represents a piecewise polynomial interpolation of order N. Then

$$\|u - u_h\|_{\Omega,q,h} \le C \frac{h^{\sigma-q}}{N^{p-2q-1/2}} |u|_{\Omega,\sigma,h},$$

for $0 \le q \le \sigma$, and $\sigma = \min(N+1, p)$.

with $h = \max_k h^k$

Wednesday, August 8, 12

Lets summarize Part I

Fluxes:

▶ For linear systems, we can derive exact upwind fluxes using Rankine-Hugonoit conditions.

Accuracy:

- Legendre polynomials are the right basis
- Local accuracy depends on elementwise smoothness
- Aliasing appears due to the grid but is under control
- > For smooth problems, we have a spectral method
- Convergence can be recovered in two ways
 - Increase N
 - Decrease h

Convergence of the solution at all times ?

Lecture 3

- Let's briefly recall what we know
- Why high-order methods ?
- Part I:
 - Constructing fluxes for linear systems
 - Approximation theory on the interval
- ► Part II:
 - Convergence and error estimates
 - Dispersive properties
 - Discrete stability and how to overcome

Wednesday, August 8, 12

Lets recall convergence etc

We consider the system

$$\frac{\partial \boldsymbol{u}}{\partial t} + \mathcal{A}\frac{\partial \boldsymbol{u}}{\partial x} = 0,$$

which we assume is wellposed in the sense

 $\|\boldsymbol{u}(t)\|_{\boldsymbol{\varOmega}} \leq C \exp(\alpha t) \|\boldsymbol{u}(0)\|_{\boldsymbol{\varOmega}}.$

The semi-discrete scheme is given as

 $\frac{d\boldsymbol{u}_h}{dt} + \mathcal{L}_h \boldsymbol{u}_h = 0.$

Inserting the exact solution u into the scheme yields

$$\frac{d\boldsymbol{u}}{dt} + \mathcal{L}_h \boldsymbol{u} = \mathcal{T}(\boldsymbol{u}(x,t)),$$

truncation error

Wednesday, August 8, 12

Convergence and all that

Let us introduce the error

 $\boldsymbol{\varepsilon}(\boldsymbol{x},t) = \boldsymbol{u}(\boldsymbol{x},t) - \boldsymbol{u}_h(\boldsymbol{x},t),$

What we really seek is convergence

 $\forall t \in [0,T] : \lim_{\mathrm{dof} \to \infty} \| \boldsymbol{\varepsilon}(t) \|_{\Omega,h} \to 0.$

This is often a little complicated to get to due to the requirement for all t.

Let us get to it in a different way.

Convergence and all that

Let us consider the error equation $\frac{d}{dt} \pmb{\varepsilon} + \mathcal{L}_h \pmb{\varepsilon} = \mathcal{T}(\pmb{u}(\pmb{x},t)),$

The solution is given as

$$\boldsymbol{\varepsilon}(t) - \exp\left(-\mathcal{L}_h t\right) \boldsymbol{\varepsilon}(0) = \int_0^t \exp\left(\mathcal{L}_h(s-t)\right) \mathcal{T}(\boldsymbol{u}(s)) \, ds,$$

Now consider

$$\|\boldsymbol{\varepsilon}(t)\|_{\Omega,h} \le \|\exp\left(-\mathcal{L}_{h}t\right)\boldsymbol{\varepsilon}(0)\|_{\Omega,h} + \left\|\int_{0}^{t}\exp\left(\mathcal{L}_{h}(s-t)\right)\mathcal{T}(\boldsymbol{u}(s))\,ds\right\|_{\Omega,h}$$

$$\left\|\int_0^t \exp\left(\mathcal{L}_h(s-t)\right) \mathcal{T}(\boldsymbol{u}(s)) \, ds\right\|_{\Omega,h} \leq \int_0^t \|\exp\left(\mathcal{L}_h(s-t)\right)\|_{\Omega,h} \|\mathcal{T}(\boldsymbol{u}(s))\|_{\Omega,h} \, ds,$$

Convergence and all that

So if we require consistency

$$\begin{cases} \lim_{\mathrm{dof}\to\infty} \|\boldsymbol{\varepsilon}(0)\|_{\Omega,h} = 0, \\ \lim_{\mathrm{dof}\to\infty} \|\mathcal{T}(\boldsymbol{u}(t))\|_{\Omega,h} = 0 \end{cases}$$

and stability

$$\lim_{\mathrm{dof}\to\infty} \|\exp\left(-\mathcal{L}_h t\right)\|_{\Omega,h} \le C_h \exp(\alpha_h t), \ t \ge 0,$$

we obtain convergence

$$\forall t \in [0,T] : \lim_{d \to \infty} \| \boldsymbol{\varepsilon}(t) \|_{\Omega,h} \to 0$$

This is of course part of the celebrated Lax-Richtmyer equivalence theorem

Wednesday, August 8, 12

Back to the example

Consider again the simple example

The error clearly behaves as

$$\|u - u_h\|_{\Omega,h} \le Ch^{N+1}.$$

Convergence and all that

Recall

 $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0,$

for which we proved stability as

$$\frac{1}{2}\frac{d}{dt}\|u_h\|_{\Omega,h}^2 \le c\|u_h\|_{\Omega,h}^2,$$

This generalizes easily to systems when upwinding is used on the characteristic variables.

