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Consider

eps = 0.1

Problem Set 4

Ph.D. Course 2012:

Nodal DG-FEM for solving partial differential equations

If you have not already done so, please download all the Matlab codes
from the book from

http://www.nudg.org/

and store and unpack them in a directory you can use with Matlab.

We consider the prototype model for nonlinear hyperbolic conservation
laws, namely the inviscid Burgers equation in one spatial dimension

∂u

∂t
+

1

2

∂u2

∂x
= g(x, t), x ∈ [−10, 50] (1)

In class and in the text there are numerous examples of shock solutions
which can be found by using the Rankine-Hugoniot condition directly.

In the exercise we start by considering exact solutions of the form

u(x, t) =
1

cosh2(ε(x + 5.0) − t)
+ 1.

• Plot the function for values of ε equal to 0.1, 1, and 10 – what is the
effect of changing ε?

• Derive the right-hand side, g(x, t), for Burgers equation such that the
above function is an exact solution.

• Derive and implement a nodal DG-FEM scheme for solving the inviscid
Burgers equation - you can use the three files Burgers1Dxxx.m.

• The goal is to run your code until T=50. Try first and run the code for
different values of K = 10 and N = 6, 10, 16 and ε = 1.0 – what do you
observe – is the code behaving as you would expect, e.g., is there any
substantial difference (other than accuracy) between the low resolution
and the high resolution case ?

• Try and remove the dissipative terms in the LF flux (setting maxvel
= 0 in Burgers1DRHS.m). What do you observe ? – take K = 10
and N = 6.

• What happens when you change ε ?
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Exact solution

Right hand side for exact solution

y = ε(x + 5.0)− t f(x, t) =
2 sinh(y)
cosh(y)3

(1− ε(cosh(y)−2 + 1))

Running the code - 

✓N=6 - completes, but poor quality
✓N=10 - considerably better -  but not ‘pretty’
✓N=16 - looks good

Aliasing

✓Removing LF dissipation makes things worse - 
        N=6 crashes
✓Increasing eps makes it worse

✓Exact integration
✓Does the job
✓Still Gibbs oscillations
✓Expensive

✓Filtering
✓Does the job at limited cost
✓Degree of filtering is sensitive

✓Limiting
✓Severe dissipation
✓Works best with N=1


