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16.4 min, RMSE = 0.220 16.4 min, RMSE = 0.236 16.7 min, RMSE = 0.076 17.6 hours

Figure 1: Stanford bunny made of white grapefruit juice [Narasimhan et al. 2006] and rendered using, from left to right, the standard
dipole [Jensen et al. 2001], the better dipole [d’Eon 2012; d’Eon and Irving 2011], our directional dipole, and unbiased path tracing [Rush-
meier 1988]. Our model captures translucency effects that are present in path tracing but not in other analytical BSSRDF models.

Abstract

Rendering translucent materials using Monte Carlo ray tracing is a
challenge. For such materials, rendering time often becomes pro-
hibitively long due to the large number of subsurface scattering
events. A faster approach is to use an analytical model derived from
diffusion theory. However, the efficiency of the analytical models
comes at the cost of losing translucency effects in the rendered re-
sult. We present a new analytical model for subsurface scattering.
Our model captures translucency effects that are present in the ref-
erence images but remain absent with existing analytical models.
The key difference is that our model is based on ray source diffu-
sion, rather than point source diffusion. A ray source corresponds
better to the light that refracts through the surface of a translucent
material. Using this ray source, we are able to take the direction
of the incident light ray and the direction toward the point of emer-
gence into account. We use a dipole construction similar to that of
the standard dipole model, but we now have positive and negative
ray sources instead of point sources. Our model is as efficient as
previous dipole models while the rendered images are significantly
closer to the references. Unlike some previous work, our model is
fully analytic and requires no precomputation.

1 Introduction

The rendering of translucent materials, such as skin, foods, stones,
and many other natural materials, has many important use cases
in computer graphics. For more than a decade, the dipole approx-
imation for subsurface scattering [Jensen et al. 2001] has proven
to be a fast practical way of rendering such materials. This stan-
dard dipole model is however built upon a number of assumptions
which are often violated. One significant assumption is that inci-
dent light is directionally uniform. This assumption is evident from
the fact that the standard dipole model is a function only of the dis-
tance between the point of incidence and the point of emergence.
The same assumption has been used in improved analytical mod-
els which were introduced recently [d’Eon and Irving 2011; d’Eon
2012]. However, the lighting distribution in realistic scene configu-
rations is rarely directionally uniform.

Standard dipole Our dipole

Figure 2: A standard dipole model uses two point sources to handle
the boundary condition on a flat boundary. Our model uses two
directional sources and relaxes the assumption of a flat boundary.

We introduce a directional subsurface scattering model which
comes closer to path traced references. In particular, we relax the
assumption on the direction of the incoming light. Our model is
based on a new analytical solution to the diffusion equation for a
ray of light in a highly scattering medium [Menon et al. 2005a;
Menon et al. 2005b]. This solution is not directly applicable in
computer graphics as it ignores boundary conditions. Inspired by
the standard dipole model [Jensen et al. 2001], we extend this solu-
tion to a dipole construction, namely a mirrored pair of directional
sources. We explain how to construct a practical BSSRDF based
on this approach. Our final model is fully analytic, widely appli-
cable to many different materials, and as computationally efficient
as the standard dipole model with significantly improved accuracy.
Figure 1 highlights our results.

2 Related Work

The most general approach for rendering participating media is
to solve the radiative transfer equation by Monte Carlo ray trac-
ing (path tracing) [Rushmeier 1988]. However, this approach be-
comes extremely costly for highly scattering media, where the av-
erage number of scattering events (and thus the number of rays to be
traced) is very large. Hanrahan and Krueger [1993] pioneered ren-
dering of highly scattering translucent materials in computer graph-



ics. They introduced analytical models for single scattering, but
used path tracing for multiple scattering. Stam [1995] introduced
diffusion theory to handle multiple scattering efficiently. He used
a finite element method to solve the diffusion equation. A fully
analytical model for subsurface scattering was first introduced to
graphics by Jensen et al. [2001]. We refer to their model as the
standard dipole in this paper.