Combining this with the accuracy analysis yields

$$||u - u_h||_{\Omega,h} \le \frac{h^N}{N^{p-5/2}} |u|_{\Omega,p,h}$$

Wednesday, August 8, 12

Back to the example

What about time dependence

Final time (T)	π	10π	100π	1000π	2000π
(N,K) = (2,4)	4.3E-02	7.8E-02	5.6E-01	>1	>1
(N,K) = (4,2)	3.3E-03	4.4E-03	2.8E-02	2.6E-01	4.8E-01
(N,K) = (4,4)	3.1E-04	3.3E-04	3.4E-04	7.7E-04	1.4E-03

The error behaves as

$$||u - u_h||_{\Omega,h} \le C(T)h^{N+1} \simeq (c_1 + c_2T)h^{N+1},$$

Convergence and all that

Recall

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0,$$

for which we proved stability as

$$\frac{1}{2}\frac{d}{dt}\|u_h\|_{\Omega,h}^2 \le c\|u_h\|_{\Omega,h}^2$$

This generalizes easily to systems when upwinding is used on the characteristic variables.

Combining this with the accuracy analysis yields

$$||u - u_h||_{\Omega,h} \le \frac{h^N}{N^{p-5/2}} |u|_{\Omega,p,h},$$

but we observed

 $||u(T) - u_h(T)||_{O_h} \le h^{N+1}(C_1 + TC_2).$

Wednesday, August 8, 12

Error estimates

To get closer to the observed behavior, we need to be a little more careful.

Define $\mathcal{B}(u,\phi) = (u_t,\phi)_O + a(u_r,v)_O = 0$

we have

 $\mathcal{B}(u,u) = 0 = \frac{1}{2} \frac{d}{dt} ||u||_{\Omega}^{2};$ periodic BC

For two different solutions we have

$$\varepsilon(t) = u_1(t) - u_2(t)$$

$$\frac{1}{2}\frac{d}{dt}\|\varepsilon\|_{\Omega}^{2} = 0, \qquad ||\varepsilon(T)||_{\Omega} = \|u_{1}(0) - u_{2}(0)\|_{\Omega},$$

Wednesday, August 8, 12

Error estimates

We will now mimic this for the semi-discrete problem

 $\mathcal{B}_h(u_h,\phi_h) = ((u_h)_t,\phi_h)_{\Omega,h} + a((u_h)_x,\phi_h)_{\Omega,h} - (\hat{\boldsymbol{n}} \cdot (au_h - (au)^*),\phi_h)_{\partial\Omega,h} = 0,$

Let us use a central flux

$$(au)^* = \{\!\{au\}\!\},$$

to obtain

$$\mathcal{B}_h(u_h,\phi_h) = ((u_h)_t,\phi_h)_{\Omega,h} + a((u_h)_x,\phi_h)_{\Omega,h} - \frac{1}{2}(\llbracket au_h \rrbracket,\phi_h)_{\partial\Omega,h} = 0.$$

Observe

$$\mathcal{B}_h(u,\phi_h) = 0, \quad \blacksquare \quad \mathcal{B}_h(\varepsilon,\phi_h) = 0, \quad \varepsilon = u - u_h.$$

Using

 $\mathcal{B}_h(\varepsilon_h, \varepsilon_h) = \frac{1}{2} \frac{d}{dt} \|\varepsilon_h\|_{\Omega, h}^2.$

Error estimates

Now consider

$$\frac{1}{2}\frac{d}{dt}\|\varepsilon_N\|_{\Omega,h}^2 = \mathcal{B}_h(\mathcal{P}_N u - u, \varepsilon_h),$$

one proves (with some work)

 $|\mathcal{B}_h(u - \mathcal{P}_N u, \varepsilon_h)| \le \frac{1}{2} \left(\left(\{\{aq\}\}, \{\{aq\}\}\} \right)_{\partial \Omega, h} + (\varepsilon_h, \varepsilon_h)_{\partial \Omega, h} \right)$ $\leq C |a| h^{2\sigma-1} ||u||^2_{\Omega,h,\sigma+1},$

 $- \underbrace{\frac{d}{dt}}_{t} \|\varepsilon_h\|_{\Omega,h}^2 \le C |a| h^{2\sigma-1} \|u\|_{\Omega,h,\sigma+1}^2,$

 $\|\varepsilon_h(T)\| \le (C_1 + C_2 T)h^{N+1/2},$

Better -- but not guite there

Wednesday, August 8, 12

Error estimates

The observe full order

 $||u(T) - u_h(T)||_{\Omega,h} \le h^{N+1}(C_1 + TC_2).$

is in fact a special case !

