
Feedback on Exercise 3

August 9, 2012

Thursday, August 9, 12

Problem Set 3

Ph.D. Course 2012:

Nodal DG-FEM for solving partial differential equations

If you have not already done so, download all the Matlab codes from the
book from

http://www.nudg.org/

and store and unpack them in a directory you can use with Matlab.

Let us go back to the simple problem

∂tu+ a(x)∂xu = g(x, t), x ∈ [−2, 2].

You can used the codes from Exercise 1 (Advecxxx.m) for this with the
boundary condition at x = −2 being given by the exact solution.

First assume that a(x) = 1 and g(x, t) = 0.

• We first consider the case with the exact solution being based on the
initial condition

u(x, 0) = −(sign(x)− 1)/2.

Run the code until T=1 and evaluate the hp-convergence in the L2-
norm. Remember to look at the solution !

• Repeat the exercise but for the initial condition

u(x, 0) = |x|.

Do the results in these two exercises agree with what you know about
the error estimates of the method ? – what about the smooth example
you considered in Exercise 1 ?

Let us now assume that

a(x) =

{

1.5 |x| ≤ 0.5
1 otherwise

and that the exact solution is assumed to u(x, t) = sin(π(x− a(x)t)).

• Derive g(x, t) so the provided u(x, t) is the exact solution.

• Run the code until T=1 and evaluate the hp-convergence in the L2-
norm. What kind of accuracy do you obtain – are the results in agree-
ment with your expectations?
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• Does it matter whether you have an element interface to co-inside with
the position of the discontinuities of a(x) ?

We next consider the 1D model for acoustic waves in an mean flow, given
as

ut +M(x)ux = −px (1)

pt +M(x)px = −ux

where the unknowns are the velocity, u(x, t), and the pressure, p(x, t). The
Machnumber, M(x) = u0(x)/c0(x), reflects the velocity of the steady mean
flow. Note that this is a slight generalization of the problem discussed in
Exercise 2.

The Mach-number profile can be both constant, variable, and even piece-
wise smooth only, i.e., M(x) can be discontinuous when an acoustic signal
propagates through a shock.

• Use an energy method to show that the system is hyperbolic (diag-
onizable and with real eigenvalues) and conserves energy if (u, p) are
assumed periodic.

• Using an energy technique, discuss how many boundary conditions
are needed in a finite domain at each end – note that this depends on
M(x) !

At this point, we have established wellposedness and understand what kind
of boundary conditions are needed. We shall now seek the development of
a numerical solver of this problem using DG-FEM.

• Assume that M(x) varies smoothly and write it on the form

qt +A(q)x = 0,

where

q =

[

u
p

]

, A =

[

M 1
1 M

]

.

One can show that the upwind flux in this case takes the form

(Aq)∗ = A

([

{{u}}
{{p}}

]

+
1

2

[

[[p]]
[[u]]

])

.

Is it reasonable that it takes the form ? – can you identify the different
terms ?

Discuss why we only really need to consider the case where |M(x)| ≤ 1.
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Expressed as

Eigenvalues of A

|M| > 1 - both eigenvalues have same sign
|M| < 1 - different signs
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