There are a number of practical but approximate analytical solu-
tions available for the diffusion equation. Jensen et al. [2001] used
a solution for a point light in a semi-infinite medium. D’Eon and
Irving [2011] and d’Eon [2012] recently presented more accurate
models based on the same solution. The key difference in our model
is that we use an approximate solution for a ray of light in an infinite
medium [Menon et al. 2005a; Menon et al. 2005b] (see Figure 2).
This solution enables us, for the first time in an analytical BSSRDF
model, to take the directions of incident light rays into account.

Special case solutions for the diffusion equation are often derived
for fluence inside a medium with no boundary. It is however impor-
tant to consider boundary conditions in computer graphics, where
we are interested in the radiance emerging at the surface. One pop-
ular approach to handle boundary conditions is the dipole approxi-
mation [Farrell et al. 1992; Jensen et al. 2001]. The dipole approx-
imation was developed for handling light normally incident on a
semi-infinite medium with a planar surface. The dipole model has
been improved in a number of ways such as multipole [Wang 1998;
Donner and Jensen 2005] and quadpole constructions [Kienle 2005;
Donner and Jensen 2007]. Our model extends the above mentioned
ray source solution to a dipole construction with a positive and a
negative ray source (Figure 2).

Another class of methods in computer graphics uses precomputa-
tion. Donner et al. [2009] introduced a method which precom-
putes solutions to the radiative transfer equation as a canonical tab-
ulated solution. Yan et al. [2012] proposed another precomputation
method for highly scattering media using a spherical Gaussian ap-
proximation. Both approaches relax the assumptions made in the
models based on diffusion theory at the cost of storing precom-
puted tables. Unlike this previous work, our model remains fully
analytical without any precomputation.

3 Theory

We include subsurface scattering in a traditional rendering by using
the general form of the rendering equation [Jensen et al. 2001]:

Lo(xo, ~ωo) = Le(xo, ~ωo) + Lr(xo, ~ωo) = Le(xo, ~ωo)

+

∫
A

∫
2π

S(xi, ~ωi;xo, ~ωo)Li(xi, ~ωi)(~ωi · ~ni) dωi dA , (1)

where Lo(xo, ~ωo) is the outgoing (or emergent) radiance in the di-
rection ~ωo from the location xo on the surface A of a medium,
Li(xi, ~ωi) is the radiance incident on the surface A at the loca-
tion xi from the direction ~ωi, and ~ni is the surface normal at xi.
We solve this equation given Le as an emission term, while Lr is
the integral part which is referred to as the reflectance term. The
function S is called a Bidirectional Scattering-Surface Reflectance
Distribution Function (BSSRDF).

The BSSRDF is defined by the factor of proportionality between
an element of emergent radiance dLr(xo, ~ωo) and an element of
incident flux dΦi(xi, ~ωi) [Nicodemus et al. 1977]

S(xi, ~ωi;xo, ~ωo) =
dLr(xo, ~ωo)

dΦi(xi, ~ωi)
. (2)

It is common to split the BSSRDF into a single scattering term S(1)

and a multiple scattering term Sd [Hanrahan and Krueger 1993;

Figure 3: Path traced single scattering result (left) that should be
added to the first three images in Figure 1 to get the full BSSRDF
result. We also show a full result for the standard dipole as an
example (right). Note that highlights on the back and the head are
still significantly different from the path traced result.

Jensen et al. 2001], such that

S = T12(Sd + S(1))T21 , (3)

where T12 and T21 are the Fresnel transmittance terms at the loca-
tions where the radiance enters and exits the medium, respectively.

There are a number of fast, approximate methods available for eval-
uating the single scattering term. In forward scattering materials,
single scattering becomes increasing unimportant as the asymme-
try (g) increases, and most natural translucent materials are highly
forward scattering [Frisvad et al. 2007]. The white grapefruit juice
used in Figure 1 is also forward scattering, but with fairly low asym-
metry (g ≈ 0.55). Even in such a material, the contribution from
single scattering is still low (see Figure 3). We therefore focus on
the multiple scattering term for highly scattering media.