It only works when

- ✓ When full upwinding on all characteristic variables are used
- \checkmark Proof is only valid for the linear case
- ✓ Proof relies on ID superconvergence results

In spite of this, optimal convergence is observed in many problems - why ?

Wednesday, August 8, 12

Dispersive properties

Consider again

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0,$$

$$u(x, 0) = \exp(ilx),$$
$$u(x, t) = \exp(i(lx - \omega t)),$$

The scheme is given as

$$\frac{h}{2}\mathcal{M}\frac{d\boldsymbol{u}_{h}^{k}}{dt} + a\mathcal{S}\boldsymbol{u}^{k} = \boldsymbol{e}_{N}\left[(a\boldsymbol{u}_{h}^{k}) - (a\boldsymbol{u}_{h}^{k})^{*}\right]_{\boldsymbol{x}_{r}^{k}} - \boldsymbol{e}_{0}\left[(a\boldsymbol{u}_{h}^{k}) - (a\boldsymbol{u}_{h}^{k})^{*}\right]_{\boldsymbol{x}_{l}^{k}}$$
$$(a\boldsymbol{u})^{*} = \{\{a\boldsymbol{u}\}\} + |\boldsymbol{a}|\frac{1-\alpha}{2}\left[\!\left[\boldsymbol{u}\right]\!\right].$$

Look for solutions of the form

$$\boldsymbol{u}_{h}^{k}(\boldsymbol{x}^{k},t) = \boldsymbol{U}_{h}^{k} \exp[i(l\boldsymbol{x}^{k}-\omega t)],$$

Why often optimal anyway ?

Assume stability

 $\lim_{dof\to\infty} \|\exp\left(-\mathcal{L}_h t\right)\|_{\Omega,h} \le C_h \exp(\alpha_h t), \ t \ge 0,$

Wednesday, August 8, 12

Dispersive properties

We recover

$$\begin{aligned} \left[2\mathcal{S} - \alpha \boldsymbol{e}_N \left(\boldsymbol{e}_N^T - \exp(iL(N+1))\boldsymbol{e}_0^T \right) \\ + \left(2 - \alpha \right) \boldsymbol{e}_0 \left(\boldsymbol{e}_0^T - \exp(-iL(N+1))\boldsymbol{e}_N^T \right) \right] \boldsymbol{U}_h^k &= i\Omega\mathcal{M}\boldsymbol{U}_h^k. \end{aligned}$$

Where
$$L = \frac{lh}{N+1} = \frac{2\pi}{\lambda} \frac{h}{N+1} = 2\pi p^{-1}, \quad \Omega = \frac{\omega h}{a},$$

 $p = \frac{\lambda}{h/(N+1)}$ = DoF per wavelength

So for a fixed L we solve the eigenvalue problem

.. and the eigenvalue will tell us how the wave propagates

Wednesday, August 8, 12

Dispersive properties

Upwind fluxes

Wednesday, August 8, 12

Discrete stability

So far we have not done anything to discretize time.

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \quad \Rightarrow \quad \frac{d \boldsymbol{u}_h}{dt} + \mathcal{L}_h \boldsymbol{u}_h = 0.$$

We shall consider the use of ERK methods

$$\begin{aligned} \boldsymbol{k}^{(1)} &= \mathcal{L}_{h} \left(\boldsymbol{u}_{h}^{n}, t^{n} \right), \\ \boldsymbol{k}^{(2)} &= \mathcal{L}_{h} \left(\boldsymbol{u}_{h}^{n} + \frac{1}{2} \Delta t \boldsymbol{k}^{(1)}, t^{n} + \frac{1}{2} \Delta t \right), \\ \boldsymbol{k}^{(3)} &= \mathcal{L}_{h} \left(\boldsymbol{u}_{h}^{n} + \frac{1}{2} \Delta t \boldsymbol{k}^{(2)}, t^{n} + \frac{1}{2} \Delta t \right), \\ \boldsymbol{k}^{(4)} &= \mathcal{L}_{h} \left(\boldsymbol{u}_{h}^{n} + \Delta t \boldsymbol{k}^{(3)}, t^{n} + \Delta t \right), \\ \boldsymbol{u}_{h}^{n+1} &= \boldsymbol{u}_{h}^{n} + \frac{1}{6} \Delta t \left(\boldsymbol{k}^{(1)} + 2 \boldsymbol{k}^{(2)} + 2 \boldsymbol{k}^{(3)} + \boldsymbol{k}^{(4)} \right), \end{aligned}$$