3.1 Diffusion Theory for a Ray of Light

Diffusion theory provides a way to derive analytic expressions for
the multiple scattering term of the BSSRDF (Sd). This is usu-
ally done by finding a special case solution for the classic diffusion
equation, which is [Ishimaru 1978]

(D∇2 − σa)φd(x) = −q(x) + 3D∇ ·Q(x) , (4)

where φd(x) =
∫
4π
Ld(x, ~ω

′) dω′ is the diffusive part of the flu-
ence, σa is the absorption coefficient,D is the diffusion coefficient,
and q and Q are zeroth and first order source terms.

The standard dipole model [Jensen et al. 2001] uses the solution
of the diffusion equation for a point source in an infinite medium.
Consequently, the multiple scattering part of this model depends
only on the distance between the points of incidence and emer-
gence. The direction of the incident light ray affects only the Fres-
nel transmittance term. Our key contribution is a new BSSRDF
model based on a more recent solution to the diffusion equation for
a ray of light in an infinite medium [Menon et al. 2005a; Menon
et al. 2005b]. Our model thus takes the directions of incident light
rays into account.

Consider a ray which starts at the origin of the coordinate system
and proceeds along the z-axis. The reduced intensity (or directly
transmitted) light due to this source is

Lri(x, ~ω) = Φδ(x)δ(y)Θ(z)e−σtzδ(~ω − ~ωz) , (5)

where Φ is the radiant flux of the source and σt is the extinction
coefficient of the medium. We have set x = (x, y, z) while ~ωz is



the direction of the z-axis and Θ(z) is the Heaviside step function
which is 1 when z ≥ 0 and 0 otherwise. This equation leads to the
following zeroth and first order source terms:

q(x) = σsΦδ(x)δ(y)Θ(z)e−σtz (6)
Q(x) = gq(x)~ωz , (7)

where σs is the scattering coefficient which is related to extinction
and absorption by σt = σs + σa. The asymmetry parameter g is
the mean cosine of the scattering angle.

Inserting the source terms (6–7) in the diffusion equation (4) and
making the assumptions that lead to the usual dipole approximation,
we reach an approximate directional solution for a ray of light in an
infinite medium [Menon et al. 2005a; Menon et al. 2005b]:

φ′d(r, θ) =
Φ

4πD

e−σtrr

r

(
1 + 3D

1 + σtrr

r
cos θ

)
. (8)

where σtr =
√
σa/D is the effective transport coefficient, r = |x|

is the distance from the point of incidence, and θ is the angle with
the ray direction (see Figure 4);

cos θ = z/r = (x · ~ωz)/r . (9)

It is interesting to note that, for a ray of light which is perpendicu-
lar to the surface (cos θ = 0), Equation 8 turns into the solution for
a point source which is used in existing analytical BSSRDF mod-
els [Jensen et al. 2001; d’Eon and Irving 2011]. Note that the as-
sumptions are that we go to the asymptotic regions of the medium,
far away from sources and boundaries where r � 1/σs, and we as-
sume weak absorption σa � σs. The same assumptions have been
employed in other analytical BSSRDF models. We use a prime ′ to
indicate that a solution is for an infinite medium (φ′d above and also
S′d in the following).

Suppose we have incident radiance Li(xi, ~ωi) and let it refract into
a scattering material to get

Lt(xi, ~ω12) = η−2 T12Li(xi, ~ωi) , (10)

where η = η2/η1 is the relative refractive index, ~ω12 is the direc-
tion of the transmitted ray given by the law of refraction, and T12 is
the Fresnel transmittance. In an arbitrary coordinate system, with
x = xo−xi, we then have the following setup for Equation 8 (see
Figure 4):

Φ = T12Φi , ~ωz = ~ω12 , r = |x| , cos θ =
x · ~ω12

r
.

3.2 Emergent Radiance

To get an expression for the diffusive part of the BSSRDF, we must
relate the fluence to the emergent radiance. The emergent radi-
ance Lr due to diffuse subsurface scattering is given by

Lr(xo, ~ωo) = η2 T21Ld(xo, ~ω21) , (11)

where ~ω21 is the direction of the ray from inside the medium re-
fracting to the direction ~ωo according to the law of refraction and
T21 is the Fresnel transmittance. Combining the diffusion approx-
imation [Ishimaru 1978] with Fick’s law of diffusion [Fick 1855],
the diffusely scattered radiance is

Ld(x, ~ω) =
1

4π
φd(x)− 3

4π
D(x) ~ω · ∇φd(x) (12)

with D = 1/(3σ′t), where σ′t = σs(1 − g) + σa is called the
reduced extinction coefficient.

Figure 4: The dipole configuration of our model. It is similar to
the dipole with point sources, but we have ray sources. The di-
rection ~ω12 of the refracted ray is used for the real source (blue).
We mirror this direction in a modified tangent plane to find the di-
rection ~ωv of the virtual source (red). The modified tangent plane
contains xo − xi, and it is perpendicular to the plane spanned by
~ni and xo−xi. The origin of the virtual source is displaced along
the normal of this modified plane.

The relation between Ld and the diffusive part of the BSSRDF Sd
is given by Equations 2–3 and 11:

T12SdT21 = η2
d(T21Ld)

dΦi
. (13)

Assuming that the diffusive light at the point of emergence no
longer depends on the outgoing direction due to a large number
of scatterings, we have Sd(xi, ~ωi;xo, ~ωo) = Sd(xi, ~ωi;xo). Inte-
grating over outgoing directions, we get

T12Sd(xi, ~ωi;xo)4πCφ(1/η) =
dMd(xo)

dΦi(xi, ~ωi)
, (14)

where Md is the diffuse radiant exitance and Cφ is a function of η
which relates to hemispherical integration of the Fresnel transmit-
tance. The η2 factor disappears from the equation because we use
1/η as the argument for Cφ [Aronson 1995]. The diffuse radiant
exitance is

Md(xo) =

∫
2π

T21Ld(xo, ~ω21)(~no · ~ωo) dωo , (15)

where ~no is the surface normal pointing outward at the point of
emergence such that the integral is over the hemisphere with ~no ·
~ωo > 0. Inserting the expression for Ld (12), we get an integral
that has been investigated many times before [Haskell et al. 1994;
Aronson 1995; Kienle and Patterson 1997]. The solution is

Md(xo) = Cφ(η)φd(xo)−CE(η)D(xo)~no ·∇φd(xo) , (16)

where Cφ and CE are functions that d’Eon and Irving [2011] pro-
vide convenient polynomial approximations for. Equation 16 was
introduced to graphics in the improved BSSRDF model by d’Eon
and Irving [2011].

As opposed to previous work, we now use the diffuse fluence from



the directional solution (8). The gradient of this expression is

∇φ′d =
Φ

4πD

e−σtrr

r3

(
~ωz 3D(1 + σtrr)− x (1 + σtrr)

− x 3D
3(1 + σtrr) + (σtrr)

2

r
cos θ

)
.

Inserting this solution and its gradient into Equation 16, we get an
expression for the diffuse radiant exitance Md. When this is in-
serted in Equation 14, we obtain an expression for the diffusive part
of the BSSRDF inside an infinite medium:

S′d(xi, ~ω12;xo) 4Cφ(1/η) =

1
4π2

e−σtrr

r3

[
Cφ(η)

(
r2

D
+ 3(1 + σtrr)r cos θ

)
− CE(η)

(
(~ω12 · ~no)3D(1 + σtrr)− (xo − xi)

· ~no
(

(1 + σtrr) + 3D 3(1+σtrr)+(σtrr)
2

r
cos θ

))]
,

(17)

where T12 and the flux disappear since Φ = T12Φi, and we take
the derivative with respect to Φi. The factor 4Cφ(1/η) is the nor-
malization factor also used by d’Eon and Irving [2011].