Dispersive properties

There are some analytic results available (upwind)

$$\begin{split} \left| \mathcal{R}(\tilde{l}h) - \mathcal{R}(lh) \right| &\simeq \frac{1}{2} \left[\frac{N!}{(2N+1)!} \right]^2 (lh)^{2N+3}, \\ \left| \mathcal{I}(\tilde{l}h) \right| &\simeq \frac{1}{2} \left[\frac{N!}{(2N+1)!} \right]^2 (1-\alpha)^{(-1)^N} (lh)^{2N+2}, \end{split}$$
The dispersive accuracy is excellent!

Define the relative phase error $\rho_N = \left| \frac{\exp(ilh) - \exp(i\tilde{l}h)}{\exp(ilh)} \right|$

$$\rho_N \simeq \begin{cases} 2N+1 < lh - C(lh)^{1/3}, & \text{no convergence} \\ lh - o(lh)^{1/3} < 2N+1 < lh + o(lh)^{1/3}, & \mathcal{O}(N^{-1/3}) \text{ convergence} \\ 2N+1 \gg lh, & \mathcal{O}(hl/(2N+1))^{2N+2} \text{ convergence} \end{cases}$$

Convergence for
$$2 \simeq \frac{lh}{N+1} = 2\pi p^{-1}; \qquad p \ge \pi$$

Wednesday, August 8, 12

Discrete stability

and also a Low Storage form

Discrete stability

Consider

$$\mathcal{L}_{h} = \frac{2a}{h} \mathcal{M}^{-1} \left[\mathcal{S} - \mathcal{E} \right],$$
We have $\frac{h^{2}}{4a^{2}} \|\mathcal{L}_{h}\|_{\mathsf{I}}^{2} = \frac{h^{2}}{4a^{2}} \sup_{\|u_{h}\|=1} \|\mathcal{L}_{h}u_{h}\|_{\mathsf{I}}^{2}$

$$\leq \|\mathcal{D}_{r}\|_{\mathsf{I}}^{2} + \|\mathcal{M}^{-1}\mathcal{E}\|_{\mathsf{I}}^{2} + 2 \sup_{\|u_{h}\|=1} \left(\mathcal{D}_{r}u_{h}, \mathcal{M}^{-1}\mathcal{E}u_{h} \right)_{\mathsf{I}}$$

$$\leq C_{1}N^{4} + C_{2}N^{2} + C_{3}N^{3} \leq CN^{4},$$

So we should expect

 $\|\mathcal{L}_h\|_{\mathsf{D}^k} \leq C rac{a}{h^k} N^2$ Which would indicate

 $\Delta t \le C \frac{h}{aN^2}$

Wednesday, August 8, 12

Discrete stability

General guidelines

There are tricks to play to improve on this

- Mappings to improve the scaling
- Covolume filtering techniques
- Local time-stepping

See text for a discussion of other methods

Discrete stability

The structure also matters

Wednesday, August 8, 12

Local time-stepping

Problem: Small cells, even just one, cause a very small global time-step in an explicit scheme.

$$\Delta t \le C\Delta x \le C_1 \frac{h}{N^2}$$

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability

Local time-stepping

Recall the ERK scheme

ŧ

Ŧ

We consider a multi-step scheme

Wednesday, August 8, 12

Local time-stepping

Challenge: Achieving this at high-order accuracy

This generalizes to many levels and arbitrary time-step fractions

Substantial recent work by

Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes, restricted to 2nd order in time.

Layout for multi-rate local time-stepping

Local time-stepping

Segmentation is done in preprocessing

Local time-stepping

The potential speed up is considerable -- and the more complex the better !

Example	Simulation time with				
	Adams-Bashford	Adams-Bashford	LSERK		
	(global time step)	(local time step)	(global time step)		
Resonator	100%	59%	45%		
3dB-Coupler	100%	29%	45%		
Airplane	100%	15%	45%		

Computations by Nico Godel, Hamburg

Wednesday, August 8, 12

Wednesday, August 8, 12

A brief summary

We now have a good understanding all key aspects of the DG-FEM scheme for linear first order problems

- We understand both accuracy and stability and what we can expect.
- The dispersive properties are excellent.
- The discrete stability is a little less encouraging. A scaling like

$$\Delta t \le C \frac{h}{aN^2}$$

is the Achilles Heel -- but there are ways!

... but what about nonlinear problems ?