3.3 Boundary Conditions

The BSSRDF derived above (17) assumes that we have a ray of
light in an infinite medium. Since we are interested in rendering
media with boundaries, we need to take boundaries into account.

Dipole configuration. There are many sensible ways to incorpo-
rate the boundary in diffusion theory, and one has to make a number
of decisions in order to build a new model [Haskell et al. 1994]. A
common approach is to let the fluence vanish at the boundary of the
medium. This is achieved by introducing a virtual source which is
the real source mirrored in the surface tangent plane. This config-
uration is commonly referred to as a dipole. To make the diffusion
approximation match transport theory better near the boundary, the
fluence should instead vanish at an extrapolated boundary. The dis-
tance to this boundary is called the extrapolation distance de. Ac-
cording to exact transport theory, the extrapolation distance for a
weakly absorbing medium with a planar surface is [Glasstone and
Edlund 1952; Ishimaru 1978]

de = 0.7104/σ′s = 2.121D/α′ , (18)

where σ′s = σs(1 − g) is the reduced scattering coefficient and
α′ = σ′s/σ

′
t is the reduced scattering albedo.

If the boundary of the medium has a mismatch between the out-
side and the inside refractive indices (η1 and η2, respectively, see
Figure 4), we must multiply the extrapolation distance by a reflec-
tion parameter A [Groenhuis et al. 1983]. When the real source is
mirrored in the extrapolated boundary, the displacement of the vir-
tual source becomes 2Ade. The reflection parameter A is related to
hemispherical integrals over the Fresnel transmittance. Using the
coefficients from d’Eon and Irving [2011], it is

A =
1− CE(η)

2Cφ(η)
. (19)

Unlike the standard dipole model [Jensen et al. 2001], we have a
dipole of ray sources. This difference influences how the sources
should be positioned in the dipole. Figure 4 illustrates the configu-
ration we have chosen.

Zero displacement of the real source. In the standard dipole
model, the real source is placed at the first scattering event straight
below the surface. This captures scattering due to a normally inci-
dent light ray. Since our source corresponds more accurately to the
actual light ray, we should not displace the real source. This choice
also requires us to clamp the distance r = |xo −xi| to a minimum
distance. This clamping is not only for avoiding numerical errors,
but also for avoiding the region where the assumption of uniform
emergent radiance is invalid. Our clamping is done by

r =

{
max(|xo − xi|, de) ~ω12 · ~ω21 < 0 (front-lit)
max(|xo − xi|, D) otherwise (back-lit) . (20)

Mirroring of the direction. Since our source is directional, we
also need to mirror the direction as well as the origin. While one ob-
vious choice of mirror plane is the tangent plane defined by ~ni, we
found that this choice leads to an unstable solution when a surface
is curved or has small details. Instead, we use a modified tangent
plane with normal

~n∗i =
xo − xi
|xo − xi|

× ~ni × (xo − xi)

|~ni × (xo − xi)|
(21)

to mirror the source. If xo is in the surface tangent plane, this
modified boundary equals the surface tangent plane.

Putting the above all together, our final BSSRDF is

Sd(xi, ~ωi;xo) = S′d(xi, ~ω12;xo)− S′d(xv, ~ωv;xo) (22)

where, xv = xi + 2Ade~n
∗
i and ~ωv = ~ω12 − 2(~ω12 · ~n∗i )~n∗i (see

Figure 4).

4 Implementation

Just like the standard dipole model, our model can be implemented
in a number of ways. The only major difference is that our model
takes directions into account. Techniques which assume irradiance
as input need minor modification in order to use our model. We
implemented our model in the following two approaches.

Direct Monte Carlo integration. As described by Jensen et
al. [2001], it is possible to use a BSSRDF in a Monte Carlo ray
tracer. We integrate the BSSRDF in a progressive path tracer by
distributing points evenly across the surface of the translucent ob-
ject using a dart throwing technique. A new set of points is sampled
iteratively. For every sampled surface point, the incident illumina-
tion is sampled from one direction. When a ray hits a translucent
material, we loop over all surface samples and accept or reject them
using a Russian roulette with the exponential term in the BSSRDF,
exp(−σtrr), as the probability of acceptance.

Hierarchical integration. The hierarchical integration method
for the standard dipole model [Jensen and Buhler 2002] works well
with our model. Our implementation is almost the same as the orig-
inal method. The only difference is that the irradiance computation
is no longer separable from the evaluation of the BSSRDF. Each
irradiance sample will be a list of differential irradiance samples
instead of its sum at the same location. We also use the same list of
directions across all irradiance samples in order to spatially cluster
them without any change in the algorithm. Each evaluation of the
BSSRDF now goes over the list and uses directions. The number
of evaluations of the BSSRDF increases with this approach. One
possible optimization would be to extend clustering to take into ac-
count directions, so that we can also cluster directional samples. We
chose a simpler approach of utilizing the existing implementation
of the hierarchical integration method.
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Figure 5: Simple test cases comparing the standard dipole model (dipole) [Jensen et al. 2001], the better dipole model (btpole) [d’Eon 2012],
our model (ours), and the reference solutions rendered by path tracing (ptrace). Materials used are, from left to right, apple, chocolate milk
(regular), marble, potato, skin1, soy milk (regular), white grapefruit juice, and whole milk all from corresponding measured values [Jensen
et al. 2001; Narasimhan et al. 2006]. Results of our model are significantly closer to the path traced references while the rendering time, in
most cases, only increases slightly.

Figure 6: Objective image quality measurements for the renderings
in Figure 5. Our model consistently outperforms other models.

5 Results

We implemented the standard dipole [Jensen et al. 2001], quantized
diffusion [d’Eon and Irving 2011], the better dipole [d’Eon 2012],
and our model all with the two approaches mentioned in the pre-
vious section. For material parameters, we use measured values of
actual materials [Jensen et al. 2001; Narasimhan et al. 2006]. We
exclude single scattering in all the renderings with our model as
well as existing models since we only deal with highly scattering
materials, and since it is expensive to render it with path tracing (16
hours for Figure 3, left). Note that adding single scattering does
not recover the missing translucency effects in the existing models
(shown in Figure 3), and our results can be similarly improved by
adding single scattering.

To validate our model, we compare against full solutions of the
radiative transfer equation using unbiased path tracing as described
by Rushmeier [1988]. Figure 5 compares our model to the standard
dipole and the better dipole for simple shapes of varying materials.
To provide an objective comparison of the images, we measure the
root-mean-squared error (RMSE) and the structural similarity index
(SSIM [Wang et al. 2004]) of the different images using the path
traced reference. Figure 6 plots all the measurements. Our method
consistently achieves lower error and larger similarity.

We also ran similar comparisons for more complex geometries.
Figure 1 shows the bunny model rendered with the white grapefruit
juice material. The result of our model is visually closer to the path
traced reference at the same cost as the other models. The RMSE
validates that our model is indeed more accurate. Figure 7 shows
the same scene configuration with the marble material. For this ma-
terial, existing models tend to work rather well, yet our model is still
more accurate than the other models. Figure 8 shows renderings of
a chicken material which has lower albedo (≈ 0.7). The difference
between our model and existing models is even more prominent. In
particular, our model captures bright scattered highlights which are
completely missing in existing models. The results in Figures 1, 5,
7, and 8 were rendered using direct Monte Carlo integration. The
remaining results were rendered using hierarchical integration.

Figure 10 is a comparison with quantized diffusion [d’Eon and Irv-
ing 2011]. It illustrates that, except for subtle differences, quantized
diffusion generally give us results that are very similar to the results
obtained with the better dipole [d’Eon 2012]. Our model on the
other hand gives us significantly different results which we have
confirmed to be more accurate in all comparisons to path tracing
references. Figure 11 demonstrates renderings with image based
lighting. All the images in this figure were rendered in less than 3
min on a regular desktop PC. However, renderings using the better
dipole took less than 1 min, as we do not need to sample directions
for every shading point. Note that our model still works well under
complex illumination and across a wide range of materials.

Since our model has a more complicated mathematical expression,
it requires some extra computations. In a simple scene where the
ray tracing is cheap, evaluation of our model can be up to 1.5 times
slower per sampled path. In addition, since our model captures
more features, it sometimes requires more samples to converge. All
together, the rendering time can sometimes be up to 2 times higher
before a converged image is obtained.

6 Discussion

Full planar model and modified boundary plane. While our
model uses distances and angles computed directly from given lo-
cations and directions, we found that we could also assume a com-
pletely planar configuration and compute distances and angles ac-
cordingly. For example, we can compute the distance to the virtual
source differently. This configuration is employed in the standard
dipole model [Jensen et al. 2001] and in quantized diffusion [d’Eon
and Irving 2011]. Our early experiments however show that this
model is slightly inferior to the current full 3D model (see Fig-
ure 9, center). We also experienced that using the modified bound-



3.4 min, RMSE = 0.214 3.6 min, RMSE = 0.190 4.5 min, RMSE = 0.104 19.3 hours

Figure 7: Same scene configuration as Figure 1 but with marble [Jensen et al. 2001]. Although existing models work rather well for this
material, our model is still closer to the path traced reference solution.

Figure 8: The buddha model made out of chicken meat [Jensen
et al. 2001] and rendered using, from left to right, the standard
dipole, the better dipole, our directional dipole, and path tracing.
Our model is closer to the reference. The specular highlights have
high intensity in this case and they cause volume caustics which
appear only in path tracing.

ary plane to mirror sources is very important. Without this modifi-
cation, our model does not work well (see Figure 9, right).

Reciprocity. Unlike the standard dipole model which only de-
pends on the distance, our model is not precisely reciprocal (i.e.,
swapping variables for an incident point and an emergent point does
not result in the same value). However, we have found that our
model is very close to reciprocal in practice. We have seen little
changes in rendered images when swapping variables. If we need
a strictly reciprocal model, we can simply take the average of two
evaluations of our model with swapped variables. All the results in
this paper do not use this trick as the evaluation cost doubles.

Negative values. In rare cases, our BSSRDF (Equation 22) can
return a negative value. It is a consequence of the approximations
in the ray source solution (Equation 8). Our current solution is to
simply clamp the final value to zero if it is negative. We have not
found a case where clamping causes visible artifacts.

Limitations. Since we still make a number of assumptions to
derive our model, it does not perfectly match the results of path
tracing. For example, our model does not capture effects due to
anisotropic scattering, as then the emergent radiance distribution is
often not uniform. We also use a dipole to handle boundary con-
ditions. This approach is known to have a number of failure cases

Current model Planar No modified boundary

Figure 9: Comparison of our current model, the planar model, and
our model without the modified boundary plane. The images are
close ups of the bunny in Figure 7 without Fresnel reflections to
highlight the differences. The planar model is fairly close to the
current model, but missing subtle details. The use of the modified
boundary plane is important for our model to work well.

such as sharp boundaries and thin features. Extensions of our model
to quadpole and multipole constructions is interesting future work.

7 Conclusion

We introduced a novel BSSRDF model which comes closer to path
traced references than existing models. Our model is built upon a
new analytical solution to the diffusion equation which allows us
to take the direction of incoming light into account. We explained
how to derive a practical BSSRDF model by extending this solution
into a dipole of real and virtual ray sources. Our work significantly
improves the accuracy of an analytical BSSRDF model based on the
diffusion theory. In particular, our model is capable of reproducing
small details that are missing in existing models. We believe that
our model is a valuable addition to the existing set of analytical
BSSRDF models.